Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases
Abstract
:1. Introduction
2. Regenerative and Anti-Aging Applications
2.1. Anti-Aging: Improving Longevity
2.2. Regenerative Application for Cardiovascular Illnesses
2.3. Regenerative Application for Anti-Fibrotic Illnesses
2.4. Other Potential Applications of Telomerase Gene Transfer
3. Anticancer Application
3.1. Endowing Cancer Specificity to Gene Therapeutics by the TERT Promoter
TERT Promoter-Driven Replication of Oncolytic Adenoviruses
3.2. Downregulation of Telomere-Related Genes in Cancer by Gene Therapy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef]
- Sahin, E.; Depinho, R.A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010, 464, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, K.; Seimiya, H. Revisiting Telomere Shortening in Cancer. Cells 2019, 8, 107. [Google Scholar] [CrossRef]
- Cacchione, S.; Biroccio, A.; Rizzo, A. Emerging roles of telomeric chromatin alterations in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 21. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479, 232–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumagalli, M.; Rossiello, F.; Clerici, M.; Barozzi, S.; Cittaro, D.; Kaplunov, J.M.; Bucci, G.; Dobreva, M.; Matti, V.; Beausejour, C.M.; et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 2012, 14, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbig, U.; Ferreira, M.; Condel, L.; Carey, D.; Sedivy, J.M. Cellular senescence in aging primates. Science 2006, 311, 1257. [Google Scholar] [CrossRef]
- Hewitt, G.; Jurk, D.; Marques, F.D.; Correia-Melo, C.; Hardy, T.; Gackowska, A.; Anderson, R.; Taschuk, M.; Mann, J.; Passos, J.F. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 2012, 3, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samper, E.; Flores, J.M.; Blasco, M.A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2001, 2, 800–807. [Google Scholar] [CrossRef]
- Jaskelioff, M.; Muller, F.; Paik, J.H.; Thomas, E. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 2011, 469, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Loba, A.; Flores, I.; Fernandez-Marcos, P.J.; Cayuela, M.L.; Maraver, A.; Tejera, A.; Borras, C.; Matheu, A.; Klatt, P.; Flores, J.M.; et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008, 135, 609–622. [Google Scholar] [CrossRef]
- Bernardes de Jesus, B.; Vera, E.; Schneeberger, K.; Tejera, A.M.; Ayuso, E.; Bosch, F.; Blasco, M.A. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 2012, 4, 691–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Suarez, E.; Samper, E.; Ramirez, A.; Flores, J.M.; Martin-Caballero, J.; Jorcano, J.L.; Blasco, M.A. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 2001, 20, 2619–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derevyanko, A.; Whittemore, K.; Schneider, R.P.; Jimenez, V.; Bosch, F.; Blasco, M.A. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging cell 2017, 16, 1353–1368. [Google Scholar] [CrossRef] [Green Version]
- Munoz, P.; Blanco, R.; de Carcer, G.; Schoeftner, S.; Benetti, R.; Flores, J.M.; Malumbres, M.; Blasco, M.A. TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol. Cell. Biol. 2009, 29, 1608–1625. [Google Scholar] [CrossRef]
- Yeh, J.K.; Wang, C.Y. Telomeres and Telomerase in Cardiovascular Diseases. Genes 2016, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, F.; Saijonmaa, O.; Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 2013, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Richardson, G.D.; Breault, D.; Horrocks, G.; Cormack, S.; Hole, N.; Owens, W.A. Telomerase expression in the mammalian heart. FASEB J. 2012, 26, 4832–4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, A.L.; Andres, V. Telomeres and cardiovascular disease: Does size matter? Circ. Res. 2004, 94, 575–584. [Google Scholar] [CrossRef]
