A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish
Abstract
:1. Introduction
2. The Regenerating Zebrafish Heart
3. Methods
3.1. Search Strategy
3.2. Study Selection
3.3. Extraction of Data
4. Results
4.1. Included Studies on Zebrafish Heart Regeneration Following Apex Resection
4.2. Qualitative and Quantitative Analysis of Cardiac Outgrowth
4.3. Quantification of Cardiomyocyte Proliferation
4.4. Analysis of Heart Function
5. Discussion
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cahill, T.J.; Choudhury, R.P.; Riley, P.R. Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nat. Rev. Drug Discov. 2017, 16, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.P.; Virmani, R. Pathophysiology of acute myocardial infarction. Med. Clin. N. Am. 2007, 91, 553–572; ix. [Google Scholar] [CrossRef] [PubMed]
- Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.F.; Cui, M.X.; Yang, S.W.; Zhou, Y.J.; Hu, D.Y. Cell death, dysglycemia and myocardial infarction. Biomed. Rep. 2013, 1, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Van Amerongen, M.J.; Engel, F.B. Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J. Cell. Mol. Med. 2008, 12, 2233–2244. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rosa, J.M.; Burns, C.E.; Burns, C.G. Zebrafish heart regeneration: 15 years of discoveries. Regeneration 2017, 4, 105–123. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Y.; Yu, F.; Parks, E.; Lyman, A.; Wu, Q.; Ai, L.; Hu, C.H.; Zhou, Q.; Shung, K.; et al. Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 2009, 37, 890–901. [Google Scholar] [CrossRef]
- Tahara, N.; Brush, M.; Kawakami, Y. Cell migration during heart regeneration in zebrafish. Dev. Dyn. 2016, 245, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Poss, K.D.; Wilson, L.G.; Keating, M.T. Heart regeneration in zebrafish. Science 2002, 298, 2188–2190. [Google Scholar] [CrossRef]
- Uygur, A.; Lee, R.T. Mechanisms of Cardiac Regeneration. Dev. Cell 2016, 36, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Jopling, C.; Sleep, E.; Raya, M.; Marti, M.; Raya, A.; Izpisua Belmonte, J.C. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Holdway, J.E.; Werdich, A.A.; Anderson, R.M.; Fang, Y.; Egnaczyk, G.F.; Evans, T.; Macrae, C.A.; Stainier, D.Y.; Poss, K.D. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Lepilina, A.; Coon, A.N.; Kikuchi, K.; Holdway, J.E.; Roberts, R.W.; Burns, C.G.; Poss, K.D. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, M.; Ansari, M.T.; Berkman, N.D.; Chang, S.; Hartling, L.; McPheeters, M.; Santaguida, P.L.; Shamliyan, T.; Singh, K.; Tsertsvadze, A.; et al. Assessing the risk of bias of individual studies in systematic reviews of health care interventions. In Methods Guide for Comparative Effectiveness Reviews; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008. [Google Scholar]
- Itou, J.; Kawakami, H.; Burgoyne, T.; Kawakami, Y. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol. Open 2012, 1, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covidence Systematic Review Software. Veritas Health Innovation, Melbourne, Australia. Available online: www.covidence.org (accessed on 15 January 2020).
