Current Advances in Burkholderia Vaccines Development
Abstract
:1. Introduction
2. Burkholderia Vaccine Development Strategies
2.1. Inactivated Whole-Cell Vaccines
2.2. Live Attenuated Vaccines
2.3. Subunit Vaccines
2.4. Glycoconjugate Vaccines
2.5. DNA Vaccines
2.6. Viral Vector-Based Vaccines
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eberl, L.; Vandamme, P. Members of the genus Burkholderia: Good and bad guys. F1000Research 2016, 5, 1007. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt, K.E.; Greer, M.T.; Gelhaus, H.C. Glanders: An overview of infection in humans. Orphanet J. Rare Dis. 2013, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Wieler, L.H.; Melzer, F.; Elschner, M.C.; Muhammad, G.; Ali, S.; Sprague, L.D.; Neubauer, H.; Saqib, M. Glanders in Animals: A review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound. Emerg. Dis. 2013, 60, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.C.; Joseph, M.; Tomaso, H.; Al Dahouk, S.; Witte, A.; Kinne, J.; Hagen, R.M.; Wernery, R.; Wernery, U.; Neubauer, H. Detection of the reemerging agent Burkholderia mallei in a recent outbreak of glanders in the United Arab Emirates by a newly developed fliP-based polymerase chain reaction assay. Diagn. Microbiol. Infect. Dis. 2006, 54, 241–247. [Google Scholar] [CrossRef]
- Ghori, M.T.; Khan, M.S.; Khan, J.A.; Rabbani, M.; Shabbir, M.Z.; Chaudhry, H.R.; Ali, M.A.; Muhammad, J.; Elschner, M.C.; Jayarao, B.M. Seroprevalence and risk factors of glanders in working equines-findings of a cross-sectional study in Punjab province of Pakistan. Acta Trop. 2017, 176, 134–139. [Google Scholar] [CrossRef]
- Fonseca-Rodríguez, O.; Pinheiro Júnior, J.W.; Mota, R.A. Spatiotemporal analysis of glanders in Brazil. J. Equine Vet. Sci. 2019, 78, 14–19. [Google Scholar] [CrossRef]
- Adhikari, N.; Acharya, K.P.; Wilson, R.T. The potential for an outbreak of glanders in Nepal. Trop. Med. Health 2019, 47, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Singha, H.; Shanmugasundaram, K.; Tripathi, B.N.; Saini, S.; Khurana, S.K.; Kanani, A.; Shah, N.; Mital, A.; Kanwar, P.; Bhatt, L.; et al. Serological surveillance and clinical investigation of glanders among indigenous equines in India from 2015 to 2018. Transbound. Emerg. Dis. 2020, 67, 1336–1348. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.B.; Messina, J.P.; Pigott, D.M.; Moyes, C.L.; Rolim, D.B.; Bertherat, E.; Day, N.P.J.; Peacock, S.J.; et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef] [Green Version]
- McRobb, E.; Kaestli, M.; Price, E.P.; Sarovich, D.S.; Mayo, M.; Warner, J.; Spratt, B.G.; Curriea, B.J. Distribution of Burkholderia pseudomallei in Northern Australia, a land of diversity. Appl. Environ. Microbiol. 2014, 80, 3463–3468. [Google Scholar] [CrossRef] [Green Version]
- Limmathurotsakul, D.; Wongratanacheewin, S.; Teerawattanasook, N.; Wongsuvan, G.; Chaisuksant, S.; Chetchotisakd, P.; Chaowagul, W.; Day, N.P.J.; Peacock, S.J. Increasing incidence of human melioidosis in northeast Thailand. Am. J. Trop. Med. Hyg. 2010, 82, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, K.A.; Schweizer, H.P. Antibiotic resistance in Burkholderia species. Drug Resist. Updat. 2016, 28, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahenthiralingam, E.; Baldwin, A.; Dowson, C.G. Burkholderia cepacia complex bacteria: Opportunistic pathogens with important natural biology. J. Appl. Microbiol. 2008, 104, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Martina, P.; Leguizamon, M.; Prieto, C.I.; Sousa, S.A.; Montanaro, P.; Draghi, W.O.; Stämmler, M.; Bettiol, M.; De Carvalho, C.C.C.R.; Palau, J.; et al. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int. J. Syst. Evol. Microbiol. 2018, 68, 14–20. [Google Scholar] [CrossRef] [PubMed]
- De Smet, B.; Mayo, M.; Peeters, C.; Zlosnik, J.E.A.; Spilker, T.; Hird, T.J.; Li Puma, J.J.; Kidd, T.J.; Kaestli, M.; Ginther, J.L.; et al. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int. J. Syst. Evol. Microbiol. 2015, 65, 2265–2271. [Google Scholar] [CrossRef]
- Ong, K.S.; Aw, Y.K.; Lee, L.H.; Yule, C.M.; Cheow, Y.L.; Lee, S.M. Burkholderia paludis sp. nov., an antibiotic-siderophore producing novel Burkholderia cepacia complex species, isolated from malaysian tropical peat swamp soil. Front. Microbiol. 2016, 7, 2046. [Google Scholar] [CrossRef] [Green Version]
- Bach, E.; Sant’Anna, F.H.; Dos Passos, J.F.M.; Balsanelli, E.; De Baura, V.A.; Pedrosa, F.d.O.; De Souza, E.M.; Passaglia, L.M.P. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov. Pathog. Dis. 2017, 75, ftx076. [Google Scholar] [CrossRef]
- Weber, C.F.; King, G.M. Volcanic soils as sources of novel CO-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. Front. Microbiol. 2017, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia infections in cystic fibrosis patients: Drug resistance and therapeutic approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef] [Green Version]
