Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-Catenin Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Adipocyte Differentiation
2.2. Drug Treatment
2.3. Oil Red O Staining
2.4. Immunoblotting
2.5. Cell Viability Assay
2.6. RNA Isolation, Reverse Transcriptase PCR (RT-PCR)
2.7. Quantitative Real-Time PCR (qRT-PCR)
2.8. RNA Interference Experiment and Transfection
2.9. Transfection of β-catenin
2.10. Luciferase Assay
2.11. Data and Statistical Analysis
3. Results
3.1. Carbamazepine Enhances Adipocyte Differentiation in 3T3-L1 Cells
3.2. Carbamazepine Increases Expression Levels of Genes Related to Adipogenic Transcription Factors and Lipogenic Enzymes
3.3. Carbamazepine Enhances Adipogenesis at Late Phase of the Differentiation Process
3.4. Carbamazepine Decreases β-catenin Signaling and Leads to Enhanced Adipogenesis
3.5. Depletion of β-catenin Further Enhances Carbamazepine-Induced Adipogenesis
3.6. Carbamazepine Inhibits the Activity of Wnt/β-catenin During Adipocyte Differentiation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goodwin, G.M. Evidence-based guidelines for treating bipolar disorder: Recommendations from the British Association for Psychopharmacology. J. Psychopharmacol. 2003, 17, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.J. Sodium Channel Blockers in the Treatment of Epilepsy. CNS Drugs 2017, 31, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Granger, P.; Biton, B.; Faure, C.; Vige, X.; Depoortere, H.; Graham, D.; Langer, S.Z.; Scatton, B.; Avenet, P. Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol. Pharmacol. 1995, 47, 1189–1196. [Google Scholar] [PubMed]
- Yoshida, S.; Okada, M.; Zhu, G.; Kaneko, S. Carbamazepine prevents breakdown of neurotransmitter release induced by hyperactivation of ryanodine receptor. Neuropharmacology 2007, 52, 1538–1546. [Google Scholar] [CrossRef]
- Garoufi, A.; Vartzelis, G.; Tsentidis, C.; Attilakos, A.; Koemtzidou, E.; Kossiva, L.; Katsarou, E.; Soldatou, A. Weight gain in children on oxcarbazepine monotherapy. Epilepsy Res. 2016, 122, 110–113. [Google Scholar] [CrossRef]
- Hogan, R.E.; Bertrand, M.E.; Deaton, R.L.; Sommerville, K.W. Total percentage body weight changes during add-on therapy with tiagabine, carbamazepine and phenytoin. Epilepsy Res. 2000, 41, 23–28. [Google Scholar] [CrossRef]
- Hamed, S.A.; Fida, N.M.; Hamed, E.A. States of serum leptin and insulin in children with epilepsy: Risk predictors of weight gain. Eur. J. Paediatr. Neurol. 2009, 13, 261–268. [Google Scholar] [CrossRef]
- Bramswig, S.; Sudhop, T.; Luers, C.; von Bergmann, K.; Berthold, H.K. Lipoprotein(a) concentration increases during treatment with carbamazepine. Epilepsia 2003, 44, 457–460. [Google Scholar] [CrossRef]
- Mintzer, S. Metabolic consequences of antiepileptic drugs. Curr. Opin. Neurol. 2010, 23, 164–169. [Google Scholar] [CrossRef]
- Luef, G.; Rauchenzauner, M.; Waldmann, M.; Sturm, W.; Sandhofer, A.; Seppi, K.; Trinka, E.; Unterberger, I.; Ebenbichler, C.F.; Joannidis, M.; et al. Non-alcoholic fatty liver disease (NAFLD), insulin resistance and lipid profile in antiepileptic drug treatment. Epilepsy Res. 2009, 86, 42–47. [Google Scholar] [CrossRef]
- Uludag, I.F.; Kulu, U.; Sener, U.; Kose, S.; Zorlu, Y. The effect of carbamazepine treatment on serum leptin levels. Epilepsy Res. 2009, 86, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Shattil, S.J.; Anaya-Galindo, R.; Bennett, J.; Colman, R.W.; Cooper, R.A. Platelet hypersensitivity induced by cholesterol incorporation. J. Clin. Investig. 1975, 55, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Mermelstein, C.S.; Portilho, D.M.; Mendes, F.A.; Costa, M.L.; Abreu, J.G. Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion. Differ. Res. Biol. Divers. 2007, 75, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J. Lipid Res. 2012, 53, 227–246. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What We Talk About When We Talk About Fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Malik, V.S.; Willett, W.C.; Hu, F.B. Global obesity: Trends, risk factors and policy implications. Nat. Rev. Endocrinol. 2013, 9, 13–27. [Google Scholar] [CrossRef]