- Borchardt, T.; Looso, M.; Bruckskotten, M.; Weis, P.; Kruse, J.; Braun, T. Analysis of newly established EST databases reveals similarities between heart regeneration in newt and fish. BMC Genom. 2010, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parente, V.; Balasso, S.; Pompilio, G.; Verduci, L.; Colombo, G.I.; Milano, G.; Guerrini, U.; Squadroni, L.; Cotelli, F.; Pozzoli, O.; et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS ONE 2013, 8, e53748. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Zhang, Y.T.; Zhang, B. A surgery protocol to construct zebrafish heart damage and regeneration model. Yi Chuan Hered. 2013, 35, 529–532. [Google Scholar] [CrossRef]
- Wang, J.; Poss, K.D. Methodologies for Inducing Cardiac Injury and Assaying Regeneration in Adult Zebrafish. Methods Mol. Biol. 2016, 1451, 225–235. [Google Scholar] [CrossRef]
- Zuppo, D.A.; Missinato, M.A.; DeMoya, R.A.; SaydMohammed, M.; Tsang, M. Cardiac transcriptome profiling during regeneration in zebrafish. In Molecular Biology of the Cell (volume 27); ASCB: Betesda, MD, USA, 2017. [Google Scholar]
- Sleep, E.; Boue, S.; Jopling, C.; Raya, M.; Raya, A.; Izpisua Belmonte, J.C. Transcriptomics approach to investigate zebrafish heart regeneration. J. Cardiovasc. Med. 2010, 11, 369–380. [Google Scholar] [CrossRef]
- Schoffstall, B.; DeVerteuil, P.; Jean, M.; Lopez, N.; Tapia, J. The regenerative response of zebrafish hearts to long-term induced exercise stress. In Molecular Biology of the Cell (volume 22); ASCB: Betesda, MD, USA, 2011. [Google Scholar]
- Mias, C.; Genet, G.; Pathak, A.; Senard, J.M.; Gales, C. Adult resident cardiomyocytes wake up: New axis for cardiac tissue regeneration. Med. Sci. 2012, 28, 1103–1109. [Google Scholar]
- Grajevskaja, V.; Camerota, D.; Bellipanni, G.; Balciuniene, J.; Balciunas, D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS ONE 2018, 13, e0197293. [Google Scholar] [CrossRef] [PubMed]
- Rodius, S.; Nazarov, P.V.; Nepomuceno-Chamorro, I.A.; Jeanty, C.; Gonzalez-Rosa, J.M.; Ibberson, M.; da Costa, R.M.; Xenarios, I.; Mercader, N.; Azuaje, F. Transcriptional response to cardiac injury in the zebrafish: Systematic identification of genes with highly concordant activity across in vivo models. BMC Genom. 2014, 15, 852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodius, S.; Androsova, G.; Gotz, L.; Liechti, R.; Crespo, I.; Merz, S.; Nazarov, P.V.; de Klein, N.; Jeanty, C.; Gonzalez-Rosa, J.M.; et al. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Sci. Rep. 2016, 6, 26822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Navis, A.; Cox, B.D.; Dickson, A.L.; Gemberling, M.; Karra, R.; Bagnat, M.; Poss, K.D. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 2016, 143, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre, A.; Montserrat, N.; Zacchigna, S.; Nivet, E.; Hishida, T.; Krause, M.N.; Kurian, L.; Ocampo, A.; Vazquez-Ferrer, E.; Rodriguez-Esteban, C.; et al. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 2014, 15, 589–604. [Google Scholar] [CrossRef] [Green Version]
- Jopling, C.; Sune, G.; Faucherre, A.; Fabregat, C.; Izpisua Belmonte, J.C. Hypoxia induces myocardial regeneration in zebrafish. Circulation 2012, 126, 3017–3027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jopling, C.; Sune, G.; Morera, C.; Izpisua Belmonte, J.C. p38alpha MAPK regulates myocardial regeneration in zebrafish. Cell Cycle 2012, 11, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Raya, A.; Koth, C.M.; Buscher, D.; Kawakami, Y.; Itoh, T.; Raya, R.M.; Sternik, G.; Tsai, H.J.; Rodriguez-Esteban, C.; Izpisua-Belmonte, J.C. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl. Acad. Sci. USA 2003, 100, 11889–11895. