Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission
Abstract
:1. Role of Glutamate as Modulator of Cholinergic Transmission and Plasticity at the Skeletal Neuromuscular Junction of Vertebrates
1.1. Glutamate Transporters at the Neuromuscular Junction in Vertebrates
1.2. Vesicular Glutamate Transporters
1.3. Excitatory Amino Acids Transporters
1.4. Ionotropic and Metabotropic Glutamate Receptors
1.5. Ionotropic and Metabotropic Glutamate Receptors at the Neuromuscular Junction in Vertebrates
1.5.1. Presynaptic Glutamate Receptors
1.5.2. Postsynaptic Glutamate Receptors
2. Do Glutamatergic Neuromuscular Junctions Exist in Vertebrates?
2.1. Glutamate as a Neurotransmitter at the Neuromuscular Junction during Embryonic Development of Vertebrates
2.2. Glutamate Is the Neurotransmitter Operating at the Neuromuscular Junction in an Experimental Model of Spinal Cord Injury
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meister, B.; Arvidsson, U.; Zhang, X.; Jacobsson, G.; Villar, M.J.; Hökfelt, T. Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. Neuroreport 1993, 5, 337–340. [Google Scholar] [CrossRef]
- Waerhaug, O.; Ottersen, O.P. Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat. Embryol. (Berl.) 1993, 188, 501–513. [Google Scholar] [CrossRef]
- Bertuzzi, M.; Chang, W.; Ampatzis, K. Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc. Natl. Acad. Sci. USA 2018, 115, E9926–E9933. [Google Scholar] [CrossRef] [Green Version]
- Boulland, J.L.; Qureshi, T.; Seal, R.P.; Rafiki, A.; Gundersen, V.; Bergersen, L.H.; Fremeau, R.T.; Edwards, R.H.; Storm-Mathisen, J.; Chaudhry, F.A. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J. Comp. Neurol. 2004, 480, 264–280. [Google Scholar] [CrossRef]
- Herzog, E.; Landry, M.; Buhler, E.; Bouali-Benazzouz, R.; Legay, C.; Henderson, C.E.; Nagy, F.; Dreyfus, P.; Giros, B.; El Mestikawy, S. Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons. Eur. J. Neurosci. 2004, 20, 1752–1760. [Google Scholar] [CrossRef]
- Kraus, T.; Neuhuber, W.L.; Raab, M. Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci. Lett. 2004, 360, 53–56. [Google Scholar] [CrossRef]
- Nishimaru, H.; Restrepo, C.E.; Ryge, J.; Yanagawa, Y.; Kiehn, O. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl. Acad. Sci. USA 2005, 102, 5245–5249. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Harlow, M.L. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP. Physiol. Rep. 2014, 2, e00206. [Google Scholar] [CrossRef]
- Ewald, P.; Neuhuber, W.L.; Raab, M. Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem. Cell Biol. 2006, 125, 377–395. [Google Scholar] [CrossRef]
- Trudeau, L.E.; El Mestikawy, S. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Front. Neural Circuits 2018, 12, 113. [Google Scholar] [CrossRef]
- Berger, U.V.; Carter, R.E.; Coyle, J.T. The immunocytochemical localization of N-acetylaspartyl glutamate, its hydrolysing enzyme NAALADase, and the NMDAR-1 receptor at a vertebrate neuromuscular junction. Neuroscience 1995, 64, 847–850. [Google Scholar] [CrossRef]
