Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Transfection of Cells with MIR167e-5p
2.2. RNA Isolation
2.3. PCR and qPCR Analyses
2.4. Western Blot Analysis
2.5. Dual-Luciferase Reporter Assay
2.6. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) Assay
2.7. 5-Ethynyl-2′-deoxyuridine (EdU) Incorporation Assay
2.8. Statistical Analyses
3. Results
3.1. Synthetic MIR167e-5p Suppresses the Proliferation of Enterocytes
3.2. MIR167e-5p Targets the Transcript of β-Catenin
3.3. MIR167e-5p Inhibits the β-Catenin Pathway
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
c-Myc | Cellular myelocytomatosis oncogene |
Caco-2 | Colon carcinoma cell line 2 |
DAPI | 4′,6-Diamidino-2-Phenylindole, Dihydrochloride |
EdU | 5-ethynyl-2′-deoxyuridine |
EPDENs | exosome-like nanoparticles |
FBS | fetal bovine serum |
GSK-3β | glycogen synthase kinase-3β |
i-NC | inhibitor normal control |
IPEC-J2 | porcine jejunum epithelial cell line |
LEF | lymphoid enhancing factor |
MTT | 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide |
NC | normal control |
PCNA | proliferating cell nuclear antigen |
PMSF | phenylmethylsulphonyl fluoride |
STC-1 | Invasive small intestinal neuroendocrine carcinoma 1 |
TCF | T cell factor |
UTR | untranslated region |
Wnt | Wingless Int1 |
References
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosovaagadjanyan, E.L.; Stirewalt, D.L. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [Green Version]
- Andrey, T.; Ludmila, W.; Anne, L.; Barbara, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar]
- Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 2012, 7, e30679. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Hepworth, A.R.; Christophe, L.; Hartmann, P.E.; Geddes, D.T.; Foteini, H. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation. J. Cell. Biochem. 2015, 116, 2397–2407. [Google Scholar] [Green Version]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2014, 25, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X.; Wang, S.E. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016, 26, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; He, F.; Ma, L.; Cao, M.; Zhou, Z.; Wei, Z.; Xue, Y.; Sang, X.; Chong, H.; Tian, C.; et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J. Nutr. Biochem. 2018, 57, 197–205. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, M.; Fu, Z.; Zhou, Z.; Kong, Y.; Liang, H.; Lin, Z.; Luo, J.; Zheng, H.; Wan, P. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 2017, 13, e1006946. [Google Scholar] [CrossRef]
- Shahid, S.; Kim, G.; Johnson, N.R.; Wafula, E.; Wang, F.; Coruh, C.; Bernal-Galeano, V.; Phifer, T.; dePamphilis, C.W.; Westwood, J.H.; et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 2018, 553, 82–85. [Google Scholar] [CrossRef]
- Mckenna, L.B.; Schug, J.; Vourekas, A.; Mckenna, J.B.; Bramswig, N.C.; Friedman, J.R.; Kaestner, K.H. MicroRNAs Control Intestinal Epithelial Differentiation, Architecture, and Barrier Function. Gastroenterology 2010, 139, 1654–1664. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Feng, S.; Xun, W.; Long, K.; Yi, L.; Wang, Y.; Ma, J.; Tang, Q.; Long, J.; Li, X. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 2018, 6, e5186. [Google Scholar] [CrossRef]
- Teng, Y.; Ren, Y.; Sayed, M.; Hu, X.; Lei, C.; Kumar, A.; Hutchins, E.; Mu, J.; Deng, Z.; Luo, C.; et al. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018, 24, 637–652. [Google Scholar] [CrossRef]
- Gonzalez, L.M. Intestinal Epithelial Stem Cells. In The Equine Acute Abdomen, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 19–23. [Google Scholar]
- Moeser, A.J.; Borst, L.B.; Overman, B.L.; Pittman, J.S. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Res. Vet. Sci. 2012, 93, 975–982. [Google Scholar] [CrossRef]
- Guonan, L.; Na, X.; Rongwen, X. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 2008, 455, 1119–1123. [Google Scholar]
