Maturation of T and B Lymphocytes in the Assessment of the Immune Status in COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Flow Cytometry
- Transitional B cells: IgM++ IgD++ CD38++ CD27- CD19+ CD45+
- Naïve B cells: IgM+ IgD++ CD38+ CD27- CD19+ CD45+
- Non-switched memory B cells (marginal zone-like B cells): IgM++ IgD+ CD38+ CD27+ CD19+ CD45+
- Class switched memory B cells: IgM- IgD- CD38+ CD27+ CD19+ CD45+
- Plasmablasts: IgM-/+ IgD- CD38+++ CD27++ CD19+ CD45+
- Recent thymic emigrants T cells: CD45RA+ CD62L+ CD31+ CD3+ CD45+
- Naïve T cells: CD45RA+ CD197+ CD3+ CD45+
- Effector T cells: CD45RA+ CD197- CD3+ CD45+
- Central memory T cells: CD45RO+ CD197+ CD3+ CD45+
- Effector memory T cells: CD45RO+ CD197- CD3+ CD45+
2.3. Statistical Analysis
3. Results
3.1. B Cells Maturation
3.2. T Cells Maturation
4. Discussion
4.1. Leukocytes and Lymphocytes Subsets in COVID-19 Patients
4.2. B Cells Maturation in COVID-19 Patients: Role of Plasmablast and Transitional Cells
4.3. T Cells Maturation in COVID-19 Patients: Role of Central Memory CD4+ T Cells and Effector CD8+ T Cells
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
[% of Total Leukocytes] | Control Group n = 20 (A) Median (Q1-Q3) | COVID-19 X-ray (-) n = 9 (B) Median (Q1-Q3) | COVID-19 X-ray (+) n = 14 (C) Median (Q1-Q3) | p < 0.05 * Group A-B-C ANOVA, Kruskal-Wallis | p < 0.05 * Group, in Groups Post-Hoc |
---|---|---|---|---|---|
Lymphocytes | 38.3 (33.2–46.3) | 49.8 (24.7–57.1) | 27.6 (13.1–37.4) | 0.0637 | - |
T Lymphocytes | 30.5 (24.6–40.9) | 36.2 (13.9–43.0) | 19.4 (7.8–24.8) | * 0.0129 | * A-C 0.0140 |
CD4 cells | 18.6 (13.6–22.0) | 23.1 (10.3–25.9) | 8.0 (4.8–14.4) | * 0.0026 | * A-C 0.0063 * B-C 0.0131 |
CD8 cells | 10.5 (7.8–13.2) | 9.4 (4.2–15.4) | 8.5 (3.6–12.3) | 0.4905 | - |
Ratio CD4/CD8 | 1.8 (1.5–2.2) | 2.1 (1.4–3.5) | 1.3 (0.6–2.4) | 0.1460 | - |
Lymphocytes B [%] | 3.9 (3.0–5.0) | 2.7 (1.7–3.2) | 2.1 (1.3–5.1) | 0.0810 | - |
NK cells [%] | 4.2 (2.8–7.0) | 6.5 (4.1–9.1) | 4.3 (1.5–9.1) | 0.4628 | - |
Neutrophils | 47.3 (42.1–57.3) | 37.6 (29.7–69.4) | 62.9 (49.4–77.5) | * 0.0229 | * B-C 0.0230 |
Eosinophils [%] | 2.2 (0.5–3.3) | 1.7 (0.9–3.6) | 0.9 (0.0–2.2) | * 0.0149 | * A-C 0.0150 |
Basophils [%] | 0.7 (0.5–1.2) | 0.6 (0.3–1.5) | 0.2 (0.0–0.5) | 0.0511 | - |
Monocytes [%] | 10.2 (6.8–11.5) | 7.2 (4.1–8.1) | 7.1 (6.2–11.9) | 0.1611 | - |
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Larici, A.R.; Cicchetti, G.; Marano, R.; Merlino, B.; Elia, L.; Calandriello, L.; Del Ciello, A.; Farchione, A.; Savino, G.; Infante, A.; et al. Multimodality imaging of COVID-19 pneumonia: from diagnosis to follow-up. A comprehensive review. Eur. J. Radiol. 2020, 131, 109217. [Google Scholar] [CrossRef] [PubMed]