- Drevinek, P.; Mahenthiralingam, E. Burkholderia cenocepacia in cystic fibrosis: Epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 2010, 16, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Pradenas, G.A.; Myers, J.N.; Torres, A.G. Characterization of the Burkholderia cenocepacia TonB mutant as a potential live attenuated vaccine. Vaccines 2017, 5, 33. [Google Scholar] [CrossRef]
- Sousa, S.A.; Seixas, A.M.M.; Leitão, J.H. Postgenomic approaches and bioinformatics tools to advance the development of vaccines against bacteria of the Burkholderia cepacia complex. Vaccines 2018, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClean, S.; Healy, M.E.; Collins, C.; Carberry, S.; O’Shaughnessy, L.; Dennehy, R.; Adams, Á.; Kennelly, H.; Corbett, J.M.; Carty, F.; et al. Linocin and OmpW are involved in attachment of the cystic fibrosis-associated pathogen Burkholderia cepacia complex to lung epithelial cells and protect mice against infection. Infect. Immun. 2016, 84, 1424–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musson, J.A.; Reynolds, C.J.; Rinchai, D.; Nithichanon, A.; Khaenam, P.; Favry, E.; Spink, N.; Chu, K.K.Y.; De, A.; Bancroft, G.J.; et al. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia—Implications for vaccines against melioidosis and cepacia complex in cystic fibrosis. J. Immunol. 2014, 193, 6041–6049. [Google Scholar] [CrossRef] [Green Version]
- Amanna, I.J.; Slifka, M.K. Successful vaccines. In Vaccination Strategies against Highly Variable Pathogens. Current Topics in Microbiology and Immunology; Springer: Cham, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Sarkar-Tyson, M.; Smither, S.J.; Harding, S.V.; Atkins, T.P.; Titball, R.W. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders. Vaccine 2009, 27, 4447–4451. [Google Scholar] [CrossRef]
- Amemiya, K.; Bush, G.V.; DeShazer, D.; Waag, D.M. Nonviable Burkholderia mallei induces a mixed Th1- and Th2-like cytokine response in BALB/c mice. Infect. Immun. 2002, 70, 2319–2325. [Google Scholar] [CrossRef] [Green Version]
- Chua, J.; Bozue, J.A.; Klimko, C.P.; Shoe, J.L.; Ruiz, S.I.; Jensen, C.L.; Tobery, S.A.; Crumpler, J.M.; Chabot, D.J.; Quirk, A.V.; et al. Formaldehyde and glutaraldehyde inactivation of bacterial tier 1 select agents in tissues. Emerg. Infect. Dis. 2019, 25, 919–926. [Google Scholar] [CrossRef]
- Puangpetch, A.; Anderson, R.; Huang, Y.Y.; Saengsot, R.; Sermswan, R.W.; Wongratanacheewin, S. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine 2014, 32, 5983–5988. [Google Scholar] [CrossRef]
- Kim, H.S.; Schell, M.A.; Yu, Y.; Ulrich, R.L.; Sarria, S.H.; Nierman, W.C.; DeShazer, D. Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 2005, 6, 174. [Google Scholar] [CrossRef] [Green Version]
- Henderson, A.; Propst, K.; Kedl, R.; Dow, S. Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 2011, 29, 5304–5312. [Google Scholar] [CrossRef] [Green Version]
- Cryz, S.J.; Furer, E.; Germanier, R. Effect of chemical and heat inactivation on the antigenicity and immunogenicity of Vibrio cholerae. Infect. Immun. 1982, 38, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitlock, G.C.; Lukaszewski, R.A.; Judy, B.M.; Paessler, S.; Torres, A.G.; Estes, D.M. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei. BMC Immunol. 2008, 9, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingolotti, M.; Kawalekar, O.; Shedlock, D.J.; Muthumani, K.; Weiner, D.B. DNA vaccines for targeting bacterial infections. Expert Rev. Vaccines 2010, 9, 747–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germanier, R.; Fuerer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: A candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 1975, 131, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Pilatz, S.; Breitbach, K.; Hein, N.; Fehlhaber, B.; Schulze, J.; Brenneke, B.; Eberl, L.; Steinmetz, I. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect. Immun. 2006, 74, 3576–3586. [Google Scholar] [CrossRef] [Green Version]
- Atkins, T.; Prior, R.G.; Mack, K.; Russell, P.; Nelson, M.; Oyston, P.C.F.; Dougan, G.; Titball, R.W. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect. Immun. 2002, 70, 5290–5294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.; Chu, K.; Easton, A.; Stevens, M.P.; Galyov, E.E.; Atkins, T.; Titball, R.; Bancroft, G.J. A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell–mediated immunity, priming T cells specific for 2 Type III secretion system proteins. J. Infect. Dis. 2006, 194, 1241–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitbach, K.; Köhler, J.; Steinmetz, I. Induction of protective immunity against Burkholderia pseudomallei using attenuated mutants with defects in the intracellular life cycle. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 4–9. [Google Scholar] [CrossRef]