- Murasawa, S.; Llevadot, J.; Silver, M.; Isner, J.M.; Losordo, D.W.; Asahara, T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 2002, 106, 1133–1139. [Google Scholar] [CrossRef]
- Leri, A.; Franco, S.; Zacheo, A.; Barlucchi, L.; Chimenti, S.; Limana, F.; Nadal-Ginard, B.; Kajstura, J.; Anversa, P.; Blasco, M.A. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 2003, 22, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Bär, C.; de Jesus, B.B.; Serrano, R.; Tejera, A.; Ayuso, E.; Jimenez, V.; Formentini, I.; Bobadilla, M.; Mizrahi, J.; de Martino, A.; et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat. commun. 2014, 5, 5863. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, B.J.; Blount, J.D.; Boner, W.; Griffiths, K.; Metcalfe, N.B.; Monaghan, P. Telomere length in early life predicts lifespan. Proc. Natl. Acad. Sci. USA 2012, 109, 1743–1748. [Google Scholar] [CrossRef] [Green Version]
- Konkalmatt, P.R.; Beyers, R.J.; O’Connor, D.M.; Xu, Y.; Seaman, M.E.; French, B.A. Cardiac-selective expression of extracellular superoxide dismutase after systemic injection of adeno-associated virus 9 protects the heart against post-myocardial infarction left ventricular remodeling. Circ. Cardiovasc. Imaging 2013, 6, 478–486. [Google Scholar] [CrossRef]
- Rozman, J.-Z.; Perme, M.P.; Jez, M.; Malicev, E.; Krasna, M.; Novakovic, S.; Vrtovec, B.; Rozman, P. The effect of CD34+ cell telomere length and hTERT expression on the outcome of autologous CD34+ cell transplantation in patients with chronic heart failure. Mech. Ageing Dev. 2017, 166, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Farhat, N.; Thorin-Trescases, N.; Voghel, G.; Villeneuve, L.; Mamarbachi, M.; Perrault, L.P.; Carrier, M.; Thorin, E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can. J. Physiol. Pharmacol. 2008, 86, 761–769. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, T.; Van Daele, C.M.; De Buyzere, M.L.; Denil, S.; De Bacquer, D.; Segers, P.; Cooman, L.; De Backer, G.G.; Gillebert, T.C.; Bekaert, S.; et al. No shorter telomeres in subjects with a family history of cardiovascular disease in the Asklepios study. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 3076–3081. [Google Scholar] [CrossRef]
- Voghel, G.; Thorin-Trescases, N.; Mamarbachi, A.M.; Villeneuve, L.; Mallette, F.A.; Ferbeyre, G.; Farhat, N.; Perrault, L.P.; Carrier, M.; Thorin, E. Endogenous oxidative stress prevents telomerase-dependent immortalization of human endothelial cells. Mech. Ageing Dev. 2010, 131, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Smart, R.G.; Mann, R.E. Factors in recent reductions in liver cirrhosis deaths. J. Stud. Alcohol Drug Suppl. 1991, 52, 232–240. [Google Scholar] [CrossRef]
- Alcolado, R.; Arthur, M.J.; Iredale, J.P. Pathogenesis of liver fibrosis. Clin. Sci. (Lond.) 1997, 92, 103–112. [Google Scholar] [CrossRef]
- Miura, N.; Horikawa, I.; Nishimoto, A.; Ohmura, H.; Ito, H.; Hirohashi, S.; Shay, J.W.; Oshimura, M. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogen. 1997, 93, 56–62. [Google Scholar] [CrossRef]
- Urabe, Y.; Nouso, K.; Higashi, T.; Nakatsukasa, H.; Hino, N.; Ashida, K.; Kinugasa, N.; Yoshida, K.; Uematsu, S.; Tsuji, T. Telomere length in human liver diseases. Liver 1996, 16, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, K.L.; Chang, S.; Millard, M.; Schreiber-Agus, N.; DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000, 287, 1253–1258. [Google Scholar] [CrossRef]
- Nakamura, T.; Sato, K.; Hamada, H. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J. Virol. 2003, 77, 2512–2521. [Google Scholar] [CrossRef]
- Kass-Eisler, A.; Falck-Pedersen, E.; Elfenbein, D.H.; Alvira, M.; Buttrick, P.M.; Leinwand, L.A. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther. 1994, 1, 395–402. [Google Scholar]