- Isakson, P.; Hammarstedt, A.; Gustafson, B.; Smith, U. Impaired preadipocyte differentiation in human abdominal obesity: Role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 2009, 58, 1550–1557. [Google Scholar] [CrossRef]
- Madsen, L.; Petersen, R.K.; Kristiansen, K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta 2005, 1740, 266–286. [Google Scholar] [CrossRef]
- Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev. 2000, 14, 1293–1307. [Google Scholar]
- Ali, A.T.; Hochfeld, W.E.; Myburgh, R.; Pepper, M.S. Adipocyte and adipogenesis. Eur. J. Cell Biol. 2013, 92, 229–236. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Lazar, M.A. New developments in adipogenesis. Trends Endocrinol. Metab. 2009, 20, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Phelps, S.J.; Wheless, J.W. Oxcarbazepine: A brief review. J. Pediatr. Pharmacol. Ther. Jppt Off. J. Ppag 2005, 10, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Vallee, A.; Lecarpentier, Y.; Guillevin, R.; Vallee, J.N. Opposite Interplay Between the Canonical WNT/beta-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci. Bull. 2018, 34, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Hemati, N.; Longo, K.A.; Bennett, C.N.; Lucas, P.C.; Erickson, R.L.; MacDougald, O.A. Inhibition of adipogenesis by Wnt signaling. Science 2000, 289, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Moldes, M.; Zuo, Y.; Morrison, R.F.; Silva, D.; Park, B.H.; Liu, J.; Farmer, S.R. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem. J. 2003, 376, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Longo, K.A.; Wright, W.S.; Kang, S.; Gerin, I.; Chiang, S.H.; Lucas, P.C.; Opp, M.R.; MacDougald, O.A. Wnt10b inhibits development of white and brown adipose tissues. J. Biol. Chem. 2004, 279, 35503–35509. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Clevers, H.; Nusse, R. Wnt/beta-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef]
- Acebron, S.P.; Niehrs, C. beta-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends Cell Biol. 2016, 26, 956–967. [Google Scholar] [CrossRef]
- Niehrs, C.; Acebron, S.P. Wnt signaling: Multivesicular bodies hold GSK3 captive. Cell 2010, 143, 1044–1046. [Google Scholar] [CrossRef]
- Chung, S.S.; Lee, J.S.; Kim, M.; Ahn, B.Y.; Jung, H.S.; Lee, H.M.; Kim, J.W.; Park, K.S. Regulation of Wnt/beta-catenin signaling by CCAAT/enhancer binding protein beta during adipogenesis. Obesity 2012, 20, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Li, V.S.; Ng, S.S.; Boersema, P.J.; Low, T.Y.; Karthaus, W.R.; Gerlach, J.P.; Mohammed, S.; Heck, A.J.; Maurice, M.M.; Mahmoudi, T.; et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 2012, 149, 1245–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennell, J.A.; MacDougald, O.A. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J. Biol. Chem. 2005, 280, 24004–24010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthorn, W.P.; Bree, A.J.; Yao, Y.; Du, B.; Hemati, N.; Martinez-Santibanez, G.; MacDougald, O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 2012, 50, 477–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunze, H.C. Anticonvulsants in bipolar disorder. J. Ment. Health 2010, 19, 127–141. [Google Scholar] [CrossRef]
- Fagiolini, A.; Kupfer, D.J.; Houck, P.R.; Novick, D.M.; Frank, E. Obesity as a correlate of outcome in patients with bipolar I disorder. Am. J. Psychiatry 2003, 160, 112–117. [Google Scholar] [CrossRef]
- Grootens, K.P.; Meijer, A.; Hartong, E.G.; Doornbos, B.; Bakker, P.R.; Al Hadithy, A.; Hoogerheide, K.N.; Overmeire, F.; Marijnissen, R.M.; Ruhe, H.G. Weight changes associated with antiepileptic mood stabilizers in the treatment of bipolar disorder. Eur. J. Clin. Pharmacol. 2018, 74, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Terada, K.; Takahashi, Y.; Imai, K.; Kagawa, Y.; Inoue, Y. Influence of antiepileptic drugs on serum lipid levels in adult epilepsy patients. Epilepsy Res. 2016, 127, 101–106. [Google Scholar] [CrossRef]