- Propst, K.L.; Mima, T.; Choi, K.H.; Dow, S.W.; Schweizer, H.P. A Burkholderia pseudomallei ΔpurM mutant is avirulent in immunocompetent and immunodeficient animals: Candidate strain for exclusion from select-agent lists. Infect. Immun. 2010, 78, 3136–3143. [Google Scholar] [CrossRef] [Green Version]
- Norris, M.H.; Rahman Khan, M.S.; Schweizer, H.P.; Tuanyok, A. An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: Expansion of the toolkit for biosafe studies of melioidosis. BMC Microbiol. 2017, 17, 132. [Google Scholar] [CrossRef]
- Cuccui, J.; Easton, A.; Chu, K.K.; Bancroft, G.J.; Oyston, P.C.F.; Titball, R.W.; Wren, B.W. Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect. Immun. 2007, 75, 1186–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srilunchang, T.; Proungvitaya, T.; Wongratanacheewin, S.; Strugnell, R.; Homchampa, P. Construction and characterization of an unmarked aroC deletion mutant of Burkholderia pseudomallei strain A2. Southeast Asian J. Trop. Med. Public Health 2009, 40, 123–130. [Google Scholar] [PubMed]
- Norris, M.H.; Propst, K.L.; Kang, Y.; Dow, S.W.; Schweizer, H.P.; Hoang, T.T. The Burkholderia pseudomallei Δasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect. Immun. 2011, 79, 4010–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, C.M.; Conejero, L.; Spink, N.; Wand, M.E.; Bancroft, G.J.; Titball, R.W. Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect. Immun. 2012, 80, 3247–3255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, M.P.; Haque, A.; Atkins, T.; Hill, J.; Wood, M.W.; Easton, A.; Nelson, M.; Underwood-Fowler, C.; Titball, R.W.; Bancroft, G.J.; et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 2004, 150, 2669–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R.L.; Amemiya, K.; Waag, D.M.; Roy, C.J.; DeShazer, D. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. Vaccine 2005, 23, 1986–1992. [Google Scholar] [CrossRef]
- Bozue, J.A.; Chaudhury, S.; Amemiya, K.; Chua, J.; Cote, C.K.; Toothman, R.G.; Dankmeyer, J.L.; Klimko, C.P.; Wilhelmsen, C.L.; Raymond, J.W.; et al. Phenotypic characterization of a novel virulence-factor deletion strain of Burkholderia mallei that provides partial protection against inhalational glanders in mice. Front. Cell. Infect. Microbiol. 2016, 6, 21. [Google Scholar] [CrossRef]
- Mott, T.M.; Vijayakumar, S.; Sbrana, E.; Endsley, J.J.; Torres, A.G. Characterization of the Burkholderia mallei tonB mutant and its potential as a backbone strain for vaccine development. PLoS Negl. Trop. Dis. 2015, 9, e0003863. [Google Scholar] [CrossRef] [Green Version]
- Khakhum, N.; Bharaj, P.; Myers, J.N.; Tapia, D.; Kilgore, P.B.; Ross, B.N.; Walker, D.H.; Endsley, J.J.; Torres, A.G. Burkholderia pseudomallei ΔtonB Δhcp1 live attenuated vaccine strain elicits full protective immunity against aerosolized melioidosis infection. mSphere 2019, 4, e00570-18. [Google Scholar] [CrossRef] [Green Version]
- Khakhum, N.; Bharaj, P.; Myers, J.N.; Tapia, D.; Walker, D.H.; Endsley, J.J.; Torres, A.G. Evaluation of Burkholderia mallei ΔtonB Δhcp1 (CLH001) as a live attenuated vaccine in murine models of glanders and melioidosis. PLoS Negl. Trop. Dis. 2019, 13, e0007578. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, S.M.; Dyke, J.S.; Jelesijevic, T.P.; Michel, F.; Lafontaine, E.R.; Hogan, R.J. Antibodies against in vivo-expressed antigens are sufficient to protect against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Infect. Immun. 2017, 85, e00102-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.R.G.; Torres, A.G. The art of persistence-the secrets to Burkholderia chronic infections. Pathog. Dis. 2016, 74, ftw07. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschenbroich, S.A.; Lafontaine, E.R.; Hogan, R.J. Melioidosis and glanders modulation of the innate immune system: Barriers to current and future vaccine approaches. Expert Rev. Vaccines 2016, 15, 1163–1181. [Google Scholar] [CrossRef] [PubMed]
- Pradenas, G.A.; Ross, B.N.; Torres, A.G. Burkholderia cepacia complex vaccines: Where do we go from here? Vaccines 2016, 4, 10. [Google Scholar] [CrossRef]
- Sousa, S.A.; Morad, M.; Feliciano, J.R.; Pita, T.; Nady, S.; El-Hennamy, R.E.; Abdel-Rahman, M.; Cavaco, J.; Pereira, L.; Barreto, C.; et al. The Burkholderia cenocepacia OmpA-like protein BCAL2958: Identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected cystic fibrosis patients. AMB Express 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Bertot, G.M.; Restelli, M.A.; Galanternik, L.; Urey, R.C.A.; Valvano, M.A.; Grinstein, S. Nasal immunization with Burkholderia multivorans outer membrane proteins and the mucosal adjuvant adamantylamide dipeptide confers efficient protection against experimental lung infections with B. multivorans and B. cenocepacia. Infect. Immun. 2007, 75, 2740–2752. [Google Scholar] [CrossRef] [Green Version]
- Mariappan, V.; Vellasamy, K.M.; Thimma, J.S.; Hashim, O.H.; Vadivelu, J. Identification of immunogenic proteins from Burkholderia cepacia secretome using proteomic analysis. Vaccine 2010, 28, 1318–1324. [Google Scholar] [CrossRef]
