Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data Analysis
2.2. Assays
2.3. Data Analysis and Statistics
3. Results
3.1. Baseline Characteristics
3.2. Dynamics of BMP-2
3.3. Dynamics of BMP-4
3.4. Correlations between BMP-2 and BMP-4 and Serum Levels of hCRP, MMP-9, sST2 and NT-proBNP
3.5. Correlations between BMP-2 and BMP-4 and Adverse LVR in Both Early and Late Periods of AMI
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMI | Acute myocardial infarction |
BMI | Body mass index |
BMP | Bone morphogenetic protein |
CAD | Coronary artery disease |
CHF | Chronic heart failure |
ECG | Electrocardiogram |
EDV | End-diastolic volume |
EF | Ejection fraction |
ESV | End-systolic volume |
FC | Functional class |
hCRP | High-sensitivity C-reactive protein |
HF | Heart failure |
LV | Left ventricular |
LVR | Left ventricular remodeling |
MMP | Matrix metalloproteinases |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
PCI | Percutaneous coronary intervention |
RFBR | Russian Foundation for Basic Research |
sST2 | Soluble isoform of suppression of tumorigenicity 2 |
STEMI | ST-segment elevation myocardial infarction |
References
- Cvjeticanin, B.; Prutki, M.; Dumic-Cule, I.; Veir, Z.; Grgurevic, L.; Vukicevic, S. Possible target for preventing fibrotic scar formation following acute myocardial infarction. Med. Hypotheses 2014, 83, 656–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebelt, H.; Hillebrand, I.; Arlt, S.; Zhang, Y.; Kostin, S.; Neuhaus, H.; Müller-Werdan, U.; Schwarz, E.; Werdan, K.; Braun, T. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock 2013, 39, 353–360. [Google Scholar] [CrossRef]
- Kercheva, M.; Ryabova, T.; Gusakova, A.; Suslova, T.E.; Ryabov, V.; Karpov, R.S. Serum Soluble ST2 and Adverse Left Ventricular Remodeling in Patients With ST-Segment Elevation Myocardial Infarction. Clin. Med. Insights Cardiol. 2019, 13, 1179546819842804. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodeling. Nature Rev. Cardiol. 2014, 11, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallotta, I.; Sun, B.; Lallos, G.; Terrenoire, C.; Freytes, D.O. Contributions of bone morphogenetic proteins in cardiac repair cells in three-dimensional in vitro models and angiogenesis. J. Tissue Eng. Regen. Med. 2018, 12, 349–359. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Sagave, J.; Czibik, G.; Baysa, A.; Zihlavnikova, K.; Hillestad, V.; Peder Dahl, C.; Fiane, A.; Gullestad, L.; Gravning, J.; et al. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans. Scand. J. Clin. Lab. Investig. 2017, 77, 321–331. [Google Scholar] [CrossRef]
- Xiao, Y.T.; Xiang, L.X.; Shao, J.Z. Bone morphogenetic protein. Biochem. Biophys. Res. Commun. 2007, 362, 550–553. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef]
- McCulley, D.J.; Kang, J.O.; Martin, J.F.; Black, B.L. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev. Dyn. 2008, 237, 3200–3209. [Google Scholar] [CrossRef] [Green Version]
- Kercheva, M.; Ryabova, T.; Ryabov, V.; Karpov, R. Intraobserver reproducibility of parameters of standard and 2D speckle tracking echocardiography, dynamics of global longitudinal strain I in patients with acute primary anterior STEMI. AIP Conf. Proc. 2015, 1688, 030017. [Google Scholar]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Sara, J.D.; Wang, F.L.; Liu, L.P.; Su, L.X.; Zhe, J.; Wu, X.; Liu, J. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients. Cardiovasc. Diabetol. 2015, 14, 64. [Google Scholar] [CrossRef] [Green Version]
