Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets
2.3. Nutritional Protocols
2.4. Collection of Hepatic Tissue, Homogenization, and Protein Dosage
2.5. Mitochondria Isolation
2.6. Mitochondrial Oxygen Consumption
2.7. Mitochondrial Permeability Transition Pore (MPTP) Opening
2.8. Oxidative Stress Evaluation in Liver
2.8.1. Evaluation of Substances Reactive to Thiobarbituric Acid (TBARS) Levels
2.8.2. Evaluation of Protein Oxidation
2.8.3. Superoxide Dismutase (SOD) Assay
2.8.4. Catalase (CAT) Assay
2.8.5. Glutathione Peroxidase (GPX) Assay
2.8.6. Glutathione S-Transferase (GST) Assay
2.8.7. Glutathione Reduced (GSH) Levels
2.8.8. Evaluation of Total Thiols (SH) Groups
2.8.9. RNA Extraction, Reverse Transcription, and Quantitative PCR (qPCR)
2.9. Statistical Analysis
3. Results
3.1. Body Weight and Food Consumption
3.2. Mitochondrial Respiration
3.3. Mitochondrial Swelling
3.4. Oxidative Stress Biomarkers
3.5. Enzymatic and Non-Enzymatic Antioxidant Responses
3.6. Gene Expression by RT-PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barker, D.J.; Eriksson, J.G.; Forsén, T.; Osmond, C. Fetal origins of adult disease: Strength of effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Gluckman, P.D.; Hanson, M.A. Developmental origins of metabolic disease: Life course and intergenerational perspectives. Trends Endocrinol. Metab. 2010, 21, 199–205. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Hanson, M.; Godfrey, K.M.; Lillycrop, K.A.; Burdge, G.C.; Gluckman, P.D. Developmental plasticity and developmental origins of non-communicable disease: Theoretical considerations and epigenetic mechanisms. Prog. Biophys. Mol. Biol. 2011, 106, 272–280. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Lillycrop, K.A.; Burdge, G.C.; Gluckman, P.D.; Hanson, M.A. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr. Res. 2007, 61, 5R–10R. [Google Scholar] [CrossRef] [PubMed]
- West-Eberhard, M.J. Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. USA 2005, 102, 6543–6549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef]
- Popkin, B.M. Nutrition in transition: The changing global nutrition challenge. Asia Pac. J. Clin. Nutr. 2001, 10, S13–S18. [Google Scholar] [CrossRef]
- WHO-OMS. Diet, Nutrition and the Prevention of Chronic diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- de Moura Souza, A.; Barufaldi, L.A.; de Azevedo Abreu, G.; Giannini, D.T.; de Oliveira, C.L.; dos Santos, M.M.; Leal, V.S.; de Assis Guedes Vasconcelos, F. ERICA: Intake of macro and micronutrients of Brazilian adolescents. Revista de Saude Publica 2016, 50. [Google Scholar] [CrossRef]
- Dhillon, A.; Steadman, R.H. Liver Diseases. In Anesthesia and Uncommon Diseases, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 162–214. [Google Scholar]
- Chitturi, S.; Farrell, G.C. Etiopathogenesis of nonalcoholic steatohepatitis. In Seminars in Liver Disease; Thieme Medical Publishers, Inc.: New York, NY, USA, 2001; pp. 027–042. [Google Scholar]
- Mehta, S.; Yang, X.M.; Chan, C.S.; Dobson, M.J.; Jayaram, M.; Velmurugan, S. The 2 micron plasmid purloins the yeast cohesin complex: A mechanism for coupling plasmid partitioning and chromosome segregation? J. Cell Biol. 2002, 158, 625–637. [Google Scholar] [CrossRef]
- Pruis, M.; van Ewijk, P.; Schrauwen-Hinderling, V.; Plösch, T. Lipotoxicity and the role of maternal nutrition. Acta Physiol. 2014, 210, 296–306. [Google Scholar] [CrossRef]
- Yoon, H.J.; Cha, B.S. Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J. Hepatol. 2014, 6, 800–811. [Google Scholar] [CrossRef]