- Einfeld, D.A.; Schroeder, R.; Roelvink, P.W.; Lizonova, A.; King, C.R.; Kovesdi, I.; Wickham, T.J. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J. Virol. 2001, 75, 11284–11291. [Google Scholar] [CrossRef]
- Kasala, D.; Lee, S.H.; Hong, J.W.; Choi, J.W.; Nam, K.; Chung, Y.H.; Kim, S.W.; Yun, C.O. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 2017, 145, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Kim, H.P.; Rubin, E. Development of a Sleeping Beauty-based telomerase gene delivery system for hepatocytes. Biosci. Biotechnol. Biochem. 2011, 75, 227–231. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef]
- King, T.E., Jr.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef]
- Povedano, J.M.; Martinez, P.; Serrano, R.; Tejera, Á.; Gómez-López, G.; Bobadilla, M.; Flores, J.M.; Bosch, F.; Blasco, M.A. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife 2018, 7, e31299. [Google Scholar] [CrossRef]
- Povedano, J.M.; Martinez, P.; Flores, J.M.; Mulero, F.; Blasco, M.A. Mice with Pulmonary Fibrosis Driven by Telomere Dysfunction. Cell Rep. 2015, 12, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Schmidt, J.C.; Goldfarb, K.C.; Cech, T.R.; Parker, R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat. Struct. Mol. Biol. 2016, 23, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Dhanraj, S.; Gunja, S.M.; Deveau, A.P.; Nissbeck, M.; Boonyawat, B.; Coombs, A.J.; Renieri, A.; Mucciolo, M.; Marozza, A.; Buoni, S.; et al. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J. Med. Gen. 2015, 52, 738–748. [Google Scholar] [CrossRef]
- Stuart, B.D.; Choi, J.; Zaidi, S.; Xing, C.; Holohan, B.; Chen, R.; Choi, M.; Dharwadkar, P.; Torres, F.; Girod, C.E.; et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Gen. 2015, 47, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tummala, H.; Walne, A.; Collopy, L.; Cardoso, S.; de la Fuente, J.; Lawson, S.; Powell, J.; Cooper, N.; Foster, A.; Mohammed, S.; et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Investig. 2015, 125, 2151–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Masuda, K.; Thonar, E.J.; An, H.S.; Cs-Szabo, G. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 2009, 34, 10–16. [Google Scholar] [CrossRef]
- Gruber, H.E.; Hanley, E.N., Jr. Human disc cells in monolayer vs 3D culture: Cell shape, division and matrix formation. BMC Musculoskel. Dis. 2000, 1, 1. [Google Scholar] [CrossRef]
- Chung, S.A.; Wei, A.Q.; Connor, D.E.; Webb, G.C.; Molloy, T.; Pajic, M.; Diwan, A.D. Nucleus pulposus cellular longevity by telomerase gene therapy. Spine 2007, 32, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, D.; Zhang, C.; Wang, C.; Zhang, Y.; Xin, H.; He, Q.; Ruan, D. Extending the activities of human nucleus pulposus cells with recombinant adeno-associated virus vector-mediated human telomerase reverse transcriptase gene transfer. Tissue Eng. Part A 2011, 17, 2407–2415. [Google Scholar] [CrossRef]
- Penaud-Budloo, M.; Le Guiner, C.; Nowrouzi, A.; Toromanoff, A.; Chérel, Y.; Chenuaud, P.; Schmidt, M.; von Kalle, C.; Rolling, F.; Moullier, P.; et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 2008, 82, 7875–7885. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Ruan, D.; He, Q.; Zhang, Y.; Wang, C.; Xin, H.; Xu, C.; Liu, Y. Prolonged expansion of human nucleus pulposus cells expressing human telomerase reverse transcriptase mediated by lentiviral vector. J. Orthop. Res. 2014, 32, 159–166. [Google Scholar] [CrossRef]