- Penn, M.; Mausner-Fainberg, K.; Golan, M.; Karni, A. High serum levels of BMP-2 correlate with BMP-4 and BMP-5 levels and induce reduced neuronal phenotype in patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol. 2017, 310, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Glanz, S. Primer of Biostatistics, 5th ed.; McGraw-Hill Education: London, UK, 2001; 454p. [Google Scholar]
- Pachori, A.S.; Custer, L.; Hansen, D.; Clapp, S.; Kemppa, E.; Klingensmith, J. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J. Mol. Cell Cardiol. 2010, 48, 1255–1265. [Google Scholar] [CrossRef]
- Markov, V.A.; Ryabov, V.V.; Vyshlov, E.V.; Ryabova, T.R.; Shurupov, V.S.; Oyunarov, E.O.; Demyanov, S.V.; Maksimov, I.V. Postinfarction Heart Remodeling After Acute Myocardial Infarction and Pharmakoinvasive Reperfusion and Enhanced External Counterpulsation; STT: Tomsk, Russia, 2014; p. 244. [Google Scholar]
- Rymer, J.A.; Newby, L.K. Failure to Launch: Targeting Inflammation in Acute Coronary Syndromes. JACC Basic Translat. Sci. 2017, 2, 484–497. [Google Scholar] [CrossRef]
- Gombozhapova, A.; Rogovskaya, Y.; Shurupov, V.; Rebenkova, M.; Kzhyshkowska, J.; Popov, S.V.; Karpov, R.S.; Ryabov, V. Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 2017, 24, 13. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nature Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Snyder, R.J.; Lantis, J.; Kirsner, R.S.; Shah, V.; Molyneaux, M.; Carter, M.J. Macrophages: A review of their role in wound healing and their therapeutic use: Review of macrophages in wound healing. Wound Repair Regen. 2016, 24, 613–629. [Google Scholar] [CrossRef]
- Goichberg, P.; Chang, J.; Liao, R.; Leri, A. Cardiac stem cells: Biology and clinical applications. Antioxid. Redox. Signal. 2014, 21, 2002–2017. [Google Scholar] [CrossRef] [PubMed]
- Winnier, G.; Blessing, M.; Labosky, P.A.; Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995, 9, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Sanders, L.N.; Schoenhard, J.A.; Saleh, M.A.; Mukherjee, A.; Ryzhov, S.; McMaster, W.J.; Nolan, K.; Gumina, R.J.; Thompson, T.B.; Magnuson, M.A.; et al. BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circ. Res. 2016, 119, 434–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, T.; Rothweiler, R.; Ketterer, E.; Goetz, L.; Heinke, J.; Grundmann, S.; Duerschmied, D.; Patterson, C.; Bode, C.; Moser, M. BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium. Blood 2011, 118, 5040–5049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardali, E.; Makowski, L.M.; Leffers, M.; Borgscheiper, A.; Waltenberger, J. BMP-2 induces human mononuclear cell chemotaxis and adhesion and modulates monocyte-to-macrophage differentiation. J. Cell Mol. Med. 2018, 22, 5429–5438. [Google Scholar] [CrossRef] [Green Version]
- Sorescu, G.P.; Song, H.; Tressel, S.L.; Hwang, J.; Dikalov, S.; Smith, D.A.; Boyd, N.L.; Platt, M.O.; Lassegue, B.; Griendling, K.K.; et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 2004, 95, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.T.; Tian, X.Y.; Chen, Y.; Leung, F.P.; Liu, L.; Lee, H.K.; Ng, C.F.; Xu, A.; Yao, X.; Vanhoutte, P.M.; et al. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: Implications on hypertension. Circ. Res. 2010, 107, 984–991. [Google Scholar] [CrossRef]
