Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Clinical Criteria for Blood Donation
2.1.2. Screening of Blood Transmitted Diseases and Other Blood Tests
2.2. Blood Samples
2.3. Blood Cell Counts
2.4. Flow Cytometry
2.4.1. Monoclonal Antibodies and Cell Staining
2.4.2. Flow Cytometer and Sample Acquisition
2.4.3. Data Analysis
2.5. Statistics
2.5.1. Statistic Software
2.5.2. Descriptive Statistics
2.5.3. Statistic Tests
2.5.4. Normal Reference Intervals
2.5.5. Graphics
2.6. Literature Review
3. Results
3.1. Hematological Counts, Lymphocyte Populations and Gamma Delta T Cells
3.2. Gamma Delta T cell Immunophenotype
3.3. Gamma Delta T Cell Subsets
3.4. Age Based Analysis
3.5. Gender-Based Analysis
3.6. Combined Analysis for Age and Gender
3.7. Normal Reference Intervals
4. Discussion and Literature Review
4.1. Total γδ T Cells in the PB
4.2. Gamma-Delta T subsets in the PB
4.3. Effect of Race/Ethnicity
4.4. Effect of Age
4.5. Effect of Gender
4.6. Effect of Pregnancy
4.7. Pathological Conditions Involving γδ T Cells
4.7.1. Viral Infections
Herpesviruses
Cytomegalovirus/Human Herpes Virus Type 5
Other Herpesviruses
Other Viruses
4.7.2. Bacterial Infections
4.7.3. Parasitic Protozoan Infections
4.7.4. Autoimmune/Inflammatory Diseases
4.7.5. Neoplastic Diseases
4.7.6. Food and Medications
4.8. Immunophenotypic and Functional Features of Peripheral Blood γδ T Cells
4.8.1. CD3/TCR Complex
4.8.2. CD5 Signaling Molecule
4.8.3. CD8 Accessory Molecule
4.8.4. CD28 Costimulatory Molecule
4.8.5. CD16 and CD56—Cytotoxic-Cell-Associated Molecules
5. Take-Home Messages
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Aljurf, M.; Ezzat, A.O.; Musa, M. Emerging role of gammadelta T-cells in health and disease. Blood Rev. 2002, 16, 203–206. [Google Scholar]
- Granel, B.; Camoin, L.; Serratrice, J.; de Roux-Serratrice, C.; Brunet, C.; Pache, X.; Swiader, L.; Disdier, P.; Weiller, P.J. [Retrospective study of 55 patients with circulating blood T gama/delta lymphocytosis]. Rev. Med. Internet 2002, 23, 137–143. [Google Scholar] [CrossRef]
- Roden, A.C.; Morice, W.G.; Hanson, C.A. Immunophenotypic attributes of benign peripheral blood gammadelta T cells and conditions associated with their increase. Arch. Pathol. Lab. Med. 2008, 132, 1774–1780. [Google Scholar] [PubMed]
- Kalyan, S.; Kabelitz, D. Defining the nature of human γδ T cells: A biographical sketch of the highly empathetic. Cell. Mol. Immunol. 2013, 10, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Poggi, A.; Zocchi, M.R. γδ T Lymphocytes as a First Line of Immune Defense: Old and New Ways of Antigen Recognition and Implications for Cancer Immunotherapy. Front. Immunol. 2014, 5, 575. [Google Scholar] [CrossRef] [Green Version]
- Adams, E.J.; Gu, S.; Luoma, A.M. Human gamma delta T cells: Evolution and ligand recognition. Cell. Immunol. 2015, 296, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.W. Immune biology of Ag-specific γδ T cells in infections. Cell. Mol. Life Sci. 2011, 68, 2409–2417. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Liu, Y.; Lau, Y.-L.; Tu, W. γδ-T cells: An unpolished sword in human anti-infection immunity. Cell. Mol. Immunol. 2013, 10, 50–57. [Google Scholar] [CrossRef]