- Shinoy, M.; Dennehy, R.; Coleman, L.; Carberry, S.; Schaffer, K.; Callaghan, M.; Doyle, S.; McClean, S. Immunoproteomic analysis of proteins expressed by two related pathogens, Burkholderia multivorans and Burkholderia cenocepacia, during human infection. PLoS ONE 2013, 8, e80796. [Google Scholar] [CrossRef] [Green Version]
- Harland, D.N.; Chu, K.; Haque, A.; Nelson, M.; Walker, N.J.; Sarkar-Tyson, M.; Atkins, T.P.; Moore, B.; Brown, K.A.; Bancroft, G.; et al. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infect. Immun. 2007, 75, 4173–4180. [Google Scholar] [CrossRef] [Green Version]
- Whitlock, G.C.; Deeraksa, A.; Qazi, O.; Judy, B.M.; Taylor, K.; Propst, K.L.; Duffy, A.J.; Johnson, K.; Kitto, G.B.; Brown, K.A.; et al. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge. Procedia Vaccinol. 2010, 2, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.C.; Wan, K.L.; Mohamed, R.; Nathan, S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine 2010, 28, 5005–5011. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Mohamed, R.; Nathan, S. Immunogenic Burkholderia pseudomallei outer membrane proteins as potential candidate vaccine targets. PLoS ONE 2009, 4, e6496. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Hsiao, Y.S.; Lin, H.H.; Liu, Y.; Chen, Y.L. CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect. Immun. 2006, 74, 1699–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, W.T.; Spink, N.; Cia, F.; Collins, C.; Romano, M.; Berisio, R.; Bancroft, G.J.; McClean, S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 2016, 34, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Nieves, W.; Asakrah, S.; Qazi, O.; Brown, K.A.; Kurtz, J.; Aucoin, D.P.; Mclachlan, J.B.; Roy, C.J.; Morici, L.A. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 2011, 29, 8381–8389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.M.; Davitt, C.J.H.; Motyka, N.; Kikendall, N.L.; Russell-Lodrigue, K.; Roy, C.J.; Morici, L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides cross protection against inhalational glanders in mice and non-human primates. Vaccines 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Burtnick, M.N.; Brett, P.J.; Harding, S.V.; Ngugi, S.A.; Ribot, W.J.; Chantratita, N.; Scorpio, A.; Milne, T.S.; Dean, R.E.; Fritz, D.L.; et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect. Immun. 2011, 79, 1512–1525. [Google Scholar] [CrossRef] [Green Version]
- Makidon, P.E.; Knowlton, J.; Groom, J.V.; Blanco, L.P.; LiPuma, J.J.; Bielinska, A.U.; Baker, J.R. Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med. Microbiol. Immunol. 2010, 199, 81–92. [Google Scholar] [CrossRef]
- Lim, Y.T.; Jobichen, C.; Wong, J.; Limmathurotsakul, D.; Li, S.; Chen, Y.; Raida, M.; Srinivasan, N.; Macary, P.A.; Sivaraman, J.; et al. Extended loop region of Hcp1 is critical for the assembly and function of type VI secretion system in Burkholderia pseudomallei. Sci. Rep. 2015, 5, 8235. [Google Scholar] [CrossRef] [Green Version]
- Gourlay, L.J.; Peano, C.; Deantonio, C.; Perletti, L.; Pietrelli, A.; Villa, R.; Matterazzo, E.; Lassaux, P.; Santoro, C.; Puccio, S.; et al. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: Structure of the head domain of Burkholderia pseudomallei antigen BPSL2063. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 2227–2235. [Google Scholar] [CrossRef] [Green Version]
- Lazar Adler, N.R.; Stevens, J.M.; Stevens, M.P.; Galyov, E.E. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei. Front. Microbiol. 2011, 2, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, J.; Simpanya, M.F.; Settles, E.W.; Shannon, A.B.; Hernandez, K.; Pristo, L.; Keener, M.E.; Hornstra, H.; Busch, J.D.; Soffler, C.; et al. Caprine humoral response to Burkholderia pseudomallei antigens during acute melioidosis from aerosol exposure. PLoS Negl. Trop. Dis. 2019, 13, e0006851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, H.; Nieves, W.; Russell-Lodrigue, K.; Roy, C.J.; Morici, L.A. Evaluation of a Burkholderia pseudomallei outer membrane vesicle vaccine in nonhuman primates. Procedia Vaccinol. 2014, 8, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capelli, R.; Peri, C.; Villa, R.; Nithichanon, A.; Conchillo-Solé, O.; Yero, D.; Gagni, P.; Chiari, M.; Lertmemongkolchai, G.; Cretich, M.; et al. BPSL1626: Reverse and structural vaccinology reveal a novel candidate for vaccine design against Burkholderia pseudomallei. Antibodies 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Gourlay, L.J.; Peri, C.; Ferrer-Navarro, M.; Conchillo-Solé, O.; Gori, A.; Rinchai, D.; Thomas, R.J.; Champion, O.L.; Michell, S.L.; Kewcharoenwong, C.; et al. Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology. Chem. Biol. 2013, 20, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Hizbullah; Nazir, Z.; Afridi, S.G.; Shah, M.; Shams, S.; Khan, A. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651. Microb. Pathog. 2018, 125, 219–229. [Google Scholar] [CrossRef]