- Tian, X.Y.; Yung, L.H.; Wong, W.T.; Xiao, Y.T.; Lai, H.Y.; Wing, T.W.; Jian, L.; Fung, P.L.; Limei, L.; Yangchao, C.; et al. Bone morphogenic protein-4 induces endothelial cell apoptosis through oxidative stress-dependent p38MAPK and JNK pathway. J. Mol. Cell Cardiol. 2012, 52, 237–244. [Google Scholar] [CrossRef]
- Stahls, P.F.; Lightell, D.J.; Moss, S.C.; Goldman, C.K.; Woods, T.C. Elevated Serum Bone Morphogenetic Protein 4 in Patients with Chronic Kidney Disease and Coronary Artery Disease. J. Cardiovasc. Trans. Res. 2013, 6, 232–238. [Google Scholar] [CrossRef] [Green Version]
At the Admission | |
---|---|
Parameters | |
Male, n (%) | 21 (67) |
Smoking history, n (%) | 15 (58) |
BMI (kg/m2) | 28 ± 5.1 |
Hypertension history, n (%) | 21 (67) |
Diabetes mellitus, n (%) | 8 (25) |
History of musculoskeletal disorders, such as osteoarthritis and osteochondrosis, n (%) | 5 (16) |
Dyslipidemia, n (%) | 23 (74) |
Killip class, n (%) | |
1 | 28 (91) |
2 | 1 (3) |
3 | 2 (6) |
At the discharge | |
Combined endpoint (death, recurrent MI, angina pectoris FC ≥ III, HF NYHA class > I), n (%) | 7 (22) |
Recurrent MI, n (%) | 1 (3) |
HF NYHA class > I, n (%) | 5 (16) |
Angina pectoris FC ≥ III, n (%) | 1 (3) |
Parameters | |
---|---|
Extent of CAD, n (%) | |
1-vessel CAD, n (%) | 22 (71) |
2-vessel CAD, n (%) | 7 (23) |
3-vessel CAD, n (%) | 2 (6) |
Reperfusion time (hours) | 4.8 ± 3.3 |
First 3 h, n (%) | 9 (29) |
Thrombolysis + PCI, n (%) | 17 (54) |
Primary PCI, n (%) | 14 (45) |
Delayed PCI, n (%) | 14 (45) |
Complete revascularization, n (%) | 20 (64) |
LV EDV (Day 3), mL | 107 ± 21.9 |
ΔLV EDV (Day 3, after 6 months),% | 13.0 ± 20.0 |
LV ESV (Day 3), mL | 49 ± 15.1 |
ΔLV ESV (Day 3, after 6 months),% | 19.6 ± 40 |
LV EF (Day 3),% | 54.2 ± 9.2 |
ΔLV EF (Day 3, after 6 months),% | 2.9 ± 7.6 |
Variable | β (Standard Deviation) | T | p Value |
---|---|---|---|
Complete revascularization, n | 0.7 | 12.3 | 0.06 |
Reperfusion time, h | 0.5 | 22.9 | 0.02 |
BMP-4, pg/mL | 0.7 | 9.4 | 0.06 |
BMP-2, pg/mL | 2.3 | 20.4 | 0.03 |
Troponin I, ng/mL | 1.0 | 15.8 | 0.04 |
hCRP, mg/L | 0.2 | 6.5 | 0.09 |
sST2, ng/L | −2.5 | −22.2 | 0.02 |
MMP-9, ng/mL | 0.6 | 10.7 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kercheva, M.; Gusakova, A.M.; Ryabova, T.R.; Suslova, T.E.; Kzhyshkowska, J.; Ryabov, V.V. Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction. Cells 2020, 9, 2179. https://doi.org/10.3390/cells9102179
Kercheva M, Gusakova AM, Ryabova TR, Suslova TE, Kzhyshkowska J, Ryabov VV. Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction. Cells. 2020; 9(10):2179. https://doi.org/10.3390/cells9102179
Chicago/Turabian StyleKercheva, Maria, Anna M. Gusakova, Tamara R. Ryabova, Tatiana E. Suslova, Julia Kzhyshkowska, and Vyacheslav V. Ryabov. 2020. "Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction" Cells 9, no. 10: 2179. https://doi.org/10.3390/cells9102179
APA StyleKercheva, M., Gusakova, A. M., Ryabova, T. R., Suslova, T. E., Kzhyshkowska, J., & Ryabov, V. V. (2020). Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction. Cells, 9(10), 2179. https://doi.org/10.3390/cells9102179