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Kruse, F.; Vasudevarao, M.D.; Junker, J.P.; Zebrowski, D.C.; Fischer, K.; Noel, E.S.; Grun, D.; Berezikov, E.; Engel, F.B.; et al. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Dev. Cell 2016, 36, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Iranzo, H.; Galardi-Castilla, M.; Minguillon, C.; Sanz-Morejon, A.; Gonzalez-Rosa, J.M.; Felker, A.; Ernst, A.; Guzman-Martinez, G.; Mosimann, C.; Mercader, N. Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat. Commun 2018, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Borikova, A.L.; Ben-Yair, R.; Guner-Ataman, B.; MacRae, C.A.; Lee, R.T.; Burns, C.G.; Burns, C.E. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 2014, 111, 1403–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rosa, J.M.; Sharpe, M.; Field, D.; Soonpaa, M.H.; Field, L.J.; Burns, C.E.; Burns, C.G. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev. Cell 2018, 44, 433–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.K.; Sarathchandra, P.; Chester, A.; Yacoub, M.; Brand, T.; Butcher, J.T. Cardiac regeneration following cryoinjury in the adult zebrafish targets a maturation-specific biomechanical remodeling program. Sci. Rep. 2018, 8, 15661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Panakova, D.; Kikuchi, K.; Holdway, J.E.; Gemberling, M.; Burris, J.S.; Singh, S.P.; Dickson, A.L.; Lin, Y.F.; Sabeh, M.K.; et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011, 138, 3421–3430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Poss, K.D. Explant culture of adult zebrafish hearts for epicardial regeneration studies. Nat. Protoc. 2016, 11, 872–881. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Dickson, A.L.; Poss, K.D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 2015, 522, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Karra, R.; Dickson, A.L.; Poss, K.D. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev. Biol. 2013, 382, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Durand, E.; Wang, J.; Zon, L.I.; Poss, K.D. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development 2013, 140, 4988–4997. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Wang, J.; Jackman, C.P.; Cox, A.H.; Trembley, M.A.; Balowski, J.J.; Cox, B.D.; De Simone, A.; Dickson, A.L.; Di Talia, S.; et al. Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Dev. Cell 2017, 42, 600–615. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.C.; Yang, C.C.; Chen, I.H.; Liu, Y.M.; Chang, S.J.; Chuang, Y.J. Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish. PLoS ONE 2013, 8, e66613. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, D.; Gonzalez-Rosa, J.M.; Guzman-Martinez, G.; Gutierrez-Gutierrez, O.; Aguado, T.; Sanchez-Ferrer, C.; Marques, I.J.; Galardi-Castilla, M.; de Diego, I.; Gomez, M.J.; et al. Telomerase Is Essential for Zebrafish Heart Regeneration. Cell Rep. 2015, 12, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofsteen, P.; Mehta, V.; Kim, M.S.; Peterson, R.E.; Heideman, W. TCDD inhibits heart regeneration in adult zebrafish. Toxicol. Sci. 2013, 132, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Hein, S.J.; Lehmann, L.H.; Kossack, M.; Juergensen, L.; Fuchs, D.; Katus, H.A.; Hassel, D. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS ONE 2015, 10, e0122665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, S.; Lehmann, L.; Katus, H.A.; Hassel, D. High frequency echocardiography and speckle tracking based strain analysis revealed delayed functional recovery after myocardial cryoinjury in adult zebrafish. Circ. Conf. 2014, 130. [Google Scholar]