- Walder, K.K.; Ryan, S.B.; Bzdega, T.; Olszewski, R.T.; Neale, J.H.; Lindgren, C.A. Immunohistological and electrophysiological evidence that N-acetylaspartylglutamate is a co-transmitter at the vertebrate neuromuscular junction. Eur. J. Neurosci. 2013, 37, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Glutamate transporters: Diversity, function, and involvement in neurologic disease. Neurology 2010, 74, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Francolini, M.; Brunelli, G.; Cambianica, I.; Barlati, S.; Barbon, A.; La Via, L.; Guarneri, B.; Boroni, F.; Lanzillotta, A.; Baiguera, C.; et al. Glutamatergic reinnervation and assembly of glutamatergic synapses in adult rat skeletal muscle occurs at cholinergic endplates. J. Neuropathol. Exp. Neurol. 2009, 68, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Rinholm, J.E.; Slettaløkken, G.; Marcaggi, P.; Skare, Ø.; Storm-Mathisen, J.; Bergersen, L.H. Subcellular localization of the glutamate transporters GLAST and GLT at the neuromuscular junction in rodents. Neuroscience 2007, 145, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, V.A.; Canta, A.; Oggioni, N.; Ceresa, C.; Marmiroli, P.; Konvalinka, J.; Zoia, C.; Bossi, M.; Ferrarese, C.; Tredici, G.; et al. Expression and distribution of ‘high affinity’ glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J. Anat. 2008, 213, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Pinard, A.; Lévesque, S.; Vallée, J.; Robitaille, R. Glutamatergic modulation of synaptic plasticity at a PNS vertebrate cholinergic synapse. Eur. J. Neurosci. 2003, 18, 3241–3250. [Google Scholar] [CrossRef]
- Fu, W.M.; Liou, J.C.; Lee, Y.H.; Liou, H.C. Potentiation of neurotransmitter release by activation of presynaptic glutamate receptors at developing neuromuscular synapses of Xenopus. J. Physiol. 1995, 489, 813–823. [Google Scholar] [CrossRef]
- Liou, H.C.; Yang, R.S.; Fu, W.M. Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 1996, 75, 325–331. [Google Scholar] [CrossRef]
- Todd, K.J.; Slatter, C.A.; Ali, D.W. Activation of ionotropic glutamate receptors on peripheral axons of primary motoneurons mediates transmitter release at the zebrafish NMJ. J. Neurophysiol. 2004, 91, 828–840. [Google Scholar] [CrossRef]
- Tsentsevitsky, A.; Nurullin, L.; Nikolsky, E.; Malomouzh, A. Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction. J. Neurosci. Res. 2017, 95, 1391–1401. [Google Scholar] [CrossRef]
- Grozdanovic, Z.; Gossrau, R. Co-localization of nitric oxide synthase I (NOS I) and NMDA receptor subunit 1 (NMDAR-1) at the neuromuscular junction in rat and mouse skeletal muscle. Cell Tissue Res. 1998, 291, 57–63. [Google Scholar] [CrossRef]
- Malomouzh, A.I.; Nurullin, L.F.; Arkhipova, S.S.; Nikolsky, E.E. NMDA receptors at the endplate of rat skeletal muscles: Precise postsynaptic localization. Muscle Nerve 2011, 44, 987–989. [Google Scholar] [CrossRef]
- Kasimov, M.R.; Fatkhrakhmanova, M.R.; Mukhutdinova, K.A.; Petrov, A.M. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology 2017, 117, 61–73. [Google Scholar] [CrossRef]
- Slater, C.R. The functional organization of motor nerve terminals. Prog. Neurobiol. 2015, 134, 55–103. [Google Scholar] [CrossRef]
- Ribera, J.; Marsal, J.; Casanovas, A.; Hukkanen, M.; Tarabal, O.; Esquerda, J.E. Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: Its role as regulator of acetylcholine release. J. Neurosci. Res. 1998, 51, 90–102. [Google Scholar] [CrossRef]
- Worden, M.K. Modulation of vertebrate and invertebrate neuromuscular junctions. Curr. Opin. Neurobiol. 1998, 8, 740–745. [Google Scholar] [CrossRef]
- Mukhtarov, M.R.; Vyskocil, F.; Urazaev, A.K.; Nikolsky, E.E. Non-quantal acetylcholine release is increased after nitric oxide synthase inhibition. Physiol. Res. 1999, 48, 315–317. [Google Scholar]