- Kabelitz, D.; Wesch, D. Role of gamma delta T-lymphocytes in HIV infection. Eur. J. Med. Res. 2001, 6, 169–174. [Google Scholar]
- Pauza, C.D.; Poonia, B.; Li, H.; Cairo, C.; Chaudhry, S. γδ T Cells in HIV Disease: Past, Present, and Future. Front. Immunol. 2014, 5, 687. [Google Scholar]
- Rajoriya, N.; Fergusson, J.R.; Leithead, J.A.; Klenerman, P. Gamma Delta T-lymphocytes in Hepatitis C and Chronic Liver Disease. Front. Immunol. 2014, 5, 400. [Google Scholar] [CrossRef] [PubMed]
- Terrazzini, N.; Kern, F. Cell-mediated immunity to human CMV infection: A brief overview. F1000prime Rep. 2014, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.W.; Letvin, N.L. Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect. 2003, 5, 491–498. [Google Scholar] [CrossRef]
- Meraviglia, S.; El Daker, S.; Dieli, F.; Martini, F.; Martino, A. γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011, 2011, 587315. [Google Scholar] [CrossRef] [Green Version]
- Ferrarini, M.; Ferrero, E.; Dagna, L.; Poggi, A.; Zocchi, M.R. Human gammadelta T cells: A nonredundant system in the immune-surveillance against cancer. Trends Immunol. 2002, 23, 14–18. [Google Scholar] [CrossRef]
- Zocchi, M.R.; Poggi, A. Role of gammadelta T lymphocytes in tumor defense. Front. Biosci. J. Virtual Libr. 2004, 9, 2588–2604. [Google Scholar] [CrossRef] [Green Version]
- Silva-Santos, B.; Serre, K.; Norell, H. γδ T cells in cancer. Nat. Rev. Immunol. 2015, 15, 683–691. [Google Scholar] [CrossRef]
- Su, D.; Shen, M.; Li, X.; Sun, L. Roles of γδ T cells in the pathogenesis of autoimmune diseases. Clin. Dev. Immunol. 2013, 2013, 985753. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Shilpi, N.; Lal, G. Role of gamma-delta (γδ) T cells in autoimmunity. J. Leukoc. Biol. 2015, 97, 259–271. [Google Scholar]
- Gogoi, D.; Chiplunkar, S.V. Targeting gamma delta T cells for cancer immunotherapy: Bench to bedside. Indian J. Med. Res. 2013, 138, 755–761. [Google Scholar]
- Deniger, D.C.; Moyes, J.S.; Cooper, L.J.N. Clinical applications of gamma delta T cells with multivalent immunity. Front. Immunol. 2014, 5, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legut, M.; Cole, D.K.; Sewell, A.K. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell. Mol. Immunol. 2015, 12, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, Y.; Almeida, J.; Gonzalez, M.; Lima, M.; Bárcena, P.; Szczepañski, T.; van Gastel-Mol, E.J.; Wind, H.; Balanzategui, A.; van Dongen, J.J.M.; et al. TCRgammadelta+ large granular lymphocyte leukemias reflect the spectrum of normal antigen-selected TCRgammadelta+ T-cells. Leukemia 2006, 20, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabe, M.; Medeiros, L.J.; Wang, S.A.; Konoplev, S.; Ok, C.Y.; Loghavi, S.; Lu, G.; Flores, L.; Khoury, J.D.; Cason, R.C.; et al. Clinicopathologic, Immunophenotypic, Cytogenetic, and Molecular Features of γδ T-Cell Large Granular Lymphocytic Leukemia: An Analysis of 14 Patients Suggests Biologic Differences With αβ T-Cell Large Granular Lymphocytic Leukemia. [corrected]. Am. J. Clin. Pathol. 2015, 144, 607–619. [Google Scholar] [CrossRef]