- Berti, F.; Adamo, R. Antimicrobial glycoconjugate vaccines: An overview of classic and modern approaches for protein modification. Chem. Soc. Rev. 2018, 47, 9015–9025. [Google Scholar] [CrossRef] [Green Version]
- Micoli, F.; Del Bino, L.; Alfini, R.; Carboni, F.; Romano, M.R.; Adamo, R. Glycoconjugate vaccines: Current approaches towards faster vaccine design. Expert Rev. Vaccines 2019, 18, 881–895. [Google Scholar] [CrossRef]
- Pace, D. Glycoconjugate vaccines. Expert Opin. Biol. Ther. 2013, 13, 11–33. [Google Scholar] [CrossRef]
- Legutki, J.B.; Nelson, M.; Titball, R.; Galloway, D.R.; Mateczun, A.; Baillie, L.W. Analysis of peptide mimotopes of Burkholderia pseudomallei exopolysaccharide. Vaccine 2007, 25, 7796–7805. [Google Scholar] [CrossRef]
- Reckseidler, S.L.; DeShazer, D.; Sokol, P.A.; Woods, D.E. Detection of bacterial virulence genes by subtractive hybridization: Identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun. 2001, 69, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeShazer, D.; Waag, D.M.; Fritz, D.L.; Woods, D.E. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb. Pathog. 2001, 30, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Burtnick, M.N.; Shaffer, T.L.; Ross, B.N.; Muruato, L.A.; Sbrana, E.; DeShazer, D.; Torres, A.G.; Brett, P.J. Development of subunit vaccines that provide high-level protection and sterilizing immunity against acute inhalational melioidosis. Infect. Immun. 2017, 86, e00724-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, A.E.; Burtnick, M.N.; Stokes, M.G.M.; Whelan, A.O.; Williamson, E.D.; Atkins, T.P.; Prior, J.L.; Brett, P.J. Burkholderia pseudomallei capsular polysaccharide conjugates provide protection against acute melioidosis. Infect. Immun. 2014, 82, 3206–3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, A.E.; Christ, W.J.; George, A.J.; Stokes, M.G.M.; Lohman, G.J.S.; Guo, Y.; Jones, M.; Titball, R.W.; Atkins, T.P.; Campbell, A.S.; et al. Protection against experimental melioidosis with a synthetic manno-heptopyranose hexasaccharide glycoconjugate. Bioconjug. Chem. 2016, 27, 1435–1446. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.G.; Gregory, A.E.; Hatcher, C.L.; Vinet-Oliphant, H.; Morici, L.A.; Titball, R.W.; Roy, C.J. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2015, 33, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.E.; Ngugi, S.A.; Laws, T.R.; Corser, D.; Lonsdale, C.L.; D’Elia, R.V.; Titball, R.W.; Williamson, E.D.; Atkins, T.P.; Prior, J.L. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J. Immunol. Res. 2014, 2014, 392170. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.E.; Judy, B.M.; Qazi, O.; Blumentritt, C.A.; Brown, K.A.; Shaw, A.M.; Torres, A.G.; Titball, R.W. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Nembrini, C.; Stano, A.; Dane, K.Y.; Ballester, M.; Van Der Vlies, A.J.; Marsland, B.J.; Swartz, M.A.; Hubbell, J.A. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl. Acad. Sci. USA 2011, 108, E989–E997. [Google Scholar] [CrossRef] [Green Version]
- Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327. [Google Scholar] [CrossRef]
- Li, T.; Guo, L.; Wang, Z. Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions. Anal. Sci. 2008, 24, 907–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Quintanilla, F.; Iwashkiw, J.A.; Price, N.L.; Stratilo, C.; Feldman, M.F. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front. Microbiol. 2014, 5, 381. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.; Delar, E.; Muru, K.; Ndong, S.; Hoyeck, R.R.; Kaewarpai, T.; Chantratita, N.; Burtnick, M.N.; Brett, P.J.; Gauthier, C. Melioidosis patient serum-reactive synthetic tetrasaccharides bearing the predominant epitopes of Burkholderia pseudomallei and Burkholderia mallei O-antigens. Org. Biomol. Chem. 2019, 17, 8878–8901. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Glaser, L.; Ingram, R.; Valvano, M. Potential glycoengineered anti-Burkholderia vaccines by exploiting the bacterial O-glycosylation machinery. Access Microbiol. 2019, 1, 881. [Google Scholar] [CrossRef]
- Yasmine Fathy, M.; Scott, N.E.; Molinaro, A.; Creuzenet, C.; Ortega, X.; Lertmemongkolchai, G.; Tunney, M.M.; Green, H.; Jones, A.M.; DeShazer, D.; et al. A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. J. Biol. Chem. 2019, 294, 13248–13268. [Google Scholar] [CrossRef] [Green Version]
- Muruato, L.A.; Tapia, D.; Hatcher, C.L.; Kalita, M.; Brett, P.J.; Gregory, A.E.; Samuel, J.E.; Titball, R.W.; Torres, A.G. Use of reverse vaccinology in the design and construction of nanoglycoconjugate vaccines against Burkholderia pseudomallei. Clin. Vaccine Immunol. 2017, 24, e00206-17. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef]
- Hobernik, D.; Bros, M. DNA vaccines—How far from clinical use? Int. J. Mol. Sci. 2018, 19, 3605. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.L.; Leppla, S.H.; Klinman, D.M. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen. Vaccine 1999, 17, 340–344. [Google Scholar] [CrossRef]
