Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Chemicals and Reagents
2.3. Chemosensitivity Examination
2.3.1. Single-Agent Examination and Stratification
2.3.2. Analysis of the Efficacy of GC Using the Bliss Additivism Model
2.3.3. Analysis of the Efficacy of GEM–CDDP at a Molar Ratio of 7:1
Combination Study
Statistical Analysis
2.4. Ethics
3. Results
3.1. Evaluation of GEM and CDDP Single-Agent Administration
3.2. Evaluation of GC Combination Using the Bliss Additivism Model
3.3. Synergy or Additivism for GEM:CDDP Combination at a Molar Ratio of 7:1
3.4. The True Pharmacotherapeutic Effect of GC Compared with That of GEM Single Administration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, M.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Totoki, Y.; Hosoda, F.; Shirota, T.; Hama, N.; Nakamura, H.; Ojima, H.; Furuta, K.; Shimada, K.; Okusaka, T.; et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014, 59, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Faiz, G.M.; Neeraja, N.; Yuhree, K.; Qingfeng, Z.; Lan, L.; Feriyl, B.; Robert, A.A.; Timothy, M.P. Program Death 1 immune checkpoint and tumor microenvironment: Implications for patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 2016, 23, 2610–2617. [Google Scholar]
- Liau, J.Y.; Tsai, J.H.; Yuan, R.H.; Chang, C.N.; Lee, H.J.; Jeng, Y.M. Morphological subclassification of intrahepatic cholangiocarcinoma: Etiological, clinicopathological, and molecular features. Mod. Pathol. 2014, 27, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Huang, Z.; Teng, F.; Xing, L.; Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev. 2015, 41, 868–876. [Google Scholar] [CrossRef]
- Ruzzennente, A.; Fassan, M.; Conci, S.; Simbolo, M.; Lawlor, R.T.; Pedrazzani, C.; Capelli, P.; D’Onofrio, M.; Iacono, C.; Scarpa, A.; et al. Cholangiocarcinoma heterogeneity revealed by multigene mutational profiling: Clinical and prognostic relevance in surgically resected patients. Ann. Surg. Oncol. 2016, 23, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Bergman, A.M.; van Haperen, R.V.W.; Veerman, G.; Kuiper, C.M.; Peters, G.J. Synergistic interaction between cisplatin and gemcitabine in vitro. Clin. Cancer. Res. 1996, 2, 521–530. [Google Scholar]
- Van Moorsel, C.J.; Pinedo, H.M.; Veerman, G.; Bergman, A.M.; Kuiper, C.M.; Vermorken, J.B.; van der Vijgh, W.J.F.; Peters, A.G. Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. Br. J. Cancer 1999, 80, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Mazin, A.; Moufarij, D.R.P.; Cullinane, C. Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Mol. Pharmacol. 2003, 63, 862–869. [Google Scholar]
- Braakhuis, B.J.; van Haperen, R.V.W.; Welters, M.J.; Peters, G.J. Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts. Eur. J. Cancer 1995, 31A, 2335–2340. [Google Scholar] [CrossRef]
- Kanzawa, F.; Akiyama, Y.; Saijo, N.; Nishio, K. In vitro effects of combinations of cis-amminedichloro (2-methylpyridine) platinum (II) (ZD0473) with other novel anticancer drugs on the growth of SBC-3, a human small cell lung cancer cell line. Lung Cancer 2003, 40, 325–332. [Google Scholar] [CrossRef]
- Besancon, O.G.; Tytgat, G.A.M.; Meinsma, R.; Leen, R.; Hoebink, J.; Kalayda, G.V.; Jaehde, U.; Caron, H.N.; van Kuilenburg, A.B.P. Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids. Cancer Lett. 2012, 319, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.N.; de Camargo, E.A.; Savio, A.L.; Salvadori, D.M. MRE11A and SKP2 genes are associated with the increased cytotoxicity induced by the synergistic effects of cisplatin and gemcitabine in bladder cancer cells. Mol Biol Rep. 2014, 41, 4613–4621. [Google Scholar] [CrossRef] [PubMed]