- Tripodo, C.; Iannitto, E.; Florena, A.M.; Pucillo, C.E.; Piccaluga, P.P.; Franco, V.; Pileri, S.A. Gamma-delta T-cell lymphomas. Nat. Rev. Clin. Oncol. 2009, 6, 707–717. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, E. Hepatosplenic T-Cell Lymphoma: A Clinicopathologic Review With an Emphasis on Diagnostic Differentiation From Other T-Cell/Natural Killer-Cell Neoplasms. Arch. Pathol. Lab. Med. 2015, 139, 1173–1180. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Govi, S.; Pileri, S.A. Hepatosplenic gamma-delta T-cell lymphoma. Crit. Rev. Oncol. Hematol. 2012, 83, 283–292. [Google Scholar] [CrossRef]
- Go, R.S.; Wester, S.M. Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: A systematic analysis of 156 patients reported in the literature. Cancer 2004, 101, 1404–1413. [Google Scholar] [CrossRef]
- Gu, S.; Nawrocka, W.; Adams, E.J. Sensing of Pyrophosphate Metabolites by Vγ9Vδ2 T Cells. Front. Immunol. 2014, 5, 688. [Google Scholar]
- De Libero, G.; Lau, S.-Y.; Mori, L. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones. Front. Immunol. 2014, 5, 679. [Google Scholar]
- Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 2003, 3, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Bahram, S.; Inoko, H.; Shiina, T.; Radosavljevic, M. MIC and other NKG2D ligands: From none to too many. Curr. Opin. Immunol. 2005, 17, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Spada, F.M.; Grant, E.P.; Peters, P.J.; Sugita, M.; Melián, A.; Leslie, D.S.; Lee, H.K.; van Donselaar, E.; Hanson, D.A.; Krensky, A.M.; et al. Self-recognition of CD1 by gamma/delta T cells: Implications for innate immunity. J. Exp. Med. 2000, 191, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Luoma, A.M.; Castro, C.D.; Adams, E.J. γδ T cell surveillance via CD1 molecules. Trends Immunol. 2014, 35, 613–621. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A. Activation of human T cells by CD1 and self-lipids. Immunol. Rev. 2015, 267, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; He, W. UL16 binding proteins. Immunobiology 2004, 209, 283–290. [Google Scholar] [CrossRef]
- Hirsh, M.I.; Junger, W.G. Roles of heat shock proteins and gamma delta T cells in inflammation. Am. J. Respir. Cell Mol. Biol. 2008, 39, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.M.; Groh, V.; Band, H.; Porcelli, S.A.; Morita, C.; Fabbi, M.; Glass, D.; Strominger, J.L.; Brenner, M.B. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med. 1990, 171, 1597–1612. [Google Scholar] [CrossRef] [Green Version]
- Wesch, D.; Hinz, T.; Kabelitz, D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int. Immunol. 1998, 10, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, G.K.; Wu, H.; Macon, W.R.; Finan, J.; Leonard, D.G.; Felgar, R.E.; DiGiuseppe, J.A.; Nowell, P.C.; Swerdlow, S.H.; Kadin, M.E.; et al. Hepatosplenic and subcutaneous panniculitis-like gamma/delta T cell lymphomas are derived from different Vdelta subsets of gamma/delta T lymphocytes. J. Mol. Diagn. 2000, 2, 11–19. [Google Scholar] [CrossRef]
- Lima, M.; Almeida, J.; Santos, A.H.; dos Anjos Teixeira, M.; Alguero, M.C.; Queirós, M.L.; Balanzategui, A.; Justiça, B.; Gonzalez, M.; San Miguel, J.F.; et al. Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes: Utility in assessing clonality and insights into the pathogenesis of the disease. Am. J. Pathol. 2001, 159, 1861–1868. [Google Scholar] [CrossRef]