- Li, J.M.; Zhu, D.Y. Therapeutic DNA vaccines against tuberculosis: A promising but arduous task. Chin. Med. J. 2006, 119, 1103–1107. [Google Scholar] [CrossRef]
- Chen, Y.S.; Hsiao, Y.S.; Lin, H.H.; Yen, C.M.; Chen, S.C.; Chen, Y.L. Immunogenicity and anti-Burkholderia pseudomallei activity in Balb/c mice immunized with plasmid DNA encoding flagellin. Vaccine 2006, 24, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Lankelma, J.M.; Wagemakers, A.; Birnie, E.; Haak, B.W.; Trentelman, J.J.A.; Weehuizen, T.A.F.; Ersöz, J.; Roelofs, J.J.T.H.; Hovius, J.W.; Wiersinga, W.J.; et al. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application. Virulence 2017, 8, 1683–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koosakulnirand, S.; Phokrai, P.; Jenjaroen, K.; Roberts, R.A.; Utaisincharoen, P.; Dunachie, S.J.; Brett, P.J.; Burtnick, M.N.; Chantratita, N. Immune response to recombinant Burkholderia pseudomallei FliC. PLoS ONE 2018, 13, e0198906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Yang, E.; Wang, J.; Li, R.; Li, G.; Liu, G.; Song, N.; Huang, Q.; Kong, C.; Wang, H. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice. Immunology 2014, 143, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Gabitzsch, E.S.; Xu, Y.; Yoshida, L.H.; Balint, J.; Amalfitano, A.; Jones, F.R. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity. Vaccine 2009, 27, 6394–6398. [Google Scholar] [CrossRef] [Green Version]
- Näslund, T.I.; Uyttenhove, C.; Nordström, E.K.L.; Colau, D.; Warnier, G.; Jondal, M.; Van den Eynde, B.J.; Liljeström, P. Comparative prime-boost vaccinations using Semliki Forest Virus, Adenovirus, and ALVAC Vectors Demonstrate Differences in the Generation of a Protective Central Memory CTL Response against the P815 Tumor. J. Immunol. 2007, 178, 6761–6769. [Google Scholar] [CrossRef]
- Shott, J.P.; McGrath, S.M.; Pau, M.G.; Custers, J.H.V.; Ophorst, O.; Demoitié, M.A.; Dubois, M.C.; Komisar, J.; Cobb, M.; Kester, K.E.; et al. Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-γ and antibody responses in mice. Vaccine 2008, 26, 2818–2823. [Google Scholar] [CrossRef]
- Choi, Y.; Chang, J. Viral vectors for vaccine applications. Clin. Exp. Vaccine Res. 2013, 2, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [Green Version]
- Mailybayeva, A.; Yespembetov, B.; Ryskeldinova, S.; Zinina, N.; Sansyzbay, A.; Renukaradhya, G.J.; Petrovsky, N.; Tabynov, K. Improved influenza viral vector based Brucella abortus vaccine induces robust B and T-cell responses and protection against Brucella melitensis infection in pregnant sheep and goats. PLoS ONE 2017, 12, e0186484. [Google Scholar] [CrossRef] [Green Version]
- Lafontaine, E.R.; Chen, Z.; Huertas-Diaz, M.C.; Dyke, J.S.; Jelesijevic, T.P.; Michel, F.; Hogan, R.J.; He, B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019, 1, 100002. [Google Scholar] [CrossRef]
- Aubert, D.F.; Xu, H.; Yang, J.; Shi, X.; Gao, W.; Li, L.; Bisaro, F.; Chen, S.; Valvano, M.A.; Shao, F. A Burkholderia Type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 2016, 19, 664–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenjaroen, K.; Chumseng, S.; Sumonwiriya, M.; Ariyaprasert, P.; Chantratita, N.; Sunyakumthorn, P.; Hongsuwan, M.; Wuthiekanun, V.; Fletcher, H.A.; Teparrukkul, P.; et al. T-Cell responses are associated with survival in acute melioidosis patients. PLoS Negl. Trop. Dis. 2015, 9, e0004152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulye, M.; Bechill, M.P.; Grose, W.; Ferreira, V.P.; Lafontaine, E.R.; Wooten, R.M. Delineating the importance of serum opsonins and the bacterial capsule in affecting the uptake and killing of Burkholderia pseudomallei by murine neutrophils and macrophages. PLoS Negl. Trop. Dis. 2014, 8, e2988. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.; Goudet, A.; Jenjaroen, K.; Sumonwiriya, M.; Rinchai, D.; Musson, J.; Overbeek, S.; Makinde, J.; Quigley, K.; Manji, J.; et al. T cell immunity to the alkyl hydroperoxide reductase of Burkholderia pseudomallei: A correlate of disease outcome in acute melioidosis. J. Immunol. 2015, 194, 4814–4824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunachie, S.J.; Jenjaroen, K.; Reynolds, C.J.; Quigley, K.J.; Sergeant, R.; Sumonwiriya, M.; Chaichana, P.; Chumseng, S.; Ariyaprasert, P.; Lassaux, P.; et al. Infection with Burkholderia pseudomallei-immune correlates of survival in acute melioidosis. Sci. Rep. 2017, 7, 12143. [Google Scholar] [CrossRef] [PubMed]
Species | Inactivation Method | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref |
---|---|---|---|---|---|---|---|
B. pseudomallei K96243 | Heat-killed | i.p. (108 CFU) | B. pseudomallei K96243 B. pseudomallei 576 B. pseudomallei K96243 B. mallei | i.p. (3.5 × 105 CFU) i.p. (2.2 × 104 CFU) i.n. (92 CFU) i.n. (6.3 × 103 CFU) | BALB/c mice | 80% at day 21 100% at day 21 8 days (MTTD) 23.1 days (MTTD) | [26] |