- Ojima, H.; Yamagishi, S.; Shimada, K.; Shibata, T. Establishment of various biliary tract carcinoma cell lines and xenograft models for appropriate preclinical studies. World J. Gastroenterol. 2016, 22, 9035–9038. [Google Scholar] [CrossRef] [PubMed]
- Ojima, H.; Yoshikawa, D.; Ino, Y.; Shimizu, H.; Miyamoto, M.; Kokubu, A.; Hiraoka, N.; Morofuji, N.; Kondo, T.; Onaya, H.; et al. Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment. Cancer Sci. 2010, 101, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.A.; Behnke, C.A.; Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 1990, 40, 2353–2362. [Google Scholar] [CrossRef]
- Borisy, A.A.; Elliott, P.J.; Hurst, N.W.; Lee, M.S.; Lehar, J.; Price, E.R.; Serbedzija, G.; Zimmermann, G.R.; Foley, M.A.; Stockwell, B.R.; et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 2003, 100, 7977–7982. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Sachsenmeier, K.; Zhang, L.; Sult, E.; Hollingsworth, R.E.; Yang, H. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. 2014, 19, 817–821. [Google Scholar] [CrossRef]
- Okabe, T.; Okamoto, I.; Tsukioka, S.; Uchida, J.; Iwasa, T.; Yoshida, T.; Hatashita, E.; Yamada, Y.; Satoh, T.; Tamura, K.; et al. Synergistic antitumor effect of S-1 and the epidermal growth factor receptor inhibitor gefitinib in non-small cell lung cancer cell lines: role of gefitinib-induced down-regulation of thymidylate synthase. Mol. Cancer Ther. 2008, 7, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Tan, N.; Zha, J.; Peale, F.V.; Yue, P.; Fairbrother, W.J.; Belmont, L.D. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol. Cancer Ther. 2012, 11, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Bristol-Myers Squibb Company. PLATINOL®CISplatin for Injection, USP, Bristol-Myers Squibb Company: Princeton, NJ, USA, 2010.
- Eli Lilly Japan K.K. IYAKUHIN Interview form Gemzar® Injection, Japanese; Eli Lilly Japan K.K.: Kobe, Japan, 2019.
- Lilly USA. HIGHLIGHTS of PRESCRIBING INFORMATION GEMZAR (Gemcitabine) for Injection, for Intravenous Use Initial U.S. Lilly USA: Indianapolis, IN, USA, 1996.
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Gozgit, J.M.; Squillace, R.M.; Wongchenko, M.J.; Miller, D.; Wardwell, S.; Mohemmad, Q.; Narasimhan, N.I.; Wang, F.; Clackson, T.; Rivera, V.M. Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemother Pharmacol. 2013, 71, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Bepler, G.; Kusmartseva, I.; Sharma, S.; Gautam, A.; Cantor, A.; Sharma, A.; Simon, G. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4731–4737. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, W.; Jesnowski, R.; Lohr, J.M. Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia 2010, 12, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.J.; Berman, A.M.; Ruiz van Haperen, V.W.; Veerman, G.; Kuiper, C.M.; Braakhuis, B.J. Interaction between cisplatin and gemcitabine in vitro and in vivo. Semin Oncol. 1995, 22, 72–79. [Google Scholar]
- Sakai, D.; Kanai, M.; Kobayashi, S.; Eguchi, H.; Baba, H.; Seo, S.; Taketomi, A.; Takayama, T.; Yamaue, H.; Ishioka, C.; et al. Randomized phase III study of gemcitabine, cisplatin plus S-1 (GCS) versus gemcitabine, cisplatin (GC) for advanced biliary tract cancer (KHBO1401-MITSUBA). In Proceedings of the ESMO 2018 Congress, Munich, Germany, 19–23 October 2018. [Google Scholar]
- Borbath, I.; Verbrugghe, L.; Lai, R.; Gigot, J.F.; Humblet, Y.; Piessevaux, H.; Sempoux, C. Human equilibrative nucleoside transporter 1 (hENT1) expression is a potential predictive tool for response to gemcitabine in patients with advanced cholangiocarcinoma. Eur. J. Cancer. 2012, 48, 990–996. [Google Scholar] [CrossRef]