- Akl, E.A.; Blazic, I.; Yaacoub, S.; Frija, G.; Chou, R.; Appiah, J.A.; Fatehi, M.; Flor, N.; Hitti, E.; Jafri, H.; et al. Use of Chest Imaging in the Diagnosis and Management of COVID-19: A WHO Rapid Advice Guide. Radiology 2020, 203173. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.S.; Kim, Y.; Kim, G.; Lee, J.Y.; Jeong, I.; Joh, J.S.; Kim, H.; Chang, E.; Sim, S.Y.; Park, J.S.; et al. Immune Responses to Middle East Respiratory Syndrome Coronavirus During the Acute and Convalescent Phases of Human Infection. Clin. Infect. Dis. 2019, 68, 984–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Quinti, I.; Lougaris, V.; Milito, C.; Cinetto, F.; Pecoraro, A.; Mezzaroma, I.; Mastroianni, C.M.; Turriziani, O.; Bondioni, M.P.; Filippini, M.; et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J. Allergy Clin. Immunol. 2020, 146, 211–213. [Google Scholar] [CrossRef]
- Li, T.; Qiu, Z.; Zhang, L.; Han, Y.; He, W.; Liu, Z.; Ma, X.; Fan, H.; Lu, W.; Xie, J.; et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis. 2004, 189, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Moratto, D.; Chiarini, M.; Giustini, V.; Serana, F.; Magro, P.; Roccaro, A.M.; Imberti, L.; Castelli, F.; Notarangelo, L.D.; Quiros-Roldan, E. Flow Cytometry Identifies Risk Factors and Dynamic Changes in Patients with COVID-19. J. Clin. Immunol. 2020, 40, 970–973. [Google Scholar] [CrossRef]
- Odak, I.; Barros-Martins, J.; Bosnjak, B.; Stahl, K.; David, S.; Wiesner, O.; Busch, M.; Hoeper, M.M.; Pink, I.; Welte, T.; et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine 2020, 57, 102885. [Google Scholar] [CrossRef]
- Sims, G.P.; Ettinger, R.; Shirota, Y.; Yarboro, C.H.; Illei, G.G.; Lipsky, P.E. Identification and characterization of circulating human transitional B cells. Blood 2005, 105, 4390–4398. [Google Scholar] [CrossRef]
- LeBien, T.W.; Tedder, T.F. B lymphocytes: how they develop and function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef]
- Fink, P.J. The biology of recent thymic emigrants. Annu. Rev. Immunol. 2013, 31, 31–50. [Google Scholar] [CrossRef]
- van den Broek, T.; Borghans, J.A.M.; van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 2018, 18, 363–373. [Google Scholar] [CrossRef]
- Boldt, A.; Borte, S.; Fricke, S.; Kentouche, K.; Emmrich, F.; Borte, M.; Kahlenberg, F.; Sack, U. Eight-color immunophenotyping of T-, B-, and NK-cell subpopulations for characterization of chronic immunodeficiencies. Cytometry Part B Clin. Cytom. 2014, 86, 191–206. [Google Scholar] [CrossRef]
- Martin, M.D.; Badovinac, V.P. Defining Memory CD8 T Cell. Front. Immunol. 2018, 9, 2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnatz, K.; Schlesier, M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry Part. B Clin. Cytom. 