Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery
Abstract
:1. Protein Translation in Bacteria and Eukaryotes
2. Forces Generated at the Level of the Ribosomal Machinery
2.1. EF-G and the Ribosome Acts as a Molecular Ratchet System to Drive mRNA–tRNA Translocation
2.2. mRNA Secondary Structures as Mechanical Barriers to the Ribosome
2.3. Forces on the Nascent Polypeptide Generated during co-Translation Folding
3. Cell Mechanics and the Protein Translation Machinery
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Hershey, J.W.B.; Sonenberg, N.; Mathews, M.B. Principles of Translational Control: An Overview. Cold Spring Harb. Perspect. Boil. 2012, 4, a011528. [Google Scholar] [CrossRef] [PubMed]
- Noller, H.F. Evolution of Protein Synthesis from an RNA World. Cold Spring Harb. Perspect. Boil. 2010, 4, a003681. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R.; Olsen, G.J.; Ibba, M.; Soll, D.; Bejuki, W.M. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiol. Mol. Boil. Rev. 2000, 64, 202–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonenberg, N.; Hinnebusch, A.G. Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell 2009, 136, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Ban, N. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 A Resolution. Science 2000, 289, 905–920. [Google Scholar] [CrossRef]
- Kaiser, C.M.; Tinoco, I. Probing the Mechanisms of Translation with Force. Chem. Rev. 2014, 114, 3266–3280. [Google Scholar] [CrossRef] [Green Version]
- Rheinberger, H.J.; Sternbach, H.; Nierhaus, K.H. Three tRNA binding sites on Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 1981, 78, 5310–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Polacek, N.; Vesper, O.; Staub, E.; Einfeldt, E.; Wilson, D.N.; Nierhaus, K.H. The Highly Conserved LepA Is a Ribosomal Elongation Factor that Back-Translocates the Ribosome. Cell 2006, 127, 721–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buskirk, A.R.; Green, R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. B: Boil. Sci. 2017, 372, 20160183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheper, G.C.; Van Der Knaap, M.S.; Proud, C. Translation matters: Protein synthesis defects in inherited disease. Nat. Rev. Genet. 2007, 8, 711–723. [Google Scholar] [CrossRef]
- Gandin, V.; Miluzio, A.; Barbieri, A.M.; Beugnet, A.; Kiyokawa, H.; Marchisio, P.C.; Biffo, S. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 2008, 455, 684–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.; Shao, S.; Murray, J.; Hegde, R.S.; Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 2015, 524, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, N.; Gorman, A.M.; Gupta, S.; Samali, A. The eIF2α kinases: Their structures and functions. Cell. Mol. Life Sci. 2013, 70, 3493–3511. [Google Scholar] [CrossRef]
- A Hussmann, J.; Patchett, S.; Johnson, A.; Sawyer, S.; Press, W.H. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast. PLoS Genet. 2015, 11, e1005732. [Google Scholar] [CrossRef] [Green Version]
- Schluenzen, F.; Tocilj, A.; Zarivach, R.; Harms, J.; Gluehmann, M.; Janell, D.; Bashan, A.; Bartels, H.; Agmon, I.; Franceschi, F.; et al. Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution. Cell 2000, 102, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Wimberly, B.T.; Brodersen, D.; Jr, W.M.C.; Morgan-Warren, R.J.; Carter, A.P.; Vonrhein, C.; Hartsch, T.; Ramakrishnan, V. Structure of the 30S ribosomal subunit. Nature 2000, 407, 327–339. [Google Scholar] [CrossRef]
- Stark, H.; Rodnina, M.V.; Wieden, H.-J.; Zemlin, F.; Wintermeyer, W.; Van Heel, M. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Genet. 2002, 9, 849–854. [Google Scholar] [CrossRef]
- Frank, J. The translation elongation cycle—capturing multiple states by cryo-electron microscopy. Philos. Trans. R. Soc. B: Boil. Sci. 2017, 372, 20160180. [Google Scholar] [CrossRef] [Green Version]
- Rodnina, M.V.; Savelsbergh, A.; Katunin, V.I.; Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 1997, 385, 37–41. [Google Scholar] [CrossRef]
