Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cardiomyocyte Treatment
2.3. Collection of HSP27-Containing Culture Supernatant
2.4. Protein Isolation
2.5. Western Blot Analysis
2.6. Immunoprecipitation and Mass Spectrometric Analysis
2.7. Mitochondrial Membrane Potential (∆ψm)
2.8. Caspase-3/7 Activity
2.9. Myocardial Infarction
2.10. Correlation between ANT and HSP27 Transcription Levels in Human Heart Tissue
2.11. Data Presentation and Statistical Analysis
3. Results
3.1. ANT1 Overexpression Induces Increased HSP27 Expression
3.2. HSP27 Interacts with ANT1 Protein
3.3. ANT1 Overexpression Stimulates HSP27 Release and TLR4 Expression
3.4. Inhibition of exHSP27, Using HSP27-Specific Antibodies, Decreases TLR4 and HSP27 Expression Levels
3.5. ANT1-TG Cardiomyocytes Are More Responsive than WT Cardiomyocytes to HSP27-Mediated TLR4 Signaling, Which Upregulated HSP27 and ANT1 Expression
3.6. ANT1-TG Cardiomyocytes Respond to HSP27 Treatment with TLR4-Dependent AKT Activation
3.7. HSP27 and ANT1 Expression Were AKT Activity-Dependent in ANT1-TG Cardiomyocytes
3.8. HSP27-Induced TLR4 Activation Increases ∆ψm and Suppresses Caspase-3/7 Activity
3.9. ANT1 Overexpression Increases HSP27 Signaling in Infarcted Hearts that Correlates with Mitochondrial Stability
3.10. ANT1 and HSP27 Transcription Levels Are Correlated in Explanted Hearts from Donors and Patients with Ischemic Cardiomyopathy
4. Discussion
4.1. HSP27 Cooperates with ANT1
4.2. ANT1 Overexpression Supports HSP27 Release, Which Increases Its Own Intracellular Expression
4.3. HSP27 and ANT1 Synthesis are Commonly Regulated by TLR4-Mediated Signaling
4.4. HSP27 Supports TLR4-Mediated AKT Signaling in ANT1-TG Cardiomyocytes
4.5. HSP27-Mediated TLR4 Signaling Supports Cardioprotection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 2008, 1778, 1978–2021. [Google Scholar] [CrossRef] [Green Version]
- Halestrap, A.P.; Pasdois, P. The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta 2009, 1787, 1402–1415. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.H.; Waymire, K.G.; Cottrell, B.; Trounce, I.A.; MacGregor, G.R.; Wallace, D.C. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet 1997, 16, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Jordens, E.Z.; Palmieri, L.; Huizing, M.; van den Heuvel, L.P.; Sengers, R.C.; Dorner, A.; Ruitenbeek, W.; Trijbels, F.J.; Valsson, J.; Sigfusson, G.; et al. Adenine nucleotide translocator 1 deficiency associated with Sengers syndrome. Ann. Neurol. 2002, 52, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Dorner, A.; Schultheiss, H.P. Adenine nucleotide translocase in the focus of cardiovascular diseases. Trends Cardiovasc. Med. 2007, 17, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Borutaite, V.; Mildaziene, V.; Katiliute, Z.; Kholodenko, B.; Toleikis, A. The function of ATP/ADP translocator in the regulation of mitochondrial respiration during development of heart ischemic injury. Biochim. Biophys. Acta 1993, 1142, 175–180. [Google Scholar] [CrossRef]
- Chen, J.J.; Bertrand, H.; Yu, B.P. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic. Biol. Med. 1995, 19, 583–590. [Google Scholar] [CrossRef]
- Klumpe, I.; Savvatis, K.; Westermann, D.; Tschope, C.; Rauch, U.; Landmesser, U.; Schultheiss, H.P.; Dorner, A. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J. Mol. Med. 2016, 94, 645–653. [Google Scholar] [CrossRef]
- Walther, T.; Tschope, C.; Sterner-Kock, A.; Westermann, D.; Heringer-Walther, S.; Riad, A.; Nikolic, A.; Wang, Y.; Ebermann, L.; Siems, W.E.; et al. Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation 2007, 115, 333–344. [Google Scholar] [CrossRef]
- Wang, Y.; Ebermann, L.; Sterner-Kock, A.; Wika, S.; Schultheiss, H.P.; Dorner, A.; Walther, T. Myocardial overexpression of adenine nucleotide translocase 1 ameliorates diabetic cardiomyopathy in mice. Exp. Physiol. 2009, 94, 220–227. [Google Scholar] [CrossRef]