- Chaurasia, B.; Summers, S.A. Ceramides—Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol. Metab. 2015, 26, 538–550. [Google Scholar] [CrossRef]
- Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2012, 52, 59–69. [Google Scholar] [CrossRef]
- Bruce, K.D.; Szczepankiewicz, D.; Sihota, K.K.; Ravindraanandan, M.; Thomas, H.; Lillycrop, K.A.; Burdge, G.C.; Hanson, M.A.; Byrne, C.D.; Cagampang, F.R. Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2016, 1861, 584–593. [Google Scholar] [CrossRef]
- Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxid. Redox Signal. 2013, 18, 2029–2074. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; OUP Oxford: Oxford, UK, 2007. [Google Scholar]
- Singh, S.P.; Schragenheim, J.; Cao, J.; Falck, J.R.; Abraham, N.G.; Bellner, L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 2016, 125, 8–18. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Kakimoto, P.A.; Kowaltowski, A.J. Diet-sensitive sources of reactive oxygen species in liver mitochondria: Role of very long chain acyl-CoA dehydrogenases. PLoS ONE 2013, 8, e77088. [Google Scholar] [CrossRef]
- Kakimoto, P.A.; Tamaki, F.K.; Cardoso, A.R.; Marana, S.R.; Kowaltowski, A.J. H2O2 release from the very long chain acyl-CoA dehydrogenase. Redox Biol. 2015, 4, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Handschin, C.; Spiegelman, B.M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006, 27, 728–735. [Google Scholar] [CrossRef]
- Thirupathi, A.; de Souza, C.T. Multi-regulatory network of ROS: The interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J. Physiol. Biochem. 2017, 73, 487–494. [Google Scholar] [CrossRef]
- Wu, H.; Deng, X.; Shi, Y.; Su, Y.; Wei, J.; Duan, H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J. Endocrinol. 2016, 229, R99–R115. [Google Scholar] [CrossRef] [Green Version]
- Theurey, P.; Tubbs, E.; Vial, G.; Jacquemetton, J.; Bendridi, N.; Chauvin, M.-A.; Alam, M.R.; Le Romancer, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol. 2016, 8, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Rieusset, J. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2017, 1864, 865–876. [Google Scholar] [CrossRef]
- Shoshan-Barmatz, V.; Krelin, Y.; Shteinfer-Kuzmine, A. VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease. Cell Calcium 2018, 69, 81–100. [Google Scholar] [CrossRef]
- Wang, X.; Du, H.; Shao, S.; Bo, T.; Yu, C.; Chen, W.; Zhao, L.; Li, Q.; Wang, L.; Liu, X. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018, 68, 62–77. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Ferro Cavalcante, T.C.; Lima da Silva, J.M.; da Silva, M.; Alves, A.; Muniz, G.S.; Neto, L.; Marques, L.; Lopes de Souza, S.; Manhães de Castro, R.; Ferraz, K.M. Effects of a westernized diet on the reflexes and physical maturation of male rat offspring during the perinatal period. Lipids 2013, 48, 1157–1168. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Schneider, W.C.; Hogeboom, G.H. Cytochemical studies of mammalian tissues; the isolation of cell components by differential centrifugation: A review. Cancer Res. 1951, 11, 1–22. [Google Scholar]
- Robinson, J.; Cooper, J.M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal. Biochem. 1970, 33, 390–399. [Google Scholar] [CrossRef]
- Vercesi, A.E.; Ferraz, V.L.; Macedo, D.V.; Fiskum, G. Ca2+-dependent NAD(P)+-induced alterations of rat liver and hepatoma mitochondrial membrane permeability. Biochem. Biophys. Res. Commun. 1988, 154, 934–941. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. [30] Microsomal lipid peroxidation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 52, pp. 302–310. [Google Scholar]