- Frank, J.; Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 2000, 406, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Ermolenko, D.N.; Majumdar, Z.K.; Hickerson, R.P.; Spiegel, P.C.; Clegg, R.M.; Noller, H.F. Observation of Intersubunit Movement of the Ribosome in Solution Using FRET. J. Mol. Boil. 2007, 370, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Cornish, P.V.; Ermolenko, D.N.; Noller, H.F.; Ha, T. Spontaneous Intersubunit Rotation in Single Ribosomes. Mol. Cell 2008, 30, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Cui, X.; Beausang, J.F.; Zhang, H.; Farrell, I.; Cooperman, B.S.; Goldman, Y.E. Elongation factor G initiates translocation through a power stroke. Proc. Natl. Acad. Sci. USA 2016, 113, 7515–7520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Dudko, O.K.; Hummer, A.G.; Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl. Acad. Sci. USA 2008, 105, 15755–15760. [Google Scholar] [CrossRef] [Green Version]
- Namy, O.; Moran, S.J.; Stuart, D.I.; Gilbert, R.J.C.; Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 2006, 441, 244–247. [Google Scholar] [CrossRef]
- Liu, T.; Kaplan, A.; Alexander, L.; Yan, S.; Wen, J.-D.; Lancaster, L.; E Wickersham, C.; Fredrick, K.; Noller, H.; Tinoco, I.; et al. Direct measurement of the mechanical work during translocation by the ribosome. ELife 2014, 3, e03406. [Google Scholar] [CrossRef]
- Tinoco, I.; Collin, D.; Li, P. The effect of force on thermodynamics and kinetics: Unfolding single RNA molecules. Biochem. Soc. Trans. 2004, 32, 757–760. [Google Scholar] [CrossRef]
- Visscher, K. −1 Programmed Ribosomal Frameshifting as a Force-Dependent Process. Prog. in Mol. Biol. Transl. Sci. 2016, 139, 45–72. [Google Scholar]
- Qu, X.; Wen, J.-D.; Lancaster, L.; Noller, H.F.; Bustamante, C.; Tinoco, I. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 2011, 475, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.P.; Frank, F.; Lee, A.; Righini, M.; Lancaster, L.; Noller, H.F.; Tinoco, I.; Bustamante, C. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Mol. Cell 2019, 75, 1007–1019.e5. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.H.; Kaiser, C.M.; Milin, A.; Righini, M.; Tinoco, I.; Bustamante, C. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 2015, 348, 457–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, O.B.; Müller-Lucks, A.; Kramer, G.; Bukau, B.; Von Heijne, G. Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. J. Mol. Boil. 2016, 428, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Fritch, B.; Kosolapov, A.; Hudson, P.; Nissley, D.A.; Woodcock, H.; Deutsch, C.; O’Brien, E.P. Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis. J. Am. Chem. Soc. 2018, 140, 5077–5087. [Google Scholar] [CrossRef]
- Leininger, S.E.; Trovato, F.; Nissley, D.A.; O’Brien, E.P. Domain topology, stability, and translation speed determine mechanical force generation on the ribosome. Proc. Natl. Acad. Sci. USA 2019, 116, 5523–5532. [Google Scholar] [CrossRef] [Green Version]
- Marino, J.; Von Heijne, G.; Beckmann, R. Small protein domains fold inside the ribosome exit tunnel. FEBS Lett. 2016, 590, 655–660. [Google Scholar] [CrossRef]
- Niesen, M.J.; Müller-Lucks, A.; Hedman, R.; Von Heijne, G.; Miller, T.F. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Biophys. J. 2018, 115, 1885–1894. [Google Scholar] [CrossRef] [Green Version]
- Komar, A.A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 2009, 34, 16–24. [Google Scholar] [CrossRef]
- Nilsson, O.B.; Hedman, R.; Marino, J.; Wickles, S.; Bischoff, L.; Johansson, M.; Müller-Lucks, A.; Trovato, F.; Puglisi, J.D.; O’Brien, E.P.; et al. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Rep. 2015, 12, 1533–1540. [Google Scholar] [CrossRef]
- Ito, K.; Chiba, S. Arrest Peptides:Cis-Acting Modulators of Translation. Annu. Rev. Biochem. 2013, 82, 171–202. [Google Scholar] [CrossRef] [PubMed]
- Farias-Rico, J.A.; Selin, F.R.; Myronidi, I.; Frühauf, M.; Von Heijne, G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc. Natl. Acad. Sci. USA 2018, 115, E9280–E9287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, A.M.; Culviner, P.H.; Kurt-Yilmaz, N.; Zou, T.; Ozkan, S.B.; Cavagnero, S. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem. Biol. 2013, 8, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.M.; Goldman, D.H.; Chodera, J.D.; Tinoco, I., Jr.; Bustamante, C. The ribosome modulates nascent protein folding. Science 2011, 334, 1723–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, A.; Merz, F.; Rutkowska, A.; Zachmann-Brand, B.; Deuerling, E.; Bukau, B. Trigger Factor Forms a Protective Shield for Nascent Polypeptides at the Ribosome. J. Boil. Chem. 2006, 281, 6539–6545. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, C.M.; Chang, H.-C.; Agashe, V.R.; Lakshmipathy, S.K.; Etchells, S.A.; Hayer-Hartl, M.; Hartl, F.U.; Barral, J.M. Real-time observation of trigger factor function on translating ribosomes. Nature 2006, 444, 455–460. [Google Scholar] [CrossRef]