- Scopes, J.; Bagnara, M.; Gordon-Smith, E.C.; Ball, S.E.; Gibson, F.M. Haemopoietic progenitor cells are reduced in aplastic anaemia. Br. J. Haematol. 1994, 86, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Bar, C.; Povedano, J.M.; Serrano, R.; Benitez-Buelga, C.; Popkes, M.; Formentini, I.; Bobadilla, M.; Bosch, F.; Blasco, M.A. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 2016, 127, 1770–1779. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yao, M.; Zhang, Z.; Gu, J.; Zhang, Y.; Li, B.; Sun, L.; Liu, X. Enhanced suicide gene therapy by chimeric tumor-specific promoter based on HSF1 transcriptional regulation. FEBS Lett. 2003, 546, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Higashi, K.; Hazama, S.; Araki, A.; Yoshimura, K.; Iizuka, N.; Yoshino, S.; Noma, T.; Oka, M. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model. Int. J. Oncol. 2014, 45, 1412–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, Y.; Zhang, T.; Wu, H.; Lin, M.; Wang, C.; Zhan, Y.; Zhou, Q.; Qiao, B.; Sun, X.; et al. Synthetic Bax-Anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. J. Exp. Clin. Cancer Res. 2016, 35, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Tan, J.; Wang, P.; Wu, P. Cotransfected sodium iodide symporter and human tyroperoxidase genes following human telomerase reverse transcriptase promoter for targeted radioiodine therapy of malignant glioma cells. Cancer Biother. Radiopharm. 2011, 26, 443–451. [Google Scholar] [CrossRef]
- Watanabe, M.; Ueki, H.; Ochiai, K.; Huang, P.; Kobayashi, Y.; Nasu, Y.; Sasaki, K.; Kaku, H.; Kashiwakura, Y.; Kumon, H. Advanced two-step transcriptional amplification as a novel method for cancer-specific gene expression and imaging. Oncol. Rep. 2011, 26, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Sun, W.J.; Wang, W.F.; Liao, Z.K.; Zhou, F.X.; Kong, H.Y.; Xu, Y.; Xie, C.H.; Zhou, Y.F. Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer. Cancer 2012, 118, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhuang, C.; Zhuang, C.; Xiong, T.; Li, Y.; Gui, Y. An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells. Mol. Biosyst. 2017, 13, 1713–1721. [Google Scholar] [CrossRef]
- Plumb, J.A.; Bilsland, A.; Kakani, R.; Zhao, J.; Glasspool, R.M.; Knox, R.J.; Evans, T.R.; Keith, W.N. Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene 2001, 20, 7797–7803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, A.S.; Hughes, D.E.; Lichtsteiner, S.P.; Wang, Z.; Lebkowski, J.S.; Vasserot, A.P. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 2001, 8, 568–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Gu, J.; Zhang, L.; Huang, X.; Stephens, L.C.; Curley, S.A.; Fang, B. Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res. 2002, 62, 3620–3625. [Google Scholar]
- Gu, J.; Kagawa, S.; Takakura, M.; Kyo, S.; Inoue, M.; Roth, J.A.; Fang, B. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res. 2000, 60, 5359–5364. [Google Scholar]
- Gu, J.; Andreeff, M.; Roth, J.A.; Fang, B. hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther. 2002, 9, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in Genome Editing and Beyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef]
- Koo, T.; Yoon, A.R.; Cho, H.-Y.; Bae, S.; Yun, C.-O.; Kim, J.-S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017, 45, 7897–7908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Robbins, J.S.; Pister, A.; Zafar, M.B.; Zhang, Z.W.; Gupta, J.; Lee, K.J.; Newman, K.; Yun, C.O.; Guise, T.; et al. A modified hTERT promoter-directed oncolytic adenovirus replication with concurrent inhibition of TGFbeta signaling for breast cancer therapy. Cancer Gene Ther. 2010, 17, 235–243. [Google Scholar] [CrossRef]
- Li, Y.; Hong, J.; Oh, J.-E.; Yoon, A.-R.; Yun, C.-O. Potent antitumor effect of tumor microenvironment-targeted oncolytic adenovirus against desmoplastic pancreatic cancer. Int. J. Cancer 2018, 142, 392–413. [Google Scholar] [CrossRef]