- Zanatta, Â.; Moura, A.P.; Tonin, A.M.; Knebel, L.A.; Grings, M.; Lobato, V.A.; Ribeiro, C.A.J.; Dutra-Filho, C.S.; Leipnitz, G.; Wajner, M. Neurochemical evidence that the metabolites accumulating in 3-methylcrotonyl-CoA carboxylase deficiency induce oxidative damage in cerebral cortex of young rats. Cell. Mol. Neurobiol. 2013, 33, 137–146. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Habig, W.H.; Pabst, M.J.; Fleischner, G.; Gatmaitan, Z.; Arias, I.M.; Jakoby, W.B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad. Sci. USA 1974, 71, 3879–3882. [Google Scholar] [CrossRef]
- Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- de Brito Alves, J.L.; Nogueira, V.O.; Cavalcanti Neto, M.P.; Leopoldino, A.M.; Curti, C.; Colombari, D.S.; Colombari, E.; Wanderley, A.G.; Leandro, C.G.; Zoccal, D.B.; et al. Maternal protein restriction increases respiratory and sympathetic activities and sensitizes peripheral chemoreflex in male rat offspring. J. Nutr. 2015, 145, 907–914. [Google Scholar] [CrossRef]
- de Brito Alves, J.L.; Nogueira, V.O.; de Oliveira, G.B.; da Silva, G.S.; Wanderley, A.G.; Leandro, C.G.; Costa-Silva, J.H. Short- and long-term effects of a maternal low-protein diet on ventilation, O(2)/CO(2) chemoreception and arterial blood pressure in male rat offspring. Br. J. Nutr. 2014, 111, 606–615. [Google Scholar] [CrossRef]
- Moraes, C.; Rebelato, H.J.; Amaral, M.E.C.; Resende, T.M.; Silva, E.V.; Esquisatto, M.A.; Catisti, R. Effect of maternal protein restriction on liver metabolism in rat offspring. J. Physiol. Sci. 2014, 64, 347–355. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; Castilho, R.F.; Vercesi, A.E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 1996, 378, 150–152. [Google Scholar] [CrossRef]
- Pérez, M.J.; Quintanilla, R.A. Development or disease: Duality of the mitochondrial permeability transition pore. Dev. Biol. 2017, 426, 1–7. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 2007, 87, 99–163. [Google Scholar] [CrossRef]
- Kalani, K.; Yan, S.F.; Yan, S.S. Mitochondrial permeability transition pore: A potential drug target for neurodegeneration. Drug Discov. Today 2018, 23, 1983–1989. [Google Scholar] [CrossRef]
- Kwong, J.Q.; Molkentin, J.D. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 2015, 21, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Liu, X.; Wang, Q.; Liu, C.Q.; Chen, Y.; Jia, W.; Hsie, R.; Chen, Y.; Luh, F.; Zheng, S. Ribonucleotide reductase subunit M2B deficiency leads to mitochondrial permeability transition pore opening and is associated with aggressive clinicopathologic manifestations of breast cancer. Am. J. Transl. Res. 2018, 10, 3635. [Google Scholar]
- Riojas-Hernández, A.; Bernal-Ramírez, J.; Rodríguez-Mier, D.; Morales-Marroquín, F.E.; Domínguez-Barragán, E.M.; Borja-Villa, C.; Rivera-Álvarez, I.; García-Rivas, G.; Altamirano, J.; García, N. Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/fa rats with type 2 diabetes. Life Sci. 2015, 141, 32–43. [Google Scholar] [CrossRef]
- Gonçalves, I.O.; Passos, E.; Diogo, C.V.; Rocha-Rodrigues, S.; Santos-Alves, E.; Oliveira, P.J.; Ascensão, A.; Magalhães, J. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl. Physiol. Nutr. Metab. 2015, 41, 298–306. [Google Scholar] [CrossRef]