- Haldar, S.; Tapia-Rojo, R.; Eckels, E.C.; Valle-Orero, J.; Fernández, J.M. Trigger factor chaperone acts as a mechanical foldase. Nat. Commun. 2017, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Jahn, M.; Buchner, J.; Hugel, T.; Rief, M. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Proc. Natl. Acad. Sci. USA 2016, 113, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Rehfus, J.E.; Mattson, E.; Kaiser, C.M. The ribosome destabilizes native and non-native structures in a nascent multidomain protein. Protein Sci. 2017, 26, 1439–1451. [Google Scholar] [CrossRef]
- Scholl, Z.N.; Yang, W.; Marszalek, P.E. Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase. Biophys. J. 2017, 112, 1829–1840. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Coulombe, P.A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Boil. 2010, 11, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Sattlegger, E.; Castilho, B.A. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. J. Cell Sci. 2016, 129, 4521–4533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapulionis, R.; Kolli, S.; Deutscher, M.P. Efficient mammalian protein synthesis requires an intact F-actin system. J. Boil. Chem. 1997, 272, 24980–24986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, S.; Kinzy, T. Improper Organization of the Actin Cytoskeleton Affects Protein Synthesis at Initiation. Mol. Cell. Boil. 2006, 27, 1974–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, K.C.; Ephrussi, A. mRNA Localization: Gene Expression in the Spatial Dimension. Cell 2009, 136, 719–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolosewick, J.J.; Porter, K.R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am. J. Anat. 1976, 147, 303–323. [Google Scholar] [CrossRef]
- Lenk, R.; Ransom, L.; Kaufmann, Y.; Penman, S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 1977, 10, 67–78. [Google Scholar] [CrossRef]
- Fulton, A.B.; Wan, K.M.; Penman, S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell 1980, 20, 849–857. [Google Scholar] [CrossRef]
- Medalia, O.; Weber, I.; Frangakis, A.; Nicastro, D.; Gerisch, G.; Baumeister, W. Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science 2002, 298, 1209–1213. [Google Scholar] [CrossRef] [Green Version]
- Hamill, D.; Davis, J.; Drawbridge, J.; A Suprenant, K. Polyribosome targeting to microtubules: Enrichment of specific mRNAs in a reconstituted microtubule preparation from sea urchin embryos. J. Cell Boil. 1994, 127, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Thornell, L.E.; Eriksson, A. Filament systems in the Purkinje fibers of the heart. Am. J. Physiol. Circ. Physiol. 1981, 241, H291–H305. [Google Scholar] [CrossRef] [PubMed]
- Boyde, A.; Bailey, E. Observations on the marginal ruffles of an established fibroblast-like cell line. Cell Tissue Res. 1977, 179, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Chicurel, M.E.; Singer, R.H.; Meyer, C.J.; Ingber, N.E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 1998, 392, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Grant, W.M.; Persky, D.; Latham, V.M.; Singer, R.H.; Condeelis, J. Interactions of Elongation Factor 1α with F-Actin and β-Actin mRNA: Implications for Anchoring mRNA in Cell Protrusions. Mol. Boil. Cell 2002, 13, 579–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, A.J.; Roberts, M.S.; Choudhary, J.S.; Barry, S.T.; Mazaki, Y.; Sabe, H.; Morley, S.J.; Critchley, D.R.; Norman, J. Paxillin Associates with Poly(A)-binding Protein 1 at the Dense Endoplasmic Reticulum and the Leading Edge of Migrating Cells. J. Boil. Chem. 2001, 277, 6428–6437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingle, L.A.; Okuhama, N.N.; Shi, J.; Singer, R.H.; Condeelis, J.; Liu, G. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J. Cell Sci. 2005, 118, 2425–2433. [Google Scholar] [CrossRef] [Green Version]
- Babic, I.; Sharma, S.; Black, U.L. A Role for Polypyrimidine Tract Binding Protein in the Establishment of Focal Adhesions. Mol. Cell. Boil. 2009, 29, 5564–5577. [Google Scholar] [CrossRef] [Green Version]