- Kikuchi, A.; Yamamoto, H.; Sato, A.; Matsumoto, S. New Insights into the Mechanism of Wnt Signaling Pathway Activation. Int. Rev. Cell Mol. Biol. 2011, 291, 21–71. [Google Scholar]
- Sun, J.Y.; Huang, Y.; Li, J.P.; Zhang, X.; Wang, L.; Meng, Y.L.; Yan, B.; Bian, Y.Q.; Zhao, J.; Wang, W.Z. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem. Biophys. Res. Commun. 2012, 420, 787–792. [Google Scholar] [CrossRef]
- Ying, H.S.; Yu, B.L.; Chao, Z.; Xiao, M.L.; Xian, S.Z. The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant. Cell Tissue Organ. Cult. 2016, 124, 405–417. [Google Scholar]
- Narry, K.V. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6, 376–385. [Google Scholar]
- Millar, A.A.; Waterhouse, P.M. Plant and animal microRNAs: Similarities and differences. Funct. Integr. Genomics 2005, 5, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Xuemei, C. MicroRNA biogenesis and function in plants. FEBS Lett. 2005, 579, 5923–5931. [Google Scholar]
- Bin, Y.; Zhiyong, Y.; Junjie, L.; Svetlana, M.; Maocheng, Y.; Padgett, R.W.; Ruth, S.; Xuemei, C. Methylation as a crucial step in plant microRNA biogenesis. Science 2005, 307, 932–935. [Google Scholar]
- Baohong, Z.; Xiaoping, P.; Cobb, G.P.; Anderson, T.A. Plant microRNA: A small regulatory molecule with big impact. Dev. Biol. 2006, 289, 3–16. [Google Scholar]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
- Chen, S.Y.; Ma, B.; Zhang, W.K.; Hu, X.Y.; Liu, Y.F.; Song, Q.X.; Zhang, J.S. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. 2011, 11, 5. [Google Scholar]
- Sun, F.; Guo, G.; Du, J.; Guo, W.; Peng, H.; Ni, Z.; Sun, Q.; Yao, Y. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol. 2014, 14, 142. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Y.; Han, M.; Fu, Z.; Li, W.; Liu, Z.; Hu, Y.; Tang, J. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE 2012, 7, e39578. [Google Scholar] [CrossRef]
- Pirrò, S.; Zanella, L.; Kenzo, M.; Montesano, C.; Minutolo, A.; Potestà, M.; Sobze, M.S.; Canini, A.; Cirilli, M.; Muleo, R. MicroRNA from Moringa oleifera: Identification by High Throughput Sequencing and Their Potential Contribution to Plant Medicinal Value. PLoS ONE 2016, 11, e0149495. [Google Scholar] [CrossRef]
- Witwer, K.W. XenomiRs and miRNA homeostasis in health and disease. RNA Biol. 2012, 9, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Lukasik, A.; Brzozowska, I.; Zielenkiewicz, U.; Zielenkiewicz, P. Detection of Plant miRNAs Abundance in Human Breast Milk. Int. J. Mol. Sci. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Lukasik, A.; Zielenkiewicz, P. In Silico Identification of Plant miRNAs in Mammalian Breast Milk Exosomes—A Small Step Forward? PLoS ONE 2014, 9, e99963. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, P.; Wang, X.; Wang, Y.; Mu, Z.; Li, Q.; Fu, Y.; Xiao, J.; Li, G.; Ma, Y. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci. Rep. 2017, 7, 645. [Google Scholar] [CrossRef] [PubMed]
- Hongwei, L.; Suyang, Z.; Zheng, F.; Yanbo, W.; Nan, W.; Yanqing, L.; Chihao, Z.; Jinhui, W.; Yiqiao, H.; Junfeng, Z. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J. Nutr. Biochem. 2015, 116, 505–512. [Google Scholar]
- Kelman, Z. PCNA: Structure, functions and interactions. Oncogene 1997, 14, 629–640. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; Xi, H. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Daniel, P.; Alex, G.; Harry, B.; Hans, C. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003, 17, 1709–1713. [Google Scholar] [Green Version]
- Wong, M.H.; Rubinfeld, B.; Gordon, J.I. Effects of forced expression of an NH2-terminal truncated beta-Catenin on mouse intestinal epithelial homeostasis. J. Cell Biol. 1998, 141, 765–777. [Google Scholar] [CrossRef]
- Hardiman G1, K.R.; Bazan, J.F. Isolation, characterization and chromosomal localization of human WNT10B. Cytogenet. Cell Genet. 1997, 77, 278–282. [Google Scholar] [CrossRef]