2008, 74, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Long, W.; Tu, M.; Chen, S.; Huang, Y.; Wang, S.; Zhou, W.; Chen, D.; Zhou, L.; Wang, M.; et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.B.; Zhang, Y.M.; Huang, L.G.; Lai, Q.N.; Mo, Q.; Ye, X.Z.; Wang, T.; Zhu, Z.Z.; Lv, X.L.; Luo, Y.J.; et al. The changes of the peripheral CD4+ lymphocytes and inflammatory cytokines in Patients with COVID-19. PLoS ONE 2020, 15, e0239532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Liu, J.; Chen, L.; Zhou, F.; Jin, T.; Jiang, L.; Li, X.; Yang, M.; Wang, H. The characteristics and predictive role of lymphocyte subsets in COVID-19 patients. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 99, 92–99. [Google Scholar] [CrossRef]
- Henry, B.; Cheruiyot, I.; Vikse, J.; Mutua, V.; Kipkorir, V.; Benoit, J.; Plebani, M.; Bragazzi, N.; Lippi, G. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: A meta-analysis. Acta Bio-Med. Atenei Parm. 2020, 91, e2020008. [Google Scholar] [CrossRef]
- Qun, S.; Wang, Y.; Chen, J.; Huang, X.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Ma, Y.; Zhu, Y.; et al. Neutrophil-to-Lymphocyte Ratios Are Closely Associated with the Severity and Course of Non-mild COVID-19. Front. Immunol. 2020, 11, 2160. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Mathew, D.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Greenplate, A.R.; Wu, J.E.; Alanio, C.; Kuri-Cervantes, L.; Pampena, M.B.; D’Andrea, K.; et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020. [Google Scholar] [CrossRef]
- De Biasi, S.; Lo Tartaro, D.; Meschiari, M.; Gibellini, L.; Bellinazzi, C.; Borella, R.; Fidanza, L.; Mattioli, M.; Paolini, A.; Gozzi, L.; et al. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur. J. Immunol. 2020, 50, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front. Immunol. 2020, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Mentzer, A.J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Dai, Y.; Zheng, T.; Cheng, L.; Zhao, D.; Wang, H.; Liu, M.; Pei, H.; Jin, T.; Yu, D.; et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Investig. 2020. [Google Scholar] [CrossRef]
- Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Stralin, K.; Gorin, J.B.; Olsson, A.; Llewellyn-Lacey, S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 2020, 183, 158–168. [Google Scholar] [CrossRef]
- Westmeier, J.; Paniskaki, K.; Karakose, Z.; Werner, T.; Sutter, K.; Dolff, S.; Overbeck, M.; Limmer, A.; Liu, J.; Zheng, X.; et al. Impaired Cytotoxic CD8(+) T Cell Response in Elderly COVID-19 Patients. mBio 2020, 11. [Google Scholar] [CrossRef]
- Elsaesser, H.J.; Mohtashami, M.; Osokine, I.; Snell, L.M.; Cunningham, C.R.; Boukhaled, G.M.; McGavern, D.B.; Zuniga-Pflucker, J.C.; Brooks, D.G. Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection. Proc. Natl. Acad. Sci. USA 2020, 117, 5420–5429. [Google Scholar] [CrossRef]
ID | Age | F/M | Symptoms | PEMC | Chest X-ray Changes | Oxygen Suplementation | Invasive Ventilation | C |
---|---|---|---|---|---|---|---|---|
1 | 80 | m | Fever, dyspnea, diarrhea, fatigue | yes | yes | no | no | yes |