- Oh, E.; Hong, J.; Kwon, O.-J.; Yun, C.-O. A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci. Rep. 2018, 8, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Kim, J.-H.; Shin, H.-Y.; Lee, H.; Yang, J.M.; Kim, J.; Sohn, J.-H.; Kim, H.; Yun, C.-O. Ad-mTERT-Δ19, a Conditional Replication-Competent Adenovirus Driven by the Human Telomerase Promoter, Selectively Replicates in and Elicits Cytopathic Effect in a Cancer Cell-Specific Manner. Hum. Gene Ther. 2003, 14, 1415–1428. [Google Scholar] [CrossRef]
- Huang, T.G.; Savontaus, M.J.; Shinozaki, K.; Sauter, B.V.; Woo, S.L.C. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther. 2003, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
- Lanson, N.A.; Friedlander, P.L.; Schwarzenberger, P.; Kolls, J.K.; Wang, G. Replication of an Adenoviral Vector Controlled by the Human Telomerase Reverse Transcriptase Promoter Causes Tumor-Selective Tumor Lysis. Cancer Res. 2003, 63, 7936–7941. [Google Scholar]
- Chen, M.; Xing, L.N. siRNA-mediated inhibition of hTERC enhances radiosensitivity of cervical cancer. APJCP 2012, 13, 5975–5979. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Yao, G.; Geng, N.; Xie, Y.; Feng, Y.; Zhang, P.; Kong, X.; Xue, J.; Cheng, S.; et al. Telomerase inhibition strategies by siRNAs against either hTR or hTERT in oral squamous cell carcinoma. Cancer Gene Ther. 2011, 18, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Wei, Z.; Gao, J.; Zhang, Z.; Ge, J.; Jing, K.; Xu, F.; Xie, P. Effects of combined siRNA-TR and -TERT on telomerase activity and growth of bladder transitional cell cancer BIU-87 cells. J. Huazhong Univ. Sci. Technol. 2010, 30, 391–396. [Google Scholar] [CrossRef]
- Ge, L.; Deng, Z.; Zhang, Y.; Shao, W.; Qiu, Y.; Cui, D.; Huang, D. Effect of plasmid-mediated RNA interference targeting telomerase reverse transcriptase on lung cancer cells. Oncol. Rep. 2011, 26, 1487–1495. [Google Scholar] [CrossRef]
- Xia, W.; Lin, C. Bioreducible polymer-delivered siRNA targeting human telomerase reverse transcriptase for human cancer gene therapy. Ther. Delivery 2012, 3, 439–442. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Le, Z.; Zeng, S.; Pan, C.; Shi, J.; Wang, J.; Zhao, X. Telomerase reverse transcriptase interference synergistically promotes tumor necrosis factorrelated apoptosisinducing ligandinduced oral squamous cell carcinoma apoptosis and suppresses proliferation in vitro and in vivo. Int. J. Mol. Med. 2018, 42, 1283–1294. [Google Scholar] [CrossRef]
- Sakiragaoglu, O.; Munn, A.L. Inhibition of Telomerase Activity Using an EGFP-Intron Splicing System Encoding Multiple RNAi Sequences. Mol. Biotechnol. 2016, 58, 832–837. [Google Scholar] [CrossRef]
- Zhang, W.; Xing, L. RNAi gene therapy of SiHa cells via targeting human TERT induces growth inhibition and enhances radiosensitivity. Int. J. Oncol. 2013, 43, 1228–1234. [Google Scholar] [CrossRef]
- Kunze, D.; Wuttig, D.; Kausch, I.; Blietz, C.; Blumhoff, L.; Burmeister, Y.; Kraemer, K.; Fuessel, S.; Toma, M.; Schwenzer, B.; et al. Antisense-mediated inhibition of survivin, hTERT and VEGF in bladder cancer cells in vitro and in vivo. Int. J. Oncol. 2008, 32, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.S.; Gao, Y.; Chau, D.H.; Li, G.H.; Lai, L.H.; Huang, P.T.; Huang, C.F.; Huang, J.J.; Chen, Y.C.; Kung, H.F.; et al. A novel glioblastoma cancer gene therapy using AAV-mediated long-term expression of human TERT C-terminal polypeptide. Cancer Gene Ther. 2007, 14, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Yue, P.J.; He, L.; Li, Y.; Shen, Q.Y.; Li, M.; Huang, D.Q.; Huang, J.J.; Peng, Y. Preclinical safety evaluation of rAd5-hTERTC27 by intravenous injection. RTP 2013, 67, 53–62. [Google Scholar] [CrossRef]