- Heger, J.; Abdallah, Y.; Shahzad, T.; Klumpe, I.; Piper, H.M.; Schultheiss, H.P.; Schluter, K.D.; Schulz, R.; Euler, G.; Dorner, A. Transgenic overexpression of the adenine nucleotide translocase 1 protects cardiomyocytes against TGFbeta1-induced apoptosis by stabilization of the mitochondrial permeability transition pore. J. Mol. Cell. Cardiol. 2012, 53, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.; Klumpe, I.; Heger, J.; Rauch, U.; Schultheiss, H.P.; Landmesser, U.; Dorner, A. Adenine nucleotide translocase 1 overexpression protects cardiomyocytes against hypoxia via increased ERK1/2 and AKT activation. Cell Signal. 2016, 28, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Rane, M.J.; Pan, Y.; Singh, S.; Powell, D.W.; Wu, R.; Cummins, T.; Chen, Q.; McLeish, K.R.; Klein, J.B. Heat shock protein 27 controls apoptosis by regulating Akt activation. J. Biol. Chem. 2003, 278, 27828–27835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferns, G.; Shams, S.; Shafi, S. Heat shock protein 27: Its potential role in vascular disease. Int. J. Exp. Pathol. 2006, 87, 253–274. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, A.A.; Kapadia, S.; Torre-Amione, G.; Durand, J.B.; Bies, R.; Young, J.; Mann, D.L. Differential expression of heat shock proteins in normal and failing human hearts. J. Mol. Cell Cardiol. 1998, 30, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Mearow, K.M.; Dodge, M.E.; Rahimtula, M.; Yegappan, C. Stress-mediated signaling in PC12 cells—The role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J. Neurochem. 2002, 83, 452–462. [Google Scholar] [CrossRef]
- Tang, S.; Buriro, R.; Liu, Z.; Zhang, M.; Ali, I.; Adam, A.; Hartung, J.; Bao, E. Localization and expression of Hsp27 and alphaB-crystallin in rat primary myocardial cells during heat stress in vitro. PLoS ONE 2013, 8, e69066. [Google Scholar]
- Batulan, Z.; Pulakazhi Venu, V.K.; Li, Y.; Koumbadinga, G.; Alvarez-Olmedo, D.G.; Shi, C.; O’Brien, E.R. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front. Immunol. 2016, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Cleveland, J.C.; Ao, L.; Li, J.; Zeng, Q.; Fullerton, D.A.; Meng, X. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 2014, 20, 280–289. [Google Scholar] [CrossRef]
- Smith, J.A. Preparation, properties, and conditions for assay of mitochondria: Slaughterhouse material, small-scale. Methods Enzymol. 1967, 10, 81–86. [Google Scholar]
- Vyssokikh, M.Y.; Katz, A.; Rueck, A.; Wuensch, C.; Dorner, A.; Zorov, D.B.; Brdiczka, D. Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochem J. 2001, 358, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Welinder, C.; Ekblad, L. Coomassie staining as loading control in Western blot analysis. J. Proteome. Res. 2011, 10, 1416–1419. [Google Scholar] [CrossRef] [PubMed]
- Hammer, E.; Goritzka, M.; Ameling, S.; Darm, K.; Steil, L.; Klingel, K.; Trimpert, C.; Herda, L.R.; Dorr, M.; Kroemer, H.K.; et al. Characterization of the human myocardial proteome in inflammatory dilated cardiomyopathy by label-free quantitative shotgun proteomics of heart biopsies. J. Proteome. Res. 2011, 10, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Thiele, T.; Sablewski, A.; Iuga, C.; Bakchoul, T.; Bente, A.; Gorg, S.; Volker, U.; Greinacher, A.; Steil, L. Profiling alterations in platelets induced by Amotosalen/UVA pathogen reduction and gamma irradiation-- a LC-ESI-MS/MS-based proteomics approach. Blood Transfus. 2012, 10 (Suppl. 2), s63–s70. [Google Scholar]
