Nucleolar Organization and Functions in Health and Disease
Abstract
:1. Functional Organization of the Nucleolus
1.1. Subcompartmentalization and Ribosome Biogenesis
1.2. Genome Organization and Regulation of Gene Expression
2. Nucleoli—Key Players for Stress Responses, Aging and Human Health
2.1. Stress, Aging, and Longevity
2.2. Ribosomopathies and Cancer
3. Outlook—Open Questions
Conflicts of Interest
References
- Correll, C.C.; Bartek, J.; Dundr, M. The Nucleolus: A Multiphase Condensate Balancing Ribosome Synthesis and Translational Capacity in Health, Aging and Ribosomopathies. Cells 2019, 8, 869. [Google Scholar] [CrossRef] [Green Version]
- Go, C.D.; Knight, J.D.R.; Rajasekharan, A.; Rathod, B.; Hesketh, G.G.; Abe, K.T.; Youn, J.-Y.; Samavarchi-Tehrani, P.; Zhang, H.; Zhu, L.Y.; et al. A proximity biotinylation map of a human cell. BioRxiv 2019, 796391. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Richardson, T.M.; Wacheul, L.; Wei, M.T.; Feric, M.; Whitney, G.; Lafontaine, D.L.J.; Brangwynne, C.P. Controlling the material properties and rRNA processing function of the nucleolus using light. Proc. Natl. Acad. Sci. USA 2019, 116, 17330–17335. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-K.; Lee, B.-W.; Fujii, F.; Kim, J.K.; Pack, C.-G. Physicochemical Properties of Nucleoli in Live Cells Analyzed by Label-Free Optical Diffraction Tomography. Cells 2019, 8, 699. [Google Scholar] [CrossRef] [Green Version]
- Shav-Tal, Y.; Blechman, J.; Darzacq, X.; Montagna, C.; Dye, B.T.; Patton, J.G.; Singer, R.H.; Zipori, D. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 2005, 16, 2395–2413. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Calvillo, S.; Florencio-Martínez, L.E.; Nepomuceno-Mejía, T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- O’Day, D.H. Proteins of the Nucleolus of Dictyostelium discoideum: Nucleolar Compartmentalization, Targeting Sequences, Protein Translocations and Binding Partners. Cells 2019, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Malinovska, L.; Palm, S.; Gibson, K.; Verbavatz, J.M.; Alberti, S. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc. Natl. Acad. Sci. USA 2015, 112, E2620–E2629. [Google Scholar] [CrossRef] [Green Version]
- Matos-Perdomo, E.; Machin, F. Nucleolar and Ribosomal DNA Structure under Stress: Yeast Lessons for Aging and Cancer. Cells 2019, 8, 779. [Google Scholar] [CrossRef] [Green Version]
- Sen Gupta, A.; Sengupta, K. Lamin B2 Modulates Nucleolar Morphology, Dynamics, and Function. Mol. Cell Biol. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Moujaber, O.; Omran, N.; Kodiha, M.; Pie, B.; Cooper, E.; Presley, J.F.; Stochaj, U. Data on the association of the nuclear envelope protein Sun1 with nucleoli. Data Brief 2017, 13, 115–123. [Google Scholar] [CrossRef]
- Essawy, N.; Samson, C.; Petitalot, A.; Moog, S.; Bigot, A.; Herrada, I.; Marcelot, A.; Arteni, A.-A.; Coirault, C.; Zinn-Justin, S. An Emerin LEM-Domain Mutation Impairs Cell Response to Mechanical Stress. Cells 2019, 8, 570. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.-L.; He, G.-J.; Hu, L.-D.; Yan, Y.-B. The Intrinsically Disordered C-Terminal Domain Triggers Nucleolar Localization and Function Switch of PARN in Response to DNA Damage. Cells 2019, 8, 836. [Google Scholar] [CrossRef] [Green Version]
- Sleiman, S.; Dragon, F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019, 8, 1035. [Google Scholar] [CrossRef] [Green Version]
- Bersaglieri, C.; Santoro, R. Genome Organization in and around the Nucleolus. Cells 2019, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Chang, Y.C.; Lee, D.S.W.; Berry, J.; Sanders, D.W.; Ronceray, P.; Wingreen, N.S.; Haataja, M.; Brangwynne, C.P. Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. Cell 2018, 175, 1481–1491.e1413. [Google Scholar] [CrossRef] [Green Version]
- Legartová, S.; Lochmanová, G.; Zdráhal, Z.; Kozubek, S.; Šponer, J.; Krepl, M.; Pokorná, P.; Bártová, E. DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019, 8, 1097. [Google Scholar] [CrossRef] [Green Version]
- Strom, A.R.; Emelyanov, A.V.; Mir, M.; Fyodorov, D.V.; Darzacq, X.; Karpen, G.H. Phase separation drives heterochromatin domain formation. Nature 2017, 547, 241–245. [Google Scholar] [CrossRef]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.M.; Lamond, A.I. The nucleolus under stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef]
- Hariharan, N.; Sussman, M.A. Stressing on the nucleolus in cardiovascular disease. BBA Mol. Basis. Dis. 2014, 1842, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Latonen, L. Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and Novel Roles of RNA. Front. Cell Neurosci. 2019, 13, 151. [Google Scholar] [CrossRef]
- Pirogov, S.A.; Gvozdev, V.A.; Klenov, M.S. Long Noncoding RNAs and Stress Response in the Nucleolus. Cells 2019, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Ben Meriem, Z.; Khalil, Y.; Hersen, P.; Fabre, E. Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells 2019, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox. Biol. 2017, 11, 482–501. [Google Scholar] [CrossRef]
- Chen, J.; Stark, L.A. Crosstalk between NF-kappaB and Nucleoli in the Regulation of Cellular Homeostasis. Cells 2018, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.; Khalid, F.; Iben, S. Nucleolar and Ribosomal Dysfunction-A Common Pathomechanism in Childhood Progerias? Cells 2019, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Penzo, M.; Montanaro, L.; Treré, D.; Derenzini, M. The Ribosome Biogenesis—Cancer Connection. Cells 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Farley-Barnes, K.I.; Ogawa, L.M.; Baserga, S.J. Ribosomopathies: Old Concepts, New Controversies. Trends Genet. 2019, 35, 754–767. [Google Scholar] [CrossRef]
- Carotenuto, P.; Pecoraro, A.; Palma, G.; Russo, G.; Russo, A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019, 8, 1090. [Google Scholar] [CrossRef] [Green Version]
- NIH. Clinical Trials. 2020. Available online: http://clinicaltrials.gov/ct2/home (accessed on 10 February 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stochaj, U.; Weber, S.C. Nucleolar Organization and Functions in Health and Disease. Cells 2020, 9, 526. https://doi.org/10.3390/cells9030526
Stochaj U, Weber SC. Nucleolar Organization and Functions in Health and Disease. Cells. 2020; 9(3):526. https://doi.org/10.3390/cells9030526
Chicago/Turabian StyleStochaj, Ursula, and Stephanie C. Weber. 2020. "Nucleolar Organization and Functions in Health and Disease" Cells 9, no. 3: 526. https://doi.org/10.3390/cells9030526
APA StyleStochaj, U., & Weber, S. C. (2020). Nucleolar Organization and Functions in Health and Disease. Cells, 9(3), 526. https://doi.org/10.3390/cells9030526