- Vega, C.C.; Reyes-Castro, L.A.; Rodríguez-González, G.L.; Bautista, C.J.; Vázquez-Martínez, M.; Larrea, F.; Chamorro-Cevallos, G.A.; Nathanielsz, P.W.; Zambrano, E. Resveratrol partially prevents oxidative stress and metabolic dysfunction in pregnant rats fed a low protein diet and their offspring. J. Physiol. 2016, 594, 1483–1499. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, E.; Bautista, C.; Deas, M.; Martinez-Samayoa, P.; Gonzalez-Zamorano, M.; Ledesma, H.; Morales, J.; Larrea, F.; Nathanielsz, P. A low maternal protein diet during pregnancy and lactation has sex-and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J. Physiol. 2006, 571, 221–230. [Google Scholar] [CrossRef]
- Vigueras-Villaseñor, R.M.; Rojas-Castañeda, J.C.; Chavez-Saldana, M.; Gutierrez-Perez, O.; García-Cruz, M.E.; Cuevas-Alpuche, O.; Reyes-Romero, M.M.; Zambrano, E. Alterations in the spermatic function generated by obesity in rats. Acta Histochem. 2011, 113, 214–220. [Google Scholar] [CrossRef]
- Lindeboom, L.; Nabuurs, C.I.; Hesselink, M.K.; Wildberger, J.E.; Schrauwen, P.; Schrauwen-Hinderling, V.B. Proton magnetic resonance spectroscopy reveals increased hepatic lipid content after a single high-fat meal with no additional modulation by added protein. Am. J. Clin. Nutr. 2014, 101, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.; Kowalski, G.; Leslie, S.; Risis, S.; Yang, C.; Lee-Young, R.; Babb, J.; Meikle, P.; Lancaster, G.; Henstridge, D. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638–1648. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Liu, Y.; Fernandes, M.P.; Lagranha, C.J. Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr. Neurosci. 2016, 19, 369–375. [Google Scholar] [CrossRef]
- Nascimento, L.; Freitas, C.M.; Silva-Filho, R.; Leite, A.C.R.; Silva, A.B.; da Silva, A.I.; Ferreira, D.S.; Pedroza, A.A.; Maia, M.B.S.; Fernandes, M.P. The effect of maternal low-protein diet on the heart of adult offspring: Role of mitochondria and oxidative stress. Appl. Physiol. Nutr. Metab. 2014, 39, 880–887. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Martin-Gronert, M.S.; Fernandez-Twinn, D.S.; Hargreaves, I.; Alfaradhi, M.Z.; Land, J.M.; Aiken, C.E.; Ozanne, S.E. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. FASEB J. 2013, 27, 379–390. [Google Scholar] [CrossRef]
- Shin, S.-K.; Cho, H.-W.; Song, S.-E.; Song, D.-K. Catalase and nonalcoholic fatty liver disease. Pflüg. Arch. -Eur. J. Physiol. 2018, 470, 1721–1737. [Google Scholar] [CrossRef]
- Tanrikulu Küçük, S.; Basaran-Kucukgergin, C.; Seyithanoğlu, M.; Dogru-Abbasoglu, S.; Koçak, H.; Beyhan-Özdaş, S.; Öner-İyidoğan, Y. Role of dietary curcumin and capsaicin on testicular and hepatic oxidant-antioxidant status in rats fed a high fed diet. Appl. Physiol. Nutr. Metab. 2019. [Google Scholar] [CrossRef]
- Piao, L.; Choi, J.; Kwon, G.; Ha, H. Endogenous catalase delays high-fat diet-induced liver injury in mice. Korean J. Physiol. Pharmacol. 2017, 21, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Imai, H.; Matsuoka, M.; Kumagai, T.; Sakamoto, T.; Koumura, T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. In Apoptotic and Non-Apoptotic Cell Death; Springer: Berlin/Heidelberg, Germany, 2016; pp. 143–170. [Google Scholar]
- Ji, X.; Wang, K. Research of glutathione peroxidase and thioredoxin reductases on development of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi 2014, 22, 639–640. [Google Scholar]
- Awasthi, Y.C.; Ramana, K.V.; Chaudhary, P.; Srivastava, S.K.; Awasthi, S. Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Radic. Biol. Med. 2017, 111, 235–243. [Google Scholar] [CrossRef]
- Sacco, R.; Eggenhoffner, R.; Giacomelli, L. Glutathione in the treatment of liver diseases: Insights from clinical practice. Minerva Gastroenterologica e Dietologica 2016, 62, 316–324. [Google Scholar]