- Yu, F.; Li, R.; Parks, E.; Takabe, W.; Hsiai, T.K. Electrocardiogram signals to assess zebrafish heart regeneration: Implication of long QT intervals. Ann. Biomed. Eng. 2010, 38, 2346–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Cao, H.; Kang, B.J.; Jen, N.; Yu, F.; Lee, C.A.; Fei, P.; Park, J.; Bohlool, S.; Lash-Rosenberg, L.; et al. emodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish 2014, 11, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Chablais, F.; Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development 2012, 139, 1921–1930. [Google Scholar] [CrossRef] [Green Version]
- Pfefferli, C.; Jazwinska, A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat. Commun. 2017, 8, 15151. [Google Scholar] [CrossRef]
- Chablais, F.; Veit, J.; Rainer, G.; Jazwinska, A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol 2011, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- De Preux Charles, A.S.; Bise, T.; Baier, F.; Marro, J.; Jazwinska, A. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart. Open Biol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- De Preux Charles, A.S.; Bise, T.; Baier, F.; Sallin, P.; Jazwinska, A. Preconditioning boosts regenerative programmes in the adult zebrafish heart. Open Biol. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marro, J.; Pfefferli, C.; de Preux Charles, A.S.; Bise, T.; Jazwinska, A. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration. PLoS ONE 2016, 11, e0165497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallin, P.; de Preux Charles, A.S.; Duruz, V.; Pfefferli, C.; Jazwinska, A. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev. Biol. 2015, 399, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Sallin, P.; Jazwinska, A. Acute stress is detrimental to heart regeneration in zebrafish. Open Biol. 2016, 6, 160012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itou, J.; Oishi, I.; Kawakami, H.; Glass, T.J.; Richter, J.; Johnson, A.; Lund, T.C.; Kawakami, Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012, 139, 4133–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itou, J.; Akiyama, R.; Pehoski, S.; Yu, X.; Kawakami, H.; Kawakami, Y. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Dev. Dyn. 2014, 243, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rosa, J.M.; Martin, V.; Peralta, M.; Torres, M.; Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011, 138, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rosa, J.M.; Guzman-Martinez, G.; Marques, I.J.; Sanchez-Iranzo, H.; Jimenez-Borreguero, L.J.; Mercader, N. Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the Zebrafish. PLoS ONE 2014, 9, e115604. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Iranzo, H.; Galardi-Castilla, M.; Sanz-Morejon, A.; Gonzalez-Rosa, J.M.; Costa, R.; Ernst, A.; Sainz de Aja, J.; Langa, X.; Mercader, N. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl. Acad. Sci. USA 2018, 115, 4188–4193. [Google Scholar] [CrossRef] [Green Version]
- Lien, C.L.; Schebesta, M.; Makino, S.; Weber, G.J.; Keating, M.T. Gene expression analysis of zebrafish heart regeneration. Plos Biol. 2006, 4, 1386–1396. [Google Scholar] [CrossRef]
- Rovira, M.; Borras, D.M.; Marques, I.J.; Puig, C.; Planas, J.V. Physiological responses to swimming-induced exercise in the adult zebrafish regenerating heart. Front. Physiol. 2018, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Morioka, M.; Kimura, S.; Tasaki, M.; Inohaya, K.; Kudo, A. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev. Dyn. 2014, 243, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Munch, J.; Grivas, D.; Gonzalez-Rajal, A.; Torregrosa-Carrion, R.; de la Pompa, J.L. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 2017, 144, 1425–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.I.; O’Meara, C.C.; Gemberling, M.; Zhao, L.; Bryant, D.M.; Zheng, R.; Gannon, J.B.; Cai, L.; Choi, W.Y.; Egnaczyk, G.F.; et al. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Dev. Cell 2015, 34, 387–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natarajan, N.; Abbas, Y.; Bryant, D.M.; Gonzalez-Rosa, J.M.; Sharpe, M.; Uygur, A.; Cocco-Delgado, L.H.; Ho, N.N.; Gerard, N.P.; Gerard, C.J.; et al. Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation 2018, 137, 2152–2165. [Google Scholar] [CrossRef]