- Simmons-Alling, S.; Talley, S. Bipolar disorder and weight gain: A multifactorial assessment. J. Am. Psychiatr. Nurses Assoc. 2008, 13, 345–352. [Google Scholar] [CrossRef]
- Foufelle, F.; Girard, J.; Ferre, P. Regulation of lipogenic enzyme expression by glucose in liver and adipose tissue: A review of the potential cellular and molecular mechanisms. Adv. Enzym. Regul. 1996, 36, 199–226. [Google Scholar] [CrossRef]
- Turpin, E.; Muscat, A.; Vatier, C.; Chetrite, G.; Corruble, E.; Moldes, M.; Feve, B. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway. Br. J. Pharmacol. 2013, 168, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.H.; Huang, J.; Duvel, K.; Boback, B.; Wu, S.; Squillace, R.M.; Wu, C.L.; Manning, B.D. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 2009, 4, e6189. [Google Scholar] [CrossRef] [PubMed]
- Zeve, D.; Seo, J.; Suh, J.M.; Stenesen, D.; Tang, W.; Berglund, E.D.; Wan, Y.; Williams, L.J.; Lim, A.; Martinez, M.J.; et al. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metab. 2012, 15, 492–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behari, J.; Li, H.; Liu, S.; Stefanovic-Racic, M.; Alonso, L.; O’Donnell, C.P.; Shiva, S.; Singamsetty, S.; Watanabe, Y.; Singh, V.P.; et al. beta-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. Am. J. Pathol. 2014, 184, 3284–3298. [Google Scholar] [CrossRef] [Green Version]
- Prestwich, T.C.; Macdougald, O.A. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr. Opin. Cell Biol. 2007, 19, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Wang, J.; Liu, B.; Pan, W.; Farr, G.H., 3rd; Flynn, C.; Yuan, H.; Takada, S.; Kimelman, D.; Li, L.; et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 2001, 7, 801–809. [Google Scholar] [CrossRef]
- MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb. Perspect. Biol. 2012, 4. [Google Scholar]
- Christodoulides, C.; Lagathu, C.; Sethi, J.K.; Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 2009, 20, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Farmer, S.R. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 2004, 279, 45020–45027. [Google Scholar]
Name | Forward (5′→3′) | Reverse (5′→3′) |
---|---|---|
C/EBPβ | GGCCAAGAAGACGGRGGACAA | TTCTTCTGCACGCGCTCGTTC |
PPARγ | GGGTGAAACTCTGGGAGATTCTCC | CAGCAACCATTGGGTCAGCTCT |
FASN | GCTTATTGATCAGTTATGTGGCC | CACGGAGTTGAGCCGCAT |
L32 | TGAAGCAGGCATCTGAGGG | CGAAGGTGGAAGAG TGGGAG |
Name | Forward (5′→3′) | Reverse (5′→3′) |
---|---|---|
PPARγ | TGT GGG GAT AAA GCA TCA GGC | CCG GCA GTT AAG ATC ACA CCT AT |
FABP4 | TGG AAG CTT GTC TCC AGT GA | AAT CCC CAT TTA CGC TGA TG |
SREBP1 | GGCACTGAAGCAAAGCTGAAT | GCAAGAAGCGGATGTAGTCGAT |
FASN | ACCACTGCATTGACGGCCGG | GGGTCAGGCGGGAGACCGAT |
SCD1 | GGTGATGTTCCAGAGGAGGTACTAC | AGCGTGGGCAGGATGAAG |
MGAT1 | CTGGTTCTGTTTCCCGTTGT | TGGGTCAAGGCCATCTTAAC |
DGAT1 | GTGCACAAGTGGTGCATCAG | CAGTGGGATCTGAGCCATCA |
Adipoq | GGAACTTGTGCAGGTTGGAT | GCTTCTCCAGGCTCTCCTTT |
Leptin | CACACACGCAGTCGGTATCC | AGCCCAGGAATGAAGTCCAA |
Wnt10a | CCACTCCGACCTGGTCTACTTTG | TGCTGCTCTTATTGCACAGGC |
Wnt10b | ATCGCCGTTCACGAGTGTC | GGAAACCGCGCTTGAGGAT |
GAPDH | GTCTTCCTGGGCAAGCAGTA | CTGGACAGAAACCCCACTTC |
Name | Sense (5′→3′) | Antisense (5′→3′) |
---|---|---|
β-catenin | UAAUGAAGGCGAACGGCAUUCUGGG | CCCAGAAUGCCGUUCGCCUUCAUUA |
Nonsilencing | CCUCGUGCCGUUCCAUCAGGUAGUU | CUACCUGAUGGAACGGCACGAGGUU |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, D.U.; Kim, S.C.; Chau, G.C.; Um, S.H. Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-Catenin Expression. Cells 2019, 8, 1460. https://doi.org/10.3390/cells8111460
Im DU, Kim SC, Chau GC, Um SH. Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-Catenin Expression. Cells. 2019; 8(11):1460. https://doi.org/10.3390/cells8111460
Chicago/Turabian StyleIm, Dong Uk, Sang Chon Kim, Gia Cac Chau, and Sung Hee Um. 2019. "Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-Catenin Expression" Cells 8, no. 11: 1460. https://doi.org/10.3390/cells8111460
APA StyleIm, D. U., Kim, S. C., Chau, G. C., & Um, S. H. (2019). Carbamazepine Enhances Adipogenesis by Inhibiting Wnt/β-Catenin Expression. Cells, 8(11), 1460. https://doi.org/10.3390/cells8111460