2 | 78 | f | Fever, cough, dyspnea, fatigue | yes | yes | yes | no | yes |
3 | 69 | m | Fever, fatigue | yes | yes | yes | yes | yes |
4 | 63 | m | Fever | yes | yes | yes | no | yes |
5 | 42 | m | Fatigue | no | no | no | no | yes |
6 | 39 | f | Fatigue | no | no | no | no | yes |
7 | 44 | m | Fever, cough, dyspnea | yes | yes | no | no | yes |
8 | 37 | f | Fever, cough, dyspnea, diarrhea | yes | yes | no | no | yes |
9 | 74 | m | Fever, cough, dyspnea | yes | yes | yes | yes | yes |
10 | 35 | f | Fever, cough, dyspnea, fatigue | no | no | no | no | yes |
11 | 57 | m | Fever, cough, dyspnea | no | yes | no | no | yes |
12 | 78 | f | Fever, cough | yes | no | no | no | yes |
13 | 39 | f | Fatigue | yes | no | no | no | yes |
14 | 72 | m | Fever, cough, dyspnea, diarrhea, fatigue | yes | yes | yes | no | yes |
15 | 28 | m | Fever, cough, dyspnea, fatigue | no | yes | no | no | yes |
16 | 63 | m | Fever, cough | yes | yes | no | no | yes |
17 | 43 | m | Fatigue | yes | no | no | no | yes |
18 | 33 | m | Fever, cough, diarrhea, fatigue | no | no | no | no | yes |
19 | 80 | m | Fever, cough, dyspnea, fatigue | yes | yes | yes | yes | no |
20 | 67 | f | Fever, cough, dyspnea, fatigue | no | yes | yes | no | yes |
21 | 72 | m | Fever, cough, dyspnea, diarrhea, fatigue | no | yes | no | no | yes |
22 | 47 | f | Fever, cough, dyspnea, diarrhea, fatigue | no | no | no | no | yes |
23 | 34 | m | Fever, cough, dyspnea, diarrhea, fatigue | no | no | no | no | yes |
[k/µl] | Control Group n = 20 (A) Median (Q1–Q3) | COVID-19 X-ray (-) n = 9 (B) Median (Q1–Q3) | COVID-19 X-ray (+) n = 14 (C) Median (Q1–Q3) | p < 0.05 * Group A-B-C ANOVA, Kruskal-Wallis | p < 0.05 * Group, in Groups Post-Hoc |
---|---|---|---|---|---|
WBC | 6 555 (4930–7535) | 4580 (4150–6840) | 4515 (3620–6810) | 0.1954 | - |
Lymphocytes | 2038 (1839–2934) | 1350 (1087–2992) | 961 (753–1799) | * 0.0080 | * A-C 0.0056 |
T Lymphocytes | 1677 (1384–2384) | 951 (683–2253) | 691 (524–1416) | * 0.0035 | * A-C 0.0023 |
CD4 cells | 978 (756–1560) | 619 (533–1210) | 319 (239–584) | * 0.0018 | * A-C 0.0012 |
CD8 cells | 625 (457–791) | 313 (225–862) | 330 (160–549) | 0.0811 | - |
Ratio CD4/CD8 | 1.8 (1.5–2.3) | 2.1 (1.4–3.6) | 1.3 (0.6–2.4) | 0.1582 | - |
B Lymphocytes | 216 (190–284) | 147 (115–186) | 137 (77–238) | * 0.0056 | * A-B 0.0234 *A-C 0.0245 |
NK cells | 245 (204–447) | 299 (170–445) | 164 (101–397) | 0.4313 | - |
Neutrophils | 3310 (2139–4348) | 1722 (1556–2880) | 2896 (1611–4465) | 0.0511 | - |
Eosinophils | 160 (60–251) | 69 (46–178) | 45 (0–91) | * 0.0153 | * A-C 0.0155 |
Basophils | 30 (20–54) | 27 (14–54) | 6 (0–22) | * 0.0219 | * A-C 0.0220 |
Monocytes | 540 (381–690) | 336 (280–397) | 408 (246–669) | 0.1340 | - |
Cells Subsets: [% of B or T cells] | Control n = 20 (A) Median (Q1–Q3) | COVID-19 X-ray (−) n = 9 (B) Median (Q1–Q3) | COVID-19 X-ray (+) n = 14 (C) Median (Q1–Q3) | p < 0.05 * Group A-B-C ANOVA, Kruskal-Wallis | p < 0.05 * Group, in Groups Post-Hoc |