- Molz, P.; Ellwanger, J.H.; Zenkner, F.F.; CAMPOS, D.D.; Pra, D.; Putzke, M.T.; Franke, S.I. Recognition memory and DNA damage in undernourished young rats. Anais da Academia Brasileira de Ciências 2016, 88, 1863–1873. [Google Scholar] [CrossRef] [Green Version]
- Villena, J.A. New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015, 282, 647–672. [Google Scholar] [CrossRef]
- Picca, A.; Lezza, A.M.S. Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015, 25, 67–75. [Google Scholar] [CrossRef]
- Sheldon, R.D.; Blaize, A.N.; Fletcher, J.A.; Pearson, K.J.; Donkin, S.S.; Newcomer, S.C.; Rector, R.S. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J. Hepatol. 2016, 64, 171–178. [Google Scholar] [CrossRef]
- Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 2006, 175, 901–911. [Google Scholar] [CrossRef]
- Le, J.; Jia, W.; Sun, Y. Sennoside A protects mitochondrial structure and function to improve high-fat diet-induced hepatic steatosis by targeting VDAC1. Biochem. Biophys. Res. Commun. 2018, 500, 484–489. [Google Scholar] [CrossRef]
- Sebastian, D.; Hernandez-Alvarez, M.I.; Segales, J.; Sorianello, E.; Munoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P.; et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 5523–5528. [Google Scholar] [CrossRef] [Green Version]
- Rieusset, J.; Fauconnier, J.; Paillard, M.; Belaidi, E.; Tubbs, E.; Chauvin, M.A.; Durand, A.; Bravard, A.; Teixeira, G.; Bartosch, B.; et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 2016, 59, 614–623. [Google Scholar] [CrossRef]
- Bravo, R.; Vicencio, J.M.; Parra, V.; Troncoso, R.; Munoz, J.P.; Bui, M.; Quiroga, C.; Rodriguez, A.E.; Verdejo, H.E.; Ferreira, J.; et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 2011, 124, 2143–2152. [Google Scholar] [CrossRef]
Gene Sequence | F/R | 5′-3′ | Tm (°C) | Amplicon Size | Ref NCBI |
---|---|---|---|---|---|
Tbp | F | TGGTGTGCACAGGAGCCAAG | 62 | 139pb | NM_001004198 |
R | TTCACATCACAGCTCCCCAC | ||||
Mfn2 | F | TTGGATGGACTATGCTAGTG | 60 | 230pb | NM_130894 |
R | TCCTCCGACCACGAGAATG | ||||
Hspa9 (Grp75) | F | TGATGCCAATGGGATTGTGC | 60 | 175pb | NM_001100658 |
R | CTGCTTCAACACGTTCCTTC | ||||
Ppif (CypD) | F | GGCTACAAAGGCTCCACCTTC | 62 | 112pb | NM_172243 |
R | GAAAGCGGCTTCCGTAGATG | ||||
Vdac1 | F | AACAGTAACACTCGCTTTGG | 60 | 167pb | NM_031353 |
R | TTGACGTTCTTGCCATCCAG | ||||
Tfam | F | GCTTGGAAAACCAAAAAGAC | 60 | 201pb | NM_031326 |
R | CCCAAGACTTCATTTCATT | ||||
Pgc-1α | F | TCCTCTGACCCCAGAGTCAC | 60 | 143pb | NM_031347 |
R | CTTGGTTGGCTTTATGAGGAGG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões-Alves, A.C.; Costa-Silva, J.H.; Barros-Junior, I.B.; da Silva Filho, R.C.; Vasconcelos, D.A.A.; Vidal, H.; Morio, B.; Fernandes, M.P. Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development. Cells 2019, 8, 335. https://doi.org/10.3390/cells8040335
Simões-Alves AC, Costa-Silva JH, Barros-Junior IB, da Silva Filho RC, Vasconcelos DAA, Vidal H, Morio B, Fernandes MP. Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development. Cells. 2019; 8(4):335. https://doi.org/10.3390/cells8040335
Chicago/Turabian StyleSimões-Alves, Aiany C., Joao H. Costa-Silva, Idelfonso B. Barros-Junior, Reginaldo C. da Silva Filho, Diogo A. A. Vasconcelos, Hubert Vidal, Béatrice Morio, and Mariana P. Fernandes. 2019. "Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development" Cells 8, no. 4: 335. https://doi.org/10.3390/cells8040335
APA StyleSimões-Alves, A. C., Costa-Silva, J. H., Barros-Junior, I. B., da Silva Filho, R. C., Vasconcelos, D. A. A., Vidal, H., Morio, B., & Fernandes, M. P. (2019). Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development. Cells, 8(4), 335. https://doi.org/10.3390/cells8040335