- Mukhtarov, M.R.; Urazaev, A.K.; Nikolsky, E.E.; Vyskocil, F. Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm. Eur. J. Neurosci. 2000, 12, 980–986. [Google Scholar] [CrossRef]
- Malomouzh, A.I.; Mukhtarov, M.R.; Nikolsky, E.E.; Vyskocil, F.; Lieberman, E.M.; Urazaev, A.K. Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction. J. Neurochem. 2003, 85, 206–213. [Google Scholar] [CrossRef]
- Vyskocil, F.; Malomouzh, A.I.; Nikolsky, E.E. Non-quantal acetylcholine release at the neuromuscular junction. Physiol. Res. 2009, 58, 763–784. [Google Scholar]
- Adámek, S.; Shakirzyanova, A.V.; Malomouzh, A.I.; Naumenko, N.V.; Vyskočil, F. Interaction of glutamate- and adenosine-induced decrease of acetylcholine quantal release at frog neuromuscular junction. Physiol. Res. 2010, 59, 803–810. [Google Scholar]
- Zhu, H.; Bhattacharyya, B.; Lin, H.; Gomez, C.M. Skeletal muscle calpain acts through nitric oxide and neural miRNAs to regulate acetylcholine release in motor nerve terminals. J. Neurosci. 2013, 33, 7308–7324. [Google Scholar] [CrossRef]
- Mukhutdinova, K.A.; Kasimov, M.R.; Giniatullin, A.R.; Zakyrjanova, G.F.; Petrov, A.M. 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts. Mol. Cell Neurosci. 2018, 88, 308–318. [Google Scholar] [CrossRef]
- Krivoi, I.I.; Petrov, A.M. Cholesterol and the Safety Factor for Neuromuscular Transmission. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef]
- Egawa, J.; Pearn, M.L.; Lemkuil, B.P.; Patel, P.M.; Head, B.P. Membrane lipid rafts and neurobiology: Age-related changes in membrane lipids and loss of neuronal function. J. Physiol. 2016, 594, 4565–4579. [Google Scholar] [CrossRef]
- Ahern, G.P.; Klyachko, V.A.; Jackson, M.B. cGMP and S-nitrosylation: Two routes for modulation of neuronal excitability by NO. Trends Neurosci. 2002, 25, 510–517. [Google Scholar] [CrossRef]
- Robinson, S.W.; Bourgognon, J.M.; Spiers, J.G.; Breda, C.; Campesan, S.; Butcher, A.; Mallucci, G.R.; Dinsdale, D.; Morone, N.; Mistry, R.; et al. Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol. 2018, 16, e2003611. [Google Scholar] [CrossRef]
- Lin, M.Y.; Rohan, J.G.; Cai, H.; Reim, K.; Ko, C.P.; Chow, R.H. Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems. J. Physiol. 2013, 591, 2463–2473. [Google Scholar] [CrossRef] [Green Version]
- Urazaev, A.K.; Naumenko, N.V.; Nikolsky, E.E.; Vyskocil, F. The glutamate and carbachol effects on the early post-denervation depolarization in rat diaphragm are directed towards furosemide-sensitive chloride transport. Neurosci. Res. 1999, 33, 81–86. [Google Scholar] [CrossRef]
- Vyskocil, F. Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter. Neurochem. Res. 2003, 28, 575–585. [Google Scholar] [CrossRef]
- Personius, K.E.; Slusher, B.S.; Udin, S.B. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination. J. Neurosci. 2016, 36, 8783–8789. [Google Scholar] [CrossRef] [Green Version]
- Tabone, C.J.; Ramaswami, M. Is NMDA receptor-coincidence detection required for learning and memory? Neuron 2012, 74, 767–769. [Google Scholar] [CrossRef]
- Mays, T.A.; Sanford, J.L.; Hanada, T.; Chishti, A.H.; Rafael-Fortney, J.A. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 2009, 39, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Pinard, A.; Robitaille, R. Nitric oxide dependence of glutamate-mediated modulation at a vertebrate neuromuscular junction. Eur. J. Neurosci. 2008, 28, 577–587. [Google Scholar] [CrossRef]
- Borodinsky, L.N.; Root, C.M.; Cronin, J.A.; Sann, S.B.; Gu, X.; Spitzer, N.C. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004, 429, 523–530. [Google Scholar] [CrossRef]