- Mela-Riker, L.M.; Bukoski, R.D. Regulation of mitochondrial activity in cardiac cells. Annu. Rev. Physiol. 1985, 47, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Mymrikov, E.V.; Seit-Nebi, A.S.; Gusev, N.B. Large potentials of small heat shock proteins. Physiol Rev. 2011, 91, 1123–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, K.; Kanagasabai, R.; Druhan, L.J.; Ilangovan, G. Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice. J. Pharm. Exp. 2012, 341, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, M.; Naito, S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol. Pharm. Bull. 2005, 28, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Benn, S.C.; Perrelet, D.; Kato, A.C.; Scholz, J.; Decosterd, I.; Mannion, R.J.; Bakowska, J.C.; Woolf, C.J. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 2002, 36, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Park, K.J.; Gaynor, R.B.; Kwak, Y.T. Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J. Biol. Chem. 2003, 278, 35272–35278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Jiang, H.; Wang, P.; Liu, H.; Sun, X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep. 2017, 7, 44708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, H.; Takagi, H.; Oh, H.; Suzuma, K.; Suzuma, I.; Miyamoto, N.; Uemura, A.; Watanabe, D.; Murakami, T.; Sugaya, T.; et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ. Res. 2004, 94, 785–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, R.; Kausar, H.; Johnson, P.; Montoya-Durango, D.E.; Merchant, M.; Rane, M.J. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J. Biol. Chem. 2007, 282, 21598–21608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.C.; Stice, J.P.; Chen, L.; Jung, J.S.; Gupta, S.; Wang, Y.; Baumgarten, G.; Trial, J.; Knowlton, A.A. Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ. Res. 2009, 105, 1186–1195. [Google Scholar] [CrossRef] [Green Version]
- Ghayour-Mobarhan, M.; Sahebkar, A.; Parizadeh, S.M.; Moohebati, M.; Tavallaie, S.; Rezakazemi-Bajestani, S.M.; Esmaeili, H.A.; Ferns, G. Antibody titres to heat shock protein 27 are elevated in patients with acute coronary syndrome. Int. J. Exp. Pathol. 2008, 89, 209–215. [Google Scholar] [CrossRef]
- Park, H.K.; Park, E.C.; Bae, S.W.; Park, M.Y.; Kim, S.W.; Yoo, H.S.; Tudev, M.; Ko, Y.H.; Choi, Y.H.; Kim, S.; et al. Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation 2006, 114, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Shafi, S.; Bodman-Smith, K.; Williams, P.; Mehta, S.; Ferns, G.A. Anti-heat shock protein-27 (Hsp-27) antibody levels in patients with chest pain: Association with established cardiovascular risk factors. Clin. Chim. Acta 2008, 395, 42–46. [Google Scholar] [CrossRef]
- Chao, W. Toll-like receptor signaling: A critical modulator of cell survival and ischemic injury in the heart. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1–H12. [Google Scholar] [CrossRef] [Green Version]
- Belosjorow, S.; Schulz, R.; Dorge, H.; Schade, F.U.; Heusch, G. Endotoxin and ischemic preconditioning: TNF-alpha concentration and myocardial infarct development in rabbits. Am. J. Physiol. 1999, 277, H2470–H2475. [Google Scholar] [CrossRef]
- Brown, J.M.; Grosso, M.A.; Terada, L.S.; Whitman, G.J.; Banerjee, A.; White, C.W.; Harken, A.H.; Repine, J.E. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc. Natl. Acad. Sci. USA 1989, 86, 2516–2520. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, J.; Hammer, E.; Heger, J.; Schultheiss, H.-P.; Rauch, U.; Landmesser, U.; Dörner, A. Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells 2019, 8, 1588. https://doi.org/10.3390/cells8121588
Winter J, Hammer E, Heger J, Schultheiss H-P, Rauch U, Landmesser U, Dörner A. Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells. 2019; 8(12):1588. https://doi.org/10.3390/cells8121588
Chicago/Turabian StyleWinter, Julia, Elke Hammer, Jacqueline Heger, Heinz-Peter Schultheiss, Ursula Rauch, Ulf Landmesser, and Andrea Dörner. 2019. "Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes" Cells 8, no. 12: 1588. https://doi.org/10.3390/cells8121588
APA StyleWinter, J., Hammer, E., Heger, J., Schultheiss, H. -P., Rauch, U., Landmesser, U., & Dörner, A. (2019). Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes. Cells, 8(12), 1588. https://doi.org/10.3390/cells8121588