- Fauser, J.K.; Donato, R.P.; Woenig, J.A.; Proctor, S.J.; Trotta, A.P.; Grover, P.K.; Howarth, G.S.; Penttila, I.A.; Cummins, A.G. Wnt blockade with dickkopf reduces intestinal crypt fission and intestinal growth in infant rats. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Pauline, A.; Sabine, C.; Cécile, G.; Sophie, G.; Philippe, C.; Michiko, N.K.; Pierre, L.P.; Axel, K.; Sylvie, R.; Christine, P. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 2005, 132, 1443–1451. [Google Scholar] [CrossRef]
- Sparks, A.B.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998, 58, 1130–1134. [Google Scholar] [PubMed]
- Näthke, I.S. The Adenomatous Polyposis Coli Protein: The Achilles Heel of the Gut Epithelium. Annu. Rev. Cell Dev. Biol. 2004, 20, 337–366. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Tsuchiya, K.; Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol. 2007, 42, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, H.; Okubo, T.; Kuwabara, Y.; Kimura, M.; Mitsui, A.; Sugito, N.; Ogawa, R.; Katada, T.; Tanaka, T.; Shiozaki, M. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget 2017, 8, 60378. [Google Scholar] [CrossRef] [PubMed]
- Jho, E.H.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 2002, 22, 1172–1183. [Google Scholar] [CrossRef]
- Ozawa, M.; Baribault, H.; Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989, 8, 1711–1717. [Google Scholar] [CrossRef]
- Muncan, V.; Sansom, O.J.; Tertoolen, L.; Phesse, T.J.; Begthel, H.; Sancho, E.; Cole, A.M.; Gregorieff, A.; de Alboran, I.M.; Clevers, H.; et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell. Biol. 2006, 26, 8418–8426. [Google Scholar] [CrossRef]
Gen | Sequences | Product Length (bp) | TM | Gene Accession |
---|---|---|---|---|
Stem-loop-RT-MIR167e-5p primer | GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGAC CAGATC | 74 | ||
MIR167e-5p-F | TGAAGCTGCCAGCATGAT | 68 | 56 | |
Stem-loop Universal | ATCCAGTGCGTGTCGTGGA | |||
Ssc-PCNA-F | TTCTTCCACCTGTAGCCG | 269 | 60 | NM_001291925.1 |
Ssc-PCNA-R | TTGGACATGCTGGTGAGG | |||
Ssc-c-Myc-F | GTCCAAGCAGAGGAGCAAA | 103 | 58 | HF549032.1 |
Ssc-c-Myc-R | ATGGGCAAGAGTTCCGTAG | |||
Ssc-β-catenin-F | TGAACCTGCCATCTGTGC | 88 | 58 | AB046171.1 |
Ssc-β-catenin-R | TCCGTAGTGAAGGCGAAC | |||
Homo-PCNA-F | AGGCACTCAAGGACCTCATC | 250 | 58 | CR541799.1 |
Homo-PCNA-R | GCCAAGGTATCCGCGTTATC | |||
Homo-β-catenin-F | CTGGCAGCAACAGTCTTACC | 224 | 58 | X87838.1 |
Homo-β-catenin-R | ACATAGCAGCTCGTACCCTC | |||
Homo-c-Myc-F | CACATCAGCACAACTACGCA | 119 | 58 | NM_002467.6 |
Homo-c-Myc-R | GGTGCATTTTCGGTTGTTGC | |||
β-actin-F | CCAGCACCATGAAGATCAAGATC | 55 | 60 | AY550069.1 |
β-actin-R | ACATCTGCTGGAAGGTGGACA | |||
U6-F | CTCGCTTCGGCAGCACA | 71 | 60 | NR_004394 |
U6-R | AACGCTTCACGAATTTGCGT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, T.; He, J.-J.; Wu, J.-H.; Luo, J.-Y.; Ye, R.-S.; Xie, M.-Y.; Zhang, H.-J.; Zeng, B.; Liu, J.; et al. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells 2019, 8, 1385. https://doi.org/10.3390/cells8111385
Li M, Chen T, He J-J, Wu J-H, Luo J-Y, Ye R-S, Xie M-Y, Zhang H-J, Zeng B, Liu J, et al. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells. 2019; 8(11):1385. https://doi.org/10.3390/cells8111385
Chicago/Turabian StyleLi, Meng, Ting Chen, Jia-Jian He, Jia-Han Wu, Jun-Yi Luo, Rui-Song Ye, Mei-Ying Xie, Hao-Jie Zhang, Bin Zeng, Jie Liu, and et al. 2019. "Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin" Cells 8, no. 11: 1385. https://doi.org/10.3390/cells8111385
APA StyleLi, M., Chen, T., He, J. -J., Wu, J. -H., Luo, J. -Y., Ye, R. -S., Xie, M. -Y., Zhang, H. -J., Zeng, B., Liu, J., Xi, Q. -Y., Jiang, Q. -Y., Sun, J. -J., & Zhang, Y. -L. (2019). Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells, 8(11), 1385. https://doi.org/10.3390/cells8111385