- Marin-Juez, R.; Marass, M.; Gauvrit, S.; Rossi, A.; Lai, S.L.; Materna, S.C.; Black, B.L.; Stainier, D.Y. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 11237–11242. [Google Scholar] [CrossRef] [Green Version]
- Dogra, D.; Ahuja, S.; Kim, H.T.; Rasouli, S.J.; Stainier, D.Y.R.; Reischauer, S. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat. Commun. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Lai, S.L.; Marin-Juez, R.; Moura, P.L.; Kuenne, C.; Lai, J.K.H.; Tsedeke, A.T.; Guenther, S.; Looso, M.; Stainier, D.Y. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. eLife 2017, 6. [Google Scholar] [CrossRef]
- Huang, Y.; Harrison, M.R.; Osorio, A.; Kim, J.; Baugh, A.; Duan, C.; Sucov, H.M.; Lien, C.L. Igf Signaling is Required for Cardiomyocyte Proliferation during Zebrafish Heart Development and Regeneration. PLoS ONE 2013, 8, e67266. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, K.; Wu, C.C.; Kurth, T.; Weidinger, G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 2011, 6, e18503. [Google Scholar] [CrossRef]
- Ma, D.; Tu, C.; Sheng, Q.; Yang, Y.; Kan, Z.; Guo, Y.; Shyr, Y.; Scott, I.C.; Lou, X. Dynamics of Zebrafish Heart Regeneration Using an HPLC-ESI-MS/MS Approach. J. Proteome Res. 2018, 17, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, C.; Xie, F.; Tian, L.; Manno, S.H.; Manno, F.A.M., 3rd; Fallah, S.; Pelster, B.; Tse, G.; Cheng, S.H. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish. Shellfish Immunol. 2019, 89, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Webb, S.E.; Lau, T.C.K.; Cheng, S.H. Matrix metalloproteinases (MMPs) mediate leukocyte recruitment during the inflammatory phase of zebrafish heart regeneration. Sci. Rep. 2018, 8, 7199. [Google Scholar] [CrossRef] [PubMed]
- Crippa, S.; Nemir, M.; Ounzain, S.; Ibberson, M.; Berthonneche, C.; Sarre, A.; Boisset, G.; Maison, D.; Harshman, K.; Xenarios, I.; et al. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways. Cardiovasc Res. 2016, 110, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Gupta, V.; Karra, R.; Holdway, J.E.; Kikuchi, K.; Poss, K.D. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 13416–13421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemberling, M.; Karra, R.; Dickson, A.L.; Poss, K.D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 2015, 4. [Google Scholar] [CrossRef]
- Karra, R.; Knecht, A.K.; Kikuchi, K.; Poss, K.D. Myocardial NF-kappaB activation is essential for zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 2015, 112, 13255–13260. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Gupta, V.; Wang, J.; Holdway, J.E.; Wills, A.A.; Fang, Y.; Poss, K.D. Tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138, 2895–2902. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Holdway, J.E.; Major, R.J.; Blum, N.; Dahn, R.D.; Begemann, G.; Poss, K.D. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 2011, 20, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Yin, V.P.; Lepilina, A.; Smith, A.; Poss, K.D. Regulation of zebrafish heart regeneration by miR-133. Dev. Biol. 2012, 365, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Chen, A.; Umansky, K.B.; Oonk, K.A.; Choi, W.Y.; Dickson, A.L.; Ou, J.; Cigliola, V.; Yifa, O.; Cao, J.; et al. Vitamin D Stimulates Cardiomyocyte Proliferation and Controls Organ Size and Regeneration in Zebrafish. Dev. Cell 2019, 48, 853–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekeli, I.; Garcia-Puig, A.; Notari, M.; Garcia-Pastor, C.; Aujard, I.; Jullien, L.; Raya, A. Fate predetermination of cardiac myocytes during zebrafish heart regeneration. Open Biol. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.C.; Su, T.H.; Shih, C.C. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration. Zebrafish 2015, 12, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, B.J.; Park, J.; Kim, J.; Kim, H.H.; Lee, C.; Hwang, J.Y.; Lien, C.L.; Shung, K.K. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts. J. R. Soc. Interface 2015, 12. [Google Scholar] [CrossRef] [PubMed]
- Missinato, M.A.; Saydmohammed, M.; Zuppo, D.A.; Rao, K.S.; Opie, G.W.; Kuhn, B.; Tsang, M. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 2018, 145. [Google Scholar] [CrossRef] [Green Version]
- Missinato, M.A.; Tobita, K.; Romano, N.; Carroll, J.A.; Tsang, M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc. Res. 2015, 107, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Wang, Z.; Missinato, M.A.; Park, D.W.; Long, D.W.; Liu, H.J.; Zeng, X.; Yates, N.A.; Kim, K.; Wang, Y. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci. Adv. 2016, 2, e1600844. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Zhou, X.H.; Chang, N.; Xiao, C.L.; Yan, S.; Ren, H.; Yang, X.Z.; Zhang, M.L.; Wu, Q.; Tang, B.; et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014, 24, 1091–1107. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Gao, L.; Hou, Y.; Xu, C.; Chang, N.; Wang, F.; Hu, K.; He, A.; Luo, Y.; Wang, J.; et al. Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat. Commun 2016, 7, 13787. [Google Scholar] [CrossRef]
- Beauchemin, M.; Smith, A.; Yin, V.P. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration. Development 2015, 142, 4026–4037. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhong, T.P. MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol. Lett. 2017, 39, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; He, Q.; Li, G.; Ma, J.; Zhong, T.P. Rac1-PAK2 pathway is essential for zebrafish heart regeneration. Biochem. Biophys. Res. Commun. 2016, 472, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Paraffin embedding tissue samples for sectioning. CSH Protoc. 2008, 2008. [Google Scholar] [CrossRef] [PubMed]
- Alders, M.; Bikker, H.; Christiaans, I. Long QT Syndrome. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Leone, M.; Engel, F.B. Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization. Clin. Sci. 2019, 133, 1229–1253. [Google Scholar] [CrossRef]
- Leone, M.; Magadum, A.; Engel, F.B. Cardiomyocyte proliferation in cardiac development and regeneration: A guide to methodologies and interpretations. Am. J. Physiol. 2015, 309, 1237–1250. [Google Scholar] [CrossRef] [Green Version]
- Zebrowski, D.C.; Becker, R.; Engel, F.B. Towards regenerating the mammalian heart: Challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation. Am. J. Physiol. 2016, 310, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Poss, K.D. The epicardium as a hub for heart regeneration. Nat. Rev. Cardiol 2018, 15, 631–647. [Google Scholar] [CrossRef]
- Sofronescu, A.G.; Jin, Y.; Cattini, P.A. A myocyte enhancer factor 2 (MEF2) site located in a hypersensitive region of the FGF16 gene locus is required for preferential promoter activity in neonatal cardiac myocytes. DNA Cell Biol. 2008, 27, 173–182. [Google Scholar] [CrossRef]
- Yao, J.; Wang, X.; Ren, H.; Liu, G.; Lu, P. Ultrastructure of medial rectus muscles in patients with intermittent exotropia. Eye 2016, 30, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Muskhelishvili, L.; Latendresse, J.R.; Kodell, R.L.; Henderson, E.B. Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J. Histochem. Cytochem. 2003, 51, 1681–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratzner, H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982, 218, 474–475. [Google Scholar] [CrossRef] [PubMed]