- Lima, M.; Almeida, J.; Dos Anjos Teixeira, M.; Alguero Md, M.; del, C.; Santos, A.H.; Balanzategui, A.; Queirós, M.L.; Bárcena, P.; Izarra, A.; et al. TCRalphabeta+/CD4+ large granular lymphocytosis: A new clonal T-cell lymphoproliferative disorder. Am. J. Pathol. 2003, 163, 763–771. [Google Scholar]
- Lima, M.; Almeida, J.; dos Anjos Teixeira, M.; Queiros, M.L.; Santos, A.H.; Fonseca, S.; Balanzategui, A.; Justica, B.; Orfao, A.; Orfao, A. Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood involvement in CD4+ Sézary’s syndrome. Haematologica 2003, 88, 874–887. [Google Scholar]
- Lima, M.; Teixeira, M.; dos, A.; Queirós, M.L.; Santos, A.H.; Gonçalves, C.; Correia, J.; Farinha, F.; Mendonça, F.; Soares, J.M.N.; et al. Immunophenotype and TCR-Vbeta repertoire of peripheral blood T-cells in acute infectious mononucleosis. Blood Cells. Mol. Dis. 2003, 30, 1–12. [Google Scholar]
- Szereday, L.; Baliko, Z.; Szekeres-Bartho, J. Gamma/delta T cell subsets in patients with active Mycobacterium tuberculosis infection and tuberculin anergy. Clin. Exp. Immunol. 2003, 131, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Puig-Pey, I.; Bohne, F.; Benítez, C.; López, M.; Martínez-Llordella, M.; Oppenheimer, F.; Lozano, J.J.; González-Abraldes, J.; Tisone, G.; Rimola, A.; et al. Characterization of γδ T cell subsets in organ transplantation. Transpl. Int. 2010, 23, 1045–1055. [Google Scholar] [CrossRef]
- Moura, J.; Rodrigues, J.; Gonçalves, M.; Amaral, C.; Lima, M.; Carvalho, E. Impaired T-cell differentiation in diabetic foot ulceration. Cell. Mol. Immunol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Cooke, C.B.; Krenacs, L.; Stetler-Stevenson, M.; Greiner, T.C.; Raffeld, M.; Kingma, D.W.; Abruzzo, L.; Frantz, C.; Kaviani, M.; Jaffe, E.S. Hepatosplenic T-cell lymphoma: A distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood 1996, 88, 4265–4274. [Google Scholar] [CrossRef] [Green Version]
- van den Beemd, R.; Boor, P.P.; van Lochem, E.G.; Hop, W.C.; Langerak, A.W.; Wolvers-Tettero, I.L.; Hooijkaas, H.; van Dongen, J.J. Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 2000, 40, 336–345. [Google Scholar] [CrossRef]
- McLean-Tooke, A.; Barge, D.; Spickett, G.P.; Gennery, A.R. T cell receptor Vbeta repertoire of T lymphocytes and T regulatory cells by flow cytometric analysis in healthy children. Clin. Exp. Immunol. 2008, 151, 190–198. [Google Scholar] [CrossRef]
- Hviid, L.; Akanmori, B.D.; Loizon, S.; Kurtzhals, J.A.; Ricke, C.H.; Lim, A.; Koram, K.A.; Nkrumah, F.K.; Mercereau-Puijalon, O.; Behr, C. High frequency of circulating gamma delta T cells with dominance of the v(delta)1 subset in a healthy population. Int. Immunol. 2000, 12, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argentati, K.; Re, F.; Donnini, A.; Tucci, M.G.; Franceschi, C.; Bartozzi, B.; Bernardini, G.; Provinciali, M. Numerical and functional alterations of circulating gammadelta T lymphocytes in aged people and centenarians. J. Leukoc. Biol. 2002, 72, 65–71. [Google Scholar] [PubMed]
- Caccamo, N.; Dieli, F.; Wesch, D.; Jomaa, H.; Eberl, M. Sex-specific phenotypical and functional differences in peripheral human Vgamma9/Vdelta2 T cells. J. Leukoc. Biol. 2006, 79, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Cairo, C.; Armstrong, C.L.; Cummings, J.S.; Deetz, C.O.; Tan, M.; Lu, C.; Davis, C.E.; Pauza, C.D. Impact of age, gender, and race on circulating γδ T cells. Hum. Immunol. 2010, 71, 968–975. [Google Scholar] [CrossRef] [Green Version]