- Ohtaka, K.; Kohya, N.; Sato, K.; Kitajima, Y.; Ide, T.; Mitsuno, M.; Miyazaki, K. Ribonucleotide reductase subunit M1 is a possible chemoresistance marker to gemcitabine in biliary tract carcinoma. Oncol. Rep. 2008, 20, 279–286. [Google Scholar]
Cell Line | Pathological Diagnosis of Original Tumor | Location of Original Tumor | Histologic Type of Original Tumor | GEM Sensitivity | IC50 (µM) | IC60 (µM) | IC70 (µM) | IC80 (µM) |
---|---|---|---|---|---|---|---|---|
NCC-BD1 * | EHCC | Distal BD | Adeno, mod † | Int | 7.66 | 58.00 | N/A | N/A |
NCC-BD2 * | EHCC | Distal BD | Adeno, mod | Res | N/A | N/A | N/A | N/A |
NCC-BD3 * | EHCC | Distal BD | Adeno, mod | Res | N/A | N/A | N/A | N/A |
NCC-BD4-1 * | EHCC | Hilar BD | Adeno, mod | Eff | 0.04 | 0.06 | 0.09 | 2.93 |
NCC-BD4-2 * | EHCC | Hilar BD | Adeno, mod | Eff | 0.06 | 0.07 | 0.19 | 5.37 |
NCC-CC1 * | IHCC | Intrahepatic | Adeno, mod | Int | 86.78 | N/A | N/A | N/A |
NCC-CC3-1 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.04 | 1.82 | 9.31 | 85.21 |
NCC-CC3-2 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.10 | 1.92 | 43.83 | N/A |
NCC-CC4-1 * | IHCC | Intrahepatic | Adeno, mod | Int | 0.05 | 4.08 | N/A | N/A |
NCC-CC4-2 * | IHCC | Intrahepatic | Adeno, mod | Int | 0.03 | 11.53 | N/A | N/A |
NCC-CC4-3 (NCC-CC5) * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.06 | 4.92 | 95.10 | N/A |
NCC-CC6-1 * | IHCC | Intrahepatic | Adeno, mod | Eff | 0.01 | 0.02 | 0.06 | 3.76 |
NCC-CC6-2 * | IHCC | Intrahepatic | Adeno, mod | Int | 10.98 | 35.67 | N/A | N/A |
HuCCT1 | EHCC | N/A | N/A | Eff | 0.09 | 0.25 | 2.16 | 8.13 |
OZ | EHCC | N/A | N/A | Res | N/A | N/A | N/A | N/A |
TKKK | IHCC | Intrahepatic | N/A | Res | N/A | N/A | N/A | N/A |
TGBC24TKB | GB Ca | GB | N/A | Eff | 0.05 | 0.07 | 1.23 | N/A |
Cell Line | GEM Sensitivity | GEM Single | CDDP Single | GEM:CDDP Combination | ||||
---|---|---|---|---|---|---|---|---|
GEM:CDDP; 7:1 molar ratio | Bliss additivism model | |||||||
IC50 (µM) | IC50 (µM) | IC50 (µM) | CI value | Decision | BM | Decision | ||
NCC-BD1 | Int | 18.62 | 19.94 | 1.53 | 1.03 | +/− | 59.17 | + |
NCC-BD2 | Res | N/A | 3.49 | 8.97 | 0.24 | 2+ | 34.40 | + |
NCC-BD3 | Res | N/A | 14.78 | 5.53 | 0.13 | 2+ | 136.18 | + |
NCC-BD4-2 | Eff | 0.04 | 18.39 | 0.05 | 0.38 | + | 11.85 | + |
NCC-CC1 | Int | 2.38 | 15.41 | 1.04 | 0.58 | + | 13.80 | + |
NCC-CC4-1 | Int | 0.02 | 6.58 | 0.04 | 0.46 | + | 27.23 | + |
NCC-CC6-1 | Eff | 0.01 | 11.07 | 0.01 | 0.71 | +/− | 12.42 | + |
HuCCT1 | Eff | 0.11 | 19.68 | 0.09 | 0.48 | + | 93.17 | + |
OZ | Res | N/A | 35.94 | 7.21 | 0.20 | 2+ | 36.27 | + |
TKKK | Res | N/A | 35.34 | 84.66 | 0.09 | 2+ | 64.60 | + |
TGBC24TKB | Eff | 0.08 | N/A | 0.14 | 0.70 | + | 8.40 | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, Y.; Yamagishi, S.; Okusaka, T.; Ojima, H. Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells 2019, 8, 1026. https://doi.org/10.3390/cells8091026
Sakamoto Y, Yamagishi S, Okusaka T, Ojima H. Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells. 2019; 8(9):1026. https://doi.org/10.3390/cells8091026
Chicago/Turabian StyleSakamoto, Yasunari, Seri Yamagishi, Takuji Okusaka, and Hidenori Ojima. 2019. "Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines" Cells 8, no. 9: 1026. https://doi.org/10.3390/cells8091026
APA StyleSakamoto, Y., Yamagishi, S., Okusaka, T., & Ojima, H. (2019). Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines. Cells, 8(9), 1026. https://doi.org/10.3390/cells8091026