- Willett, M.; Pollard, H.J.; Vlasak, M.; Morley, S.J. Localization of ribosomes and translation initiation factors to talin/β3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Boil. Cell 2010, 102, 265–276. [Google Scholar] [CrossRef]
- Willett, M.; Brocard, M.; David, A.; Morley, S.J. Translation initiation factors and active sites of protein synthesis co-localize at the leading edge of migrating fibroblasts. Biochem. J. 2011, 438, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Demma, M.; Warren, V.; Dharmawardhane, S.; Condeelis, J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 1990, 347, 494–496. [Google Scholar] [CrossRef]
- Demma, M.; Warren, V.; Hock, R.; Dharmawardhane, S.; Condeelis, J. Isolation of an abundant 50,000-dalton actin filament bundling protein from Dictyostelium amoebae. J. Boil. Chem. 1990, 265, 2286–2291. [Google Scholar]
- Liu, G.; Tang, J.; Edmonds, B.T.; Murray, J.; Levin, S.; Condeelis, J. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J. Cell Boil. 1996, 135, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.H.; DeRosier, D.J.; Condeelis, J. Actin crosslinking protein EF-1 a of Dictyostelium discoideum has a unique bonding rule that allows square-packed bundles. J. Struct. Boil. 1992, 109, 248–254. [Google Scholar] [CrossRef]
- Fujimura, K.; Choi, S.; Wyse, M.; Strnadel, J.; Wright, T.; Klemke, R.L. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J. Boil. Chem. 2015, 290, 29907–29919. [Google Scholar] [CrossRef] [Green Version]
- Hinnebusch, A.G. The Scanning Mechanism of Eukaryotic Translation Initiation. Annu. Rev. Biochem. 2014, 83, 779–812. [Google Scholar] [CrossRef]
- Castilho, B.A.; Shanmugam, R.; Silva, R.; Ramesh, R.; Himme, B.M.; Sattlegger, E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta (BBA)-Bioenerg. 2014, 1843, 1948–1968. [Google Scholar] [CrossRef] [Green Version]
- Perez, W.B.; Kinzy, T. Translation Elongation Factor 1A Mutants with Altered Actin Bundling Activity Show Reduced Aminoacyl-tRNA Binding and Alter Initiation via eIF2α Phosphorylation. J. Boil. Chem. 2014, 289, 20928–20938. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.H.; Langevin, G.L.; Lawrence, J.B. Ultrastructural visualization of cytoskeletal mRNAs and their associated proteins using double-label in situ hybridization. J. Cell Boil. 1989, 108, 2343–2353. [Google Scholar] [CrossRef] [Green Version]
- Steward, O.; Levy, W. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 1982, 2, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Tiedge, H.; Brosius, J. Translational Machinery in Dendrites of Hippocampal Neurons in Culture. J. Neurosci. 1996, 16, 7171–7181. [Google Scholar] [CrossRef] [Green Version]
- Hafner, A.-S.; Donlin-Asp, P.G.; Leitch, B.; Herzog, E.; Schuman, E.M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 2019, 364, eaau3644. [Google Scholar] [CrossRef] [PubMed]
- Bramham, C.R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 2008, 18, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Katz, Z.; Wells, A.L.; Park, H.Y.; Wu, B.; Shenoy, S.; Singer, R.H. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev. 2012, 26, 1885–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, Z.; English, B.P.; Lionnet, T.; Yoon, Y.J.; Monnier, N.; Ovryn, B.; Bathe, M.; Singer, R.H. Mapping translation ’hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. ELife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Willett, M.; Brocard, M.; Pollard, H.J.; Morley, S.J. mRNA encoding WAVE–Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem. J. 2013, 452, 45–55. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, L.J.; Tzima, E.; Reader, J.S. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells 2020, 9, 650. https://doi.org/10.3390/cells9030650
Simpson LJ, Tzima E, Reader JS. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells. 2020; 9(3):650. https://doi.org/10.3390/cells9030650
Chicago/Turabian StyleSimpson, Lisa J., Ellie Tzima, and John S. Reader. 2020. "Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery" Cells 9, no. 3: 650. https://doi.org/10.3390/cells9030650
APA StyleSimpson, L. J., Tzima, E., & Reader, J. S. (2020). Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells, 9(3), 650. https://doi.org/10.3390/cells9030650