- Michishita, Y.; Hirokawa, M.; Guo, Y.-M.; Abe, Y.; Liu, J.; Ubukawa, K.; Fujishima, N.; Fujishima, M.; Yoshioka, T.; Kameoka, Y.; et al. Age-associated alteration of γδ T-cell repertoire and different profiles of activation-induced death of Vδ1 and Vδ2 T cells. Int. J. Hematol. 2011, 94, 230–240. [Google Scholar] [CrossRef]
- Dimova, T.; Brouwer, M.; Gosselin, F.; Tassignon, J.; Leo, O.; Donner, C.; Marchant, A.; Vermijlen, D. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. USA 2015, 112, E556–E565. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Flores-Montero, J.; Lecrevisse, Q.; Pedreira, C.E.; van der Velden, V.H.J.; Novakova, M.; Mejstrikova, E.; Hrusak, O.; Böttcher, S.; Karsch, D.; et al. Quality assessment program for EuroFlow protocols: Summary results of four-year (2010-2013) quality assurance rounds. Cytom. Part J. 2015, 87, 145–156. [Google Scholar] [CrossRef]
- Wayne, PA: NCCLS How to Define and Determine Reference Intervals in the Clinical Laboratory: Approved Guideline. NCCLS Document C28-A2. 2nd edition. 2000. Available online: http://www.zxyjhjy.com/upload/attached/file/20170406/20170406120112_8797.pdf (accessed on 6 April 2017).
- Wayne, PA: CLSI Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory - Approved Guideline. CLSI Document EP28-A3C. Third edition. Available online: http://shop.clsi.org/site/Sample_pdf/EP28A3C_sample.pdf (accessed on 19 October 2010).
- Gebo, K.A.; Gallant, J.E.; Keruly, J.C.; Moore, R.D. Absolute CD4 vs. CD4 percentage for predicting the risk of opportunistic illness in HIV infection. J. Acquir. Immune Defic. Syndr. 1999 2004, 36, 1028–1033. [Google Scholar]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised Fourth Edition.; IARC: Lyon, France, 2017. [Google Scholar]
- Andreu-Ballester, J.C.; García-Ballesteros, C.; Benet-Campos, C.; Amigó, V.; Almela-Quilis, A.; Mayans, J.; Ballester, F. Values for αβ and γδ T-lymphocytes and CD4+, CD8+, and CD56+ subsets in healthy adult subjects: Assessment by age and gender. Cytometry B Clin. Cytom. 2012, 82, 238–244. [Google Scholar] [CrossRef]
- Bottino, C.; Tambussi, G.; Ferrini, S.; Ciccone, E.; Varese, P.; Mingari, M.C.; Moretta, L.; Moretta, A. Two subsets of human T lymphocytes expressing gamma/delta antigen receptor are identifiable by monoclonal antibodies directed to two distinct molecular forms of the receptor. J. Exp. Med. 1988, 168, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Schondelmaier, S.; Wesch, D.; Pechhold, K.; Kabelitz, D. V gamma gene usage in peripheral blood gamma delta T cells. Immunol. Lett. 1993, 38, 121–126. [Google Scholar] [CrossRef]