- Gong, H.X.; He, L.; Li, X.P.; Wang, Y.D.; Li, Y.; Huang, J.J.; Wang, Z.; Xie, D.; Kung, H.F.; Peng, Y. Effective antitumor immunity against murine gliomas using dendritic cells transduced with hTERTC27 recombinant adenovirus. Oncol. Rep. 2012, 27, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Schmidt, J.C.; Zaug, A.J.; Ascarrunz, D.R.; Cech, T.R. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Bio. 2015, 16, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Wang, H.; Wang, A.H.; Zhang, L.Y.; Bai, J. MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer. PLoS ONE 2017, 12, e0173912. [Google Scholar] [CrossRef]
- Kosciolek, B.A.; Kalantidis, K.; Tabler, M.; Rowley, P.T. Inhibition of Telomerase Activity in Human Cancer Cells by RNA Interference. Mol. Cancer Ther. 2003, 2, 209–216. [Google Scholar] [PubMed]
- Yatabe, N.; Kyo, S.; Kondo, S.; Kanaya, T.; Wang, Z.; Maida, Y.; Takakura, M.; Nakamura, M.; Tanaka, M.; Inoue, M. 2-5A antisense therapy directed against human telomerase RNA inhibits telomerase activity and induces apoptosis without telomere impairment in cervical cancer cells. Cancer Gene Ther. 2002, 9, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.A.; Hahn, W.C.; Connor, B.F.; Banner, E.N.; Lundberg, A.S.; Modha, P.; Mizuno, H.; Brooks, M.W.; Fleming, M.; Zimonjic, D.B.; et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. PNAS 2002, 99, 12606. [Google Scholar] [CrossRef]
- Li, Y.; Tergaonkar, V. Noncanonical Functions of Telomerase: Implications in Telomerase-Targeted Cancer Therapies. Cancer Res. 2014, 74, 1639. [Google Scholar] [CrossRef]
- Xu, C.-f.; Wang, J. Delivery systems for siRNA drug development in cancer therapy. Asian J. Pharm. Sci. 2015, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jayasena, S.D. Designer siRNAs to overcome the challenges from the RNAi pathway. J. RNAi Gene Silencing 2005, 2, 109–117. [Google Scholar]
- Wang, Z.; Rao, D.D.; Senzer, N.; Nemunaitis, J. RNA Interference and Cancer Therapy. Pharm. Res. 2011, 28, 2983–2995. [Google Scholar] [CrossRef]
- Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012, 1, 27. [Google Scholar] [CrossRef]
- Huang, J.J.; Lin, M.C.; Bai, Y.X.; Jing, D.D.; Wong, B.C.Y.; Han, S.W.; Lin, J.; Xu, B.; Huang, C.-f.; Kung, H.-f. Ectopic Expression of a COOH-terminal Fragment of the Human Telomerase Reverse Transcriptase Leads to Telomere Dysfunction and Reduction of Growth and Tumorigenicity in HeLa Cells. Cancer Res. 2002, 62, 3226–3232. [Google Scholar]
- Huang, J.; Bai, Y.X.; Han, S.W.; Ng, S.S.; Jing, D.D.; Wong, B.C.; Huang, C.F.; Kung, H.F.; Lin, M.C. A human TERT C-terminal polypeptide sensitizes HeLa cells to H2O2-induced senescence without affecting telomerase enzymatic activity. Biochem. Biophys. Res. Commun. 2003, 301, 627–632. [Google Scholar] [CrossRef]
- Bryan, T.M.; Englezou, A.; Gupta, J.; Bacchetti, S.; Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995, 14, 4240–4248. [Google Scholar] [CrossRef]
- Cesare, A.J.; Reddel, R.R. Alternative lengthening of telomeres: Models, mechanisms and implications. Nat. Rev. Genet. 2010, 11, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yuan, X.; Xu, D. Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications. Genes 2016, 7, 38. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Yun, C.-O. Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells 2019, 8, 392. https://doi.org/10.3390/cells8050392
Hong J, Yun C-O. Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells. 2019; 8(5):392. https://doi.org/10.3390/cells8050392
Chicago/Turabian StyleHong, JinWoo, and Chae-Ok Yun. 2019. "Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases" Cells 8, no. 5: 392. https://doi.org/10.3390/cells8050392
APA StyleHong, J., & Yun, C. -O. (2019). Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells, 8(5), 392. https://doi.org/10.3390/cells8050392