- Spitzer, N.C.; Root, C.M.; Borodinsky, L.N. Orchestrating neuronal differentiation: Patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci. 2004, 27, 415–421. [Google Scholar] [CrossRef]
- Borodinsky, L.N.; Spitzer, N.C. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc. Natl. Acad. Sci. USA 2007, 104, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, N.C.; Borodinsky, L.N. Implications of activity-dependent neurotransmitter-receptor matching. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 1393–1399. [Google Scholar] [CrossRef]
- Spitzer, N.C. Neurotransmitter Switching? No Surprise. Neuron 2015, 86, 1131–1144. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, G.; Spano, P.; Barlati, S.; Guarneri, B.; Barbon, A.; Bresciani, R.; Pizzi, M. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc. Natl. Acad. Sci. USA 2005, 102, 8752–8757. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, M.; Brunelli, G.; Barlati, S.; Spano, P. Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: A new paradigm in spinal cord injury repair. Curr. Opin. Neurobiol. 2006, 16, 323–328. [Google Scholar] [CrossRef]
- Fox, L.E.; Lloyd, P.E. Glutamate is a fast excitatory transmitter at some buccal neuromuscular synapses in Aplysia. J. Neurophysiol. 1999, 82, 1477–1488. [Google Scholar] [CrossRef]
Model NMJ | Target Molecule | Localization | Refs. |
---|---|---|---|
Adult rat | Glutamate | Presynaptic | [1,2] |
Frog embryo and tadpole | Ionotropic glutamate receptor—kainate/AMPA and NMDA | Presynaptic | [19] |
Zebrafish embryo and adult | Ionotropic glutamate receptor—AMPA and GluN2A and B containing NMDA | Presynaptic | [9,20] |
Adult lizard and frog | Metabotropic glutamate receptor—mGluR3 and mGluR1a/5 | Presynaptic | [12,21] |
Adult frog, mouse and rat | Ionotropic glutamate receptor—GluN1 and/or GluN2 containing NMDA | Postsynaptic | [11,21,22,23,44] |
Adult mouse | Ionotropic glutamate receptor—GluA1 and GluA2/3 containing AMPA | Postsynaptic | [44] |
Adult lizard and frog | Metabotropic glutamate receptors (unspecified) and mGluR2 | Postsynaptic | [12,17] |
Adult mouseesophageal muscle | Vesicular glutamate transporter—VGLUT1 | Presynaptic | [5,8] |
Adult zebrafish | Vesicular glutamate transporter—VGlut1 | Presynaptic | [9] |
Adult rat | Vesicular glutamate transporter—VGLUT3 | Presynaptic | [3] |
Torpedo electric organ | Vesicular glutamate transporter—VGlut1 and VGlut2 | Presynaptic | [7] |
Adult rodent | High affinity transporter for excitatory amino acids, GLAST-1 and GLT-1 | Postsynaptic and glial cell processes | [14,15,16] |
Adult frog | High affinity transporter for excitatory amino acids, GLAST-1 | Terminal Schwann cells | [17] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, M.N.; Francolini, M. Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission. Cells 2019, 8, 996. https://doi.org/10.3390/cells8090996
Colombo MN, Francolini M. Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission. Cells. 2019; 8(9):996. https://doi.org/10.3390/cells8090996
Chicago/Turabian StyleColombo, Maria Nicol, and Maura Francolini. 2019. "Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission" Cells 8, no. 9: 996. https://doi.org/10.3390/cells8090996
APA StyleColombo, M. N., & Francolini, M. (2019). Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission. Cells, 8(9), 996. https://doi.org/10.3390/cells8090996