- Wildemann, B.; Schmidmaier, G.; Ordel, S.; Stange, R.; Haas, N.P.; Raschke, M. Cell proliferation and differentiation during fracture healing are influenced by locally applied IGF-I and TGF-β1: Comparison of two proliferation markers, PCNA and BrdU. J. Biomed. Mater. Res. 2003, 65, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Steeds, R.P. Echocardiography: Frontier imaging in cardiology. Br. J. Radiol. 2011, 84, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marwick, T.H. The future of echocardiography. Eur. J. Echocardiogr. 2009, 10, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Sande-Melon, M.; Marques, I.J.; Galardi-Castilla, M.; Langa, X.; Perez-Lopez, M.; Botos, M.A.; Sanchez-Iranzo, H.; Guzman-Martinez, G.; Ferreira Francisco, D.M.; Pavlinic, D.; et al. Adult sox10(+) Cardiomyocytes Contribute to Myocardial Regeneration in the Zebrafish. Cell Rep. 2019, 29, 1041–1054 e1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Apex Resection (AR) | Cryoinjury | Genetic Ablation |
---|---|---|
Balciunas [25] | Azuaje [26,27] | Poss K.D. [28] |
Belmonte [11,29,30,31,32] | Bakkers [33] | Mercarder [34] |
Burns [35,36] | Butcher [37] | Poss [38,39,40,41,42,43] |
Chuang [44] | Flores (CNIC) [45] | |
Heideman [46] | Hassel [47,48] | |
Hsiai [7,49] | Hsiai [50] | |
Jazwinska [51,52] | Jazwinska [52,53,54,55,56,57,58] | |
Kawakami [15,59,60] | Mercarder [61,62,63] | |
Keating [64] | Planas [65] | |
Kudo [66] | Pompa [67] | |
Lee [68,69] | Stainer [70] | |
Reischauer S. [71] | ||
Stainer [72] | ||
Lien [73] | Weidinger [74] | |
Lou [75] | Cheng [76,77] | |
Pedrazzini [78] | ||
Poss [9,12,13,38,79,80,81,82,83,84,85] | ||
Raya [86] | ||
Shih [87] | ||
Shung [88] | ||
Tsang [89,90] | ||
Wang [91] | ||
Weidinger [74] | ||
Xiong [92,93] | ||
Yin [94] | ||
Zhong [95,96] |
Research Group (Last Author) | Qualitative Histology | Quantitative Histology | CM Proliferation | Heart Function |
---|---|---|---|---|
Total No. | 45 | 8 | 34 | 6 |
Balciunas [25] | 1 | |||
Belmonte [11,29,30,31,32] | 5 | 1 | 5 | |
Burns [35,36] | 2 | 1 | 2 | |
Chuang [44] | 1 | 1 | ||
Heideman [46] | 1 | 1 | ||
Hsiai [7,49] | 2 | 2 | ||
Jazwinska [51,52] | 2 | 1 | ||
Kawakami [15,59,60] | 3 | 3 | ||
Keating [64] | 1 | 1 | ||
Kudo [66] | 1 | 1 | ||
Lee [68,69] | 2 | 2 | ||
Lien [73] | 1 | 1 | 1 | |
Lou [75] | 1 | |||
Pedrazzini [78] | 1 | |||
Poss [9,12,13,38,79,80,81,82,83,84,85] | 11 | 1 | 9 | 1 |
Raya [86] | 1 | 1 | ||
Shih [87] | 1 | |||
Shung [88] | 1 | |||
Tsang [89,90] | 2 | 2 | 1 | 1 |
Wang [91] | 1 | |||
Weidinger [74] | 1 | 1 | ||
Xiong [92,93] | 2 | 2 | ||
Yin [94] | 1 | 1 | 1 | |
Zhong [95,96] | 2 | 2 |
Research Group (Last Author) | PCNA | Brdu | PH3 | Edu |
---|---|---|---|---|
Total No. | 20 | 17 | 7 | 2 |
Belmonte [11,29,30,31,32] | 2 | 5 | 4 | |
Burns [35,36] | 1 | 1 | ||
Chuang [44] | 1 | 1 | ||
Heideman [46] | 1 | |||
Jazwinska [51] | 1 | |||
Kawakami [15,59,60] | 3 | 1 | ||
Keating [64] | 1 | 1 | ||
Lee [68,69] | 2 | 1 | ||
Lien [73] | 1 | |||
Poss [9,12,13,79,80,81,83,84,85] | 6 | 3 | 1 | 1 |
Raya [86] | 1 | |||
Tsang [89] | 1 | |||
Weidinger [74] | 1 | |||
Xiong [92,93] | 2 | |||
Yin [94] | 1 | |||
Zhong [95,96] | 2 |
Research Group (Last Author) | 3 dpi | 7 dpi | 10 dpi | 14 dpi | 30 dpi | 60 dpi |
---|---|---|---|---|---|---|
Total No. | 7 | 26 | 2 | 13 | 3 | 1 |
Belmonte [11,29,30,31,32] | 1 | 3 | 3 | 2 | ||
Burns [35,36] | 1 | 2 | ||||
Chuang [44] | 1 | |||||
Heideman [46] | 1 | |||||
Jazwinska [51] | 1 | |||||
Kawakami [15,59,60] | 1 | 1 | 3 | |||