---|---|---|---|---|---|
B cells maturation: | |||||
Transitional B | 1.8 (1.4–2.3) | 3.8 (3.7–5.8) | 4.6 (1.9–7.0) | * 0.0016 | * A-B 0.0334 * A-C 0.0031 |
Naïve B | 68.0 (63.5–73.1) | 55.8 (54.3–71.7) | 57.0 (44.5–65.5) | * 0.0279 | * A-C 0.0298 |
Non-switched memory | 8.6 (6.9–10.3) | 7.5 (5.2–8.7) | 6.0 (4.6–8.2) | 0.0605 | - |
Class switched memory | 17.6 (12.7–22.8) | 15.1 (6.4–20.9) | 10.4 (5.2–15.7) | 0.0627 | - |
Plasmablasts | 1.4 (0.8–1.6) | 8.1 (4.8–11.5) | 15.2 (8.3–27.2) | * < 0.0001 | * A-C < 0.0001 * B-C 0.0014 |
T cells maturation: | |||||
Recent thymic emigrants (RTE) CD4 | 31.2 (26.3–37.6) | 26.8 (19.9–36.0) | 11.6 (4.8–29.0) | * 0.0052 | * A-C 0.0040 |
Naïve CD4 | 50.0 (42.1–58.3) | 40.1 (36.9–66.9) | 36.4 (20.0–48.2) | 0.0737 | - |
Effector CD4 | 33.2 (27.2–40.3) | 2.8 (1.2–3.5) | 2.9 (1.7–6.9) | * < 0.0001 | * A-B < 0.0001 * A-C < 0.0001 |
Effector memory CD4 | 12.5 (9.2–15.0) | 7.5 (5.8–22.3) | 17.7 (12.7–19.7) | 0.0503 | - |
Central memory CD4 | 1.8 (1.1–3.4) | 32.2 (26.8–41.4) | 39.5 (28.3–46.6) | * < 0.0001 | * A-B 0.0002 * A-C < 0.0001 |
Recent thymic emigrants (RTE) CD8 | 39.5 (34.4–52.9) | 37.7 (28.1–49.8) | 20.6 (6.6–33.5) | * 0.0089 | * A-C 0.0079 |
Naïve CD8 | 42.4 (35.5–59.7) | 39.2 (34.6–58.1) | 15.4 (6.5–22.6) | * 0.0029 | * A-C 0.0027 |
Effector CD8 | 7.8 (4.1–11.4) | 20.3 (16.5–38.6) | 45.0 (22.1–62.4) | * 0.0001 | * A-B 0.0206 * A-C 0.0002 |
Effector memory CD8 | 19.3 (16.2–22.9) | 15.7 (11.2–26.1) | 19.1 (11.4–33.7) | 0.6454 | - |
Central memory CD8 | 25.5 (18.1–38.2) | 7.7 (7.4–10.4) | 10.7 (5.2–16.8) | * 0.0001 | * A-B 0.0006 * A-C 0.0017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiecień, I.; Rutkowska, E.; Kłos, K.; Więsik-Szewczyk, E.; Jahnz-Różyk, K.; Rzepecki, P.; Chciałowski, A. Maturation of T and B Lymphocytes in the Assessment of the Immune Status in COVID-19 Patients. Cells 2020, 9, 2615. https://doi.org/10.3390/cells9122615
Kwiecień I, Rutkowska E, Kłos K, Więsik-Szewczyk E, Jahnz-Różyk K, Rzepecki P, Chciałowski A. Maturation of T and B Lymphocytes in the Assessment of the Immune Status in COVID-19 Patients. Cells. 2020; 9(12):2615. https://doi.org/10.3390/cells9122615
Chicago/Turabian StyleKwiecień, Iwona, Elżbieta Rutkowska, Krzysztof Kłos, Ewa Więsik-Szewczyk, Karina Jahnz-Różyk, Piotr Rzepecki, and Andrzej Chciałowski. 2020. "Maturation of T and B Lymphocytes in the Assessment of the Immune Status in COVID-19 Patients" Cells 9, no. 12: 2615. https://doi.org/10.3390/cells9122615
APA StyleKwiecień, I., Rutkowska, E., Kłos, K., Więsik-Szewczyk, E., Jahnz-Różyk, K., Rzepecki, P., & Chciałowski, A. (2020). Maturation of T and B Lymphocytes in the Assessment of the Immune Status in COVID-19 Patients. Cells, 9(12), 2615. https://doi.org/10.3390/cells9122615