B. pseudomallei 576 | Heat-killed | i.p. (108 CFU | B. pseudomallei K96243 B. pseudomallei 576 B. pseudomallei K96243 B. mallei | i.p. (3.5 × 105 CFU) i.p. (2.2 × 104 CFU) i.n. (92 CFU) i.n. (6.3 × 103 CFU) | BALB/c mice | 100% at day 21 100% at day 21 9.75 days (MTTD) 13.78 days (MTTD) | [26] |
B. mallei | Heat-killed | i.p. (108 CFU) | B. pseudomallei K96243 B. pseudomallei K96243 B. mallei | i.p. (1.4 × 105 CFU) i.n. (92 CFU) i.n. (6.3 × 103 CFU) | BALB/c mice | 70% at day 44 17.2 days (MTTD) 13.7 days (MTTD) | [26] |
B. thailandensis | Heat-killed | i.p. (108 CFU) | B. pseudomallei K96243 B. pseudomallei K96243 B. mallei | i.p. (1.4 × 105 CFU) i.n. (92 CFU) i.n. (6.3 × 103 CFU) | BALB/c mice | 60% at day 44 7.4 days (MTTD) 6.3 days (MTTD) | [26] |
B. pseudomallei | Heat-killed | i.n. (105 CFU+ CLDC adjuvant) | B. pseudomallei 1026b | i.n. (7.5 × 103 CFU) | BALB/c mice | 55.5% at day 60 | [31] |
B. pseudomallei A2 | Paraformaldehyde-killed Heat-killed | i.m. (108 CFU) | B. pseudomallei A2 | i.p. (100 CFU) | BALB/c mice | 60% at day 30 All died within 6 days | [29] |
B. mallei | Heat-killed, strain ATCC23344 | s.c. (108 CFU + Alhydrogel) | B. mallei ATCC23344 | i.p. (2.3 × 108 CFU) | BALB/c mice | All died within 21 days | [27] |
B. mallei | Irradiation-inactivated, strain ATCC23344) | s.c. (108 CFU + Alhydrogel) | B. mallei ATCC23344 | i.p. (2.3 × 108 CFU) | BALB/c mice | 25% at day 2 | [27] |
B. mallei | Irradiation-inactivated, B. mallei capsule-negative mutant | s.c. (108 CFU + Alhydrogel) | B. mallei ATCC23344 | i.p. (2.8 × 108 CFU) | BALB/c mice | All died within 21 days | [27] |
B. mallei | Irradiation-inactivated, strain ATCC23344 | s.c. (108 CFU + Alhydrogel) | B. mallei ATCC23344 B. mallei (capsule-negative mutant) B. mallei (capsule-negative mutant) | i.p. (2.8 × 108 CFU) i.p. (6.5 × 108 CFU) i.p. (2.8 × 108 CFU) | BALB/c mice | 20% at day 21 100% at day 21 80% at day 21 | [27] |
Attenuated Strain | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref |
---|---|---|---|---|---|---|
B. pseudomallei (ΔilvI) | i.p. (106 CFU) | B. pseudomallei 576 B. pseudomallei BRI | i.p. (106 CFU) | BALB/c mice | 80% at day 32 100% at day 32 | [37] |
B. pseudomallei (ΔpurN) | i.n. (5 × 103 CFU) i.n. (2 × 105 CFU) i.p. (2 × 105 CFU) i.n. (106 CFU) i.p. (106 CFU) | B. pseudomallei E8 | i.p. (106 CFU) i.n. (2 × 102 CFU) i.v. (103 CFU) | BALB/c mice | 100% at day 9 37.5% at day 65 All died at day 65 All died at day 31 All died at day 27 | [39] |
B. pseudomallei (ΔpurM) | i.n. (5 × 103 CFU) i.n. (6 × 104 CFU) i.n. (5 × 105 CFU) | B. pseudomallei E8 | i.p. (106 CFU) | BALB/c mice | All died at day 7 All died at day 15 100% at day 17 | [39] |
B. pseudomallei (ΔhisF) | i.p. (7 × 103 CFU) | B. pseudomallei E8 | i.p. (105 CFU) | BALB/c mice | 50% at day 28 | [39] |
B. pseudomallei (ΔpabB) | i.p. (2 × 105 CFU) i.p. (107 CFU) | B. pseudomallei E8 | i.p. (106 CFU) | BALB/c mice | 50% at day 65 75% at day 36 | [39] |
B. pseudomallei (ΔaroB) | i.n. (1 × 105 CFU) i.n. (1 × 106 CFU) | B. pseudomallei K96243 | i.p. (5 × 104 CFU) i.n. (1 × 103 CFU) | BALB/c mice | All died at day 8 All died at day 8 | [42] |
B. pseudomallei (ΔaroC) | i.p. (3.5 × 107 CFU) i.p. (5 × 108 CFU) | B. pseudomallei A2 B. pseudomallei A2 | i.p. (5 × 102 CFU) i.p. (5 × 103 CFU) i.p. (5 × 104 CFU) i.p. (6 × 103 CFU) i.p. (6 × 104 CFU) i.p. (6 × 105 CFU) | BALB/c mice C57BL/6 mice | All died All died All died 80% up to 5 months 60% up to 5 months 20% up to 5 months | [43] |
B. pseudomallei (ΔbipD) | i.p.(104 CFU) | B. pseudomallei 576 | i.p. (104 CFU) | BALB/c mice | 60% at day 75 | [46] |
B. pseudomallei (Δasd) | i.n. (1 × 107 CFU) | B. pseudomallei 1026b | i.n. (4 × 103 CFU) | BALB/c mice | All died at day 56 | [44] |
B. pseudomallei (ΔrelA ΔspoT) | i.n. (1 × 105 CFU) | B. pseudomallei 576 | i.n. (1 × 103 CFU) | C57BL/6 mice | 60% at day 55 | [45] |
B. mallei (ΔtonB) | i.n. (1 × 102 CFU) i.n. (1 × 103 CFU) i.n. (1 × 104 CFU) | B. mallei CSM001 | i.n. (1.5 × 104 CFU) | BALB/c mice | All died at day 15 62.5% at day 28 100% at day 28 | [49] |
B. mallei (ΔtonBΔhcp1) | i.n. (1.5 × 105 CFU) | B. mallei ATCC23344 B. pseudomallei K96243 | i.n. (3.24 × 104 CFU) aerosol (1.07–1.78 × 103 CFU) | C57BL/6 mice | 100% at day 21 87.5% at day 21 | [51] |
B. mallei (ΔilvI) | Aerosol (7.3 × 104 CFU) | B. mallei ATCC23344 | i.n. (4.4 × 105 CFU) i.n. (5 × 103 CFU) | BALB/c mice | 25% at day 30 50% at day 30 | [47] |
B. mallei (ΔtssN) | i.n. (prime, 1.3 × 105 CFU); (boost, 2.3 × 104 CFU) | B. mallei ATCC23344 | i.n. (4.3 × 104 CFU) | BALB/c mice | 67% at day 30 | [48] |
B. cenocepacia (ΔtonB) | i.n. (5 × 107 CFU) | B. cenocepacia K56-2 (Nx resistant mutant) | i.n. (5 × 107 CFU) | BALB/c mice | 87.5% at day 6 | [21] |
B. mallei (Δbat) | i.t. (104 CFU) | B. mallei ATCC23344 B. pseudomallei 1026b B. pseudomallei K96243 | i.t. (8 × 103 CFU) i.t. (2.5 × 104 CFU) i.t. (2.5 × 104 CFU) | BALB/c mice | 56% at day 55 67% at day55 85% at day 55 | [52] |