Keating [64] | 1 | 1 | 1 | |||
Lee [68,69] | 1 | 1 | ||||
Lien [73] | 1 | 1 | ||||
Poss [9,12,13,79,80,81,83,84,85] | 1 | 9 | 2 | 1 | 1 | |
Raya [86] | 1 | |||||
Tsang [89] | 1 | |||||
Weidinger [74] | 1 | 1 | ||||
Xiong [92,93] | 2 | 1 | ||||
Yin [94] | 1 | |||||
Zhong [95,96] | 1 | 2 |
Research Group | dpi | Exposure (Days) | No. of Injections | Proliferation- and Cardiomyocyte Markers | Proliferating CMs in AR |
---|---|---|---|---|---|
Belmonte [11] | 14 | 7 | 7 | No. BrdU+,GFP/Cmlc2+ | 400/section |
Belmonte [31] | 14 | - | - | No. BrdU+/α-sarcomeric Actin+ | 3591 |
Belmonte [29] | 14 | 14 | 7 | No. BrdU+ cells (MyHC+) | 250/section |
Belmonte [32] | 7 | 7+4 h * | 7 | Only visualization of BrdU+ (structural CMs) | - |
Belmonte [30] | 14 | 7+4 h * | 7 | No.BrdU+/α-sarcomeric actin+ | 750/section |
Burns [35] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 20%/in injury |
Bruns [36] | 14 | 7 | 1 | % PCNA+/Mef2+ cells out of total Mef2+ | 7.5%/in injury |
Chuang [44] | 10 | 4 | 4 | No. BrdU+ cells (Myosin+) | 52/in injury |
Heideman [46] | 7 | 1 | 1 | Only visualization of BrdU+/Phalloidin+ | - |
Jazwinska [51] | 10 | 1 * | - | % BrdU+/Cmlc2:dsred+ out of Cmlc2:dsred+ | 4%/section |
Kawakami [15] | 14 | - | - | No. PCNA+/Mef2+ | 21/section |
Kawakami [59] | 13 | 6 | 2 | No. EdU+/Cmlc2-mCherry+ | 21/section |
Kawakami [60] | 7 | - | - | No. PCNA/Mef2+ | 22/in injury |
Keating [64] | 14 | 7 | 1 | BrdU+/Mef2+ (Only relative measures) | - |
Lee [68] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 15%/ in injury |
Lee [69] | 14 | - | - | PCNA+/Mef2+/Troponin+ | 17%/unit area |
Lien [73] | 10 | 4 * | - | % BrdU+/Mef2+ cells out of total Mef2+ | 10%/ in injury |
Poss [9] | 7 | 7 | 1 | %BrdU+/Myosin+ out of Myosin+ | 17%/ in injury |
Poss [12] | 7 | 3 | 3 | Only visualization of BrdU+ cells | - |
Poss [80] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 12%/in injury |
Poss [13] | 7 | 3 | 3 | Only visualization of BrdU+/cmlc2:nRFP+ | - |
Poss [79] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 16%/ in injury |
Poss [81] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 17%/in injury |
Poss [85] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 15%/ in injury |
Poss [83] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 15%/in injury |
Poss [84] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 15%/unit area |
Raya [86] | 30 | - | - | Only visualization of BrdU+/Myosin+ | - |
Tsang [89] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 25%/in injury |
Weidinger [74] | 7 | - | - | PCNA+ cells/cmlc2:GFP | 12%/section |
Xiong [93] | 7 | 7 | 1 | % BrdU+/Mef2+ cells out of total Mef2+ | 15%/in injury |
Xiong [92] | 14 | 7 | 1 | % BrdU+/Mef2+ cells out of total Mef2+ | 15%/ in injury |
Yin [94] | 3 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 5%/ in injury |
Zhong [95] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 7%/ in injury |
Zhong [96] | 7 | - | - | % PCNA+/Mef2+ cells out of total Mef2+ | 9%/ in injury |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juul Belling, H.; Hofmeister, W.; Andersen, D.C. A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells 2020, 9, 548. https://doi.org/10.3390/cells9030548
Juul Belling H, Hofmeister W, Andersen DC. A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells. 2020; 9(3):548. https://doi.org/10.3390/cells9030548
Chicago/Turabian StyleJuul Belling, Helene, Wolfgang Hofmeister, and Ditte Caroline Andersen. 2020. "A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish" Cells 9, no. 3: 548. https://doi.org/10.3390/cells9030548
APA StyleJuul Belling, H., Hofmeister, W., & Andersen, D. C. (2020). A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells, 9(3), 548. https://doi.org/10.3390/cells9030548