Species | Antigen | Adjuvant | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref |
---|---|---|---|---|---|---|---|---|
B. pseudomallei K96243 | LolC | MPL + TDM | i.p. | B. pseudomallei K96243 | i.p. (4 × 104 CFU) | BALB/c mice | 83% at day 42 | [60] |
B. pseudomallei K96243 | LolC | ISCOMS + CpG CpG MPL + TDM | s.c. s.c. s.c. | B. pseudomallei K96243 | i.p. (7 × 104 CFU) | BALB/c mice | 33% at day 13 66% at day 13 50% at day 13 | [60] |
B. pseudomallei K96243 | PotF | MPL + TDM | i.p. | B. pseudomallei K96243 | (4 × 104 CFU) | BALB/c mice | 50% at day 42 | [60] |
B. mallei ATCC 23344 | BopA BimA | ISCOM + CpG | i.n. | B. mallei ATCC 23344 (BmC) B. pseudomallei 1026b (BpC) | i.n. (103 CFU) | BALB/c mice | 100% at day 21 (BmC) 60% at day 50 (BpC) 100% at day 21 (BmC) 20% at day 50 (BpC) | [61] |
B. mallei ATCC 23344 | Hcp1 | ISCOM + CpG | i.n. | B. mallei ATCC 23344 (BmC) | i.n. (103 CFU) | BALB/c mice | 78% at day 21 (BmC) | [61] |
B. pseudomallei K96243 | LolC | ISCOM + CpG | i.n. | B. mallei ATCC 23344 (BmC) B. pseudomallei 1026b (BpC) | i.n. (80 CFU) | BALB/c mice | 82% at day 21 (BmC) 25% at day 50 (BpC) | [61] |
B. pseudomallei D286 | Omp85 | Freund’s complete adjuvant/Freund’s incomplete adjuvant | i.p. | B. pseudomallei D286 | i.p. (1 × 106 CFU) | BALB/c mice | 70% at day 15 | [62] |
B. pseudomallei K96243 | Omp3 Omp7 | Freund’s complete adjuvant/Freund’s incomplete adjuvant | i.p. | B. pseudomallei D286 | i.p. (1 × 106 CFU) | BALB/c mice | 50% at day 21 | [63] |
B. pseudomallei | FliC | CpG | i.m. | B. pseudomallei | i.v. (1 × 105 CFU) | BALB/c mice | 93.3% at day 14 | [64] |
B. pseudomallei | OmpW | SAS | i.p. | B. pseudomallei 576 | i.p. (4 × 106 CFU) (6 × 105 CFU) | C57BL mice BALB/c mice | 75% at day 80 75% at day 21 | [65] |
B. pseudomallei 1026b | OMV | i.n. s.c. | B. pseudomallei 1026b | Aerosol (5.35 × 103 ± 3.64 × 103 CFU) | BALB/c mice | 15% at day 14 60% at day 14 | [66] | |
B. pseudomallei Bp82 | OMV | s.c. | B. mallei China 7 | Aerosol (1.246 × 103 CFU) Aerosol (1.6 × 106 CFU) | C57Bl/6 mice Rhesus macaques (Macaca mulatta) | 80% at day 30 100% at day 21 | [67] | |
B. pseudomallei K96243 | Hcp 2 Hcp1 Hcp3 Hcp6 Hcp4 | SAS | i.p. | B. pseudomallei K96243 | i.p. (5 × 104 CFU) | BALB/c mice | 80% at day 42 50% at day 42 50% at day 42 50% at day 42 33% at day 42 | [68] |
Conjugate | Adjuvant | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref | |
---|---|---|---|---|---|---|---|---|
B. pseudomallei K96243 | CPS-Hcp1 CPS-CRM197 CPS-TssM | Alhydrogel + CpG | s.c. | B. pseudomallei K96243 | Aerosol (≈4.65 × 107 CFU/mL) | C57BL/6 mice | 100% at day 35 67% 80% | [84] |
B. pseudomallei K96243 | CPS-LolC-BSA CPS-BSA | Alhydrogel + CpG | s.c. | B. pseudomallei K96243 | i.p. | BALB/c mice | 70% at day 35 50% | [85] |
B. pseudomallei | CPS-TetHc | MPL/Sigma adjuvant system | i.p. | B. pseudomallei K96243 | i.p. (1.02 × 105 CFU) | BALB/c | 67% at day 35 | [86] |
B. mallei | AuNP-FliC-LPS AuNP-Hcp1-LPS AuNP-TetHc-LPS | Alhydrogel | s.c. | B. mallei ATCC 23344 | i.n. (2.27 × 105 CFU) aerosol (5.0 × 109 CFU) | BALB/c mice | 60% at day 35 90% at day 35 70% at day 35 | [89] |
B. mallei | AuNP-FliC-LPS | Alhydrogel | s.c. | B. mallei ATCC 23344 | aerosol (5.0 × 109 CFU) | Rhesus macaques | 50% at day 30 | [87] |
B. pseudomallei | TetHc-LPS | i.p. | B. pseudomallei K96243 | i.p. (4.0 × 104 CFU and 4.2 × 104 CFU) | BALB/c mice | 81% at day 29 | [86] | |
B. pseudomallei | O-polysaccharide-AcrA | Imject Alum | i.p. | B. pseudomallei K96234 | i.n. (2 × 103 CFU) | BALB/c mice | 40% at day 12 | [93] |
Antigen | Adjuvant | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref |
---|---|---|---|---|---|---|---|
pcDNA-FliC | CpG ODN | i.m. | B. pseudomallei | i.v. (105 CFU) | BALB/c mice | 93.3% at day 12 | [64] |
pVAX-hTPA-FliC | Polyethylenimine | i.n. | B. pseudomallei | i.n. (500 CFU) | C57BL/6 | 53% at day 14 | [103] |
Antigen | Viral Vector | Immunization Method | Challenge Strain | Challenge Method | Animal Model | Protection | Ref |
---|---|---|---|---|---|---|---|
BatA | PIV5 | i.n. | B. mallei ATCC 23344 B. pseudomallei K96243 | Aerosol (8000 CFU) Aerosol (300 CFU) | BALB/c mice | 74% at day 40 60% at day 35 | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zarodkiewicz, P.; Valvano, M.A. Current Advances in Burkholderia Vaccines Development. Cells 2020, 9, 2671. https://doi.org/10.3390/cells9122671
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells. 2020; 9(12):2671. https://doi.org/10.3390/cells9122671
Chicago/Turabian StyleWang, Guanbo, Paulina Zarodkiewicz, and Miguel A. Valvano. 2020. "Current Advances in Burkholderia Vaccines Development" Cells 9, no. 12: 2671. https://doi.org/10.3390/cells9122671
APA StyleWang, G., Zarodkiewicz, P., & Valvano, M. A. (2020). Current Advances in Burkholderia Vaccines Development. Cells, 9(12), 2671. https://doi.org/10.3390/cells9122671