- Hinz, T.; Wesch, D.; Halary, F.; Marx, S.; Choudhary, A.; Arden, B.; Janssen, O.; Bonneville, M.; Kabelitz, D. Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. Int. Immunol. 1997, 9, 1065–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, A.; Mourin, G.; Larsen, M.; Fastenackels, S.; Urrutia, A.; Gorochov, G.; Autran, B.; Donner, C.; Sidi, D.; Sibony-Prat, J.; et al. Differential impact of age and cytomegalovirus infection on the γδ T cell compartment. J. Immunol. 2013, 191, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Wistuba-Hamprecht, K.; Frasca, D.; Blomberg, B.; Pawelec, G.; Derhovanessian, E. Age-associated alterations in γδ T-cells are present predominantly in individuals infected with Cytomegalovirus. Immun. Ageing A 2013, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Wistuba-Hamprecht, K.; Haehnel, K.; Janssen, N.; Demuth, I.; Pawelec, G. Peripheral blood T-cell signatures from high-resolution immune phenotyping of γδ and αβ T-cells in younger and older subjects in the Berlin Aging Study II. Immun. Ageing A 2015, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Kallemeijn, M.J.; Boots, A.M.H.; van der Klift, M.Y.; Brouwer, E.; Abdulahad, W.H.; Verhaar, J.A.N.; van Dongen, J.J.M.; Langerak, A.W. Ageing and Latent CMV Infection Impact on Maturation, Differentiation and Exhaustion Profiles of T-cell Receptor Gammadelta T-cells. Sci Rep. 2017, 7, 5509. [Google Scholar] [CrossRef]
- Esin, S.; Shigematsu, M.; Nagai, S.; Eklund, A.; Wigzell, H.; Grunewald, J. Different percentages of peripheral blood gamma delta + T cells in healthy individuals from different areas of the world. Scand. J. Immunol. 1996, 43, 593–596. [Google Scholar] [CrossRef]
- Re, F.; Poccia, F.; Donnini, A.; Bartozzi, B.; Bernardini, G.; Provinciali, M. Skewed representation of functionally distinct populations of Vgamma9Vdelta2 T lymphocytes in aging. Exp. Gerontol. 2005, 40, 59–66. [Google Scholar] [CrossRef]
- Henriques, A.; Silva, C.; Santiago, M.; Henriques, M.J.; Martinho, A.; Trindade, H.; da Silva, J.A.P.; Silva-Santos, B.; Paiva, A. Subset-specific alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients. Inflamm. Res. 2016, 65, 985–994. [Google Scholar] [CrossRef]
- McVay, L.D.; Jaswal, S.S.; Kennedy, C.; Hayday, A.; Carding, S.R. The generation of human gammadelta T cell repertoires during fetal development. J. Immunol. 1998, 160, 5851–5860. [Google Scholar] [PubMed]
- McVay, L.D.; Carding, S.R. Generation of human gammadelta T-cell repertoires. Crit. Rev. Immunol. 1999, 19, 431–460. [Google Scholar] [PubMed]
- De Rosa, S.C.; Andrus, J.P.; Perfetto, S.P.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A.; Roederer, M. Ontogeny of gamma delta T cells in humans. J. Immunol. 2004, 172, 1637–1645. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Worman, C.; Yüksel, F.; Yüksel, B.; Moretta, L.; Ciccone, E.; Grossi, C.E.; MacKenzie, L.; Lydyard, P.M. T gamma delta-cell subsets in cord and adult blood. Scand. J. Immunol. 1990, 32, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Morita, C.T.; Parker, C.M.; Brenner, M.B.; Band, H. TCR usage and functional capabilities of human gamma delta T cells at birth. J. Immunol. 1994, 153, 3979–3988. [Google Scholar] [PubMed]
- Re, F.; Donnini, A.; Bartozzi, B.; Bernardini, G.; Provinciali, M. Circulating gammadelta T cells in young/adult and old patients with cutaneous primary melanoma. Immun. Ageing A 2005, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Vasudev, A.; Ying, C.T.T.; Ayyadhury, S.; Puan, K.J.; Andiappan, A.K.; Nyunt, M.S.Z.; Shadan, N.B.; Mustafa, S.; Low, I.; Rotzschke, O.; et al. γ/δ T cell subsets in human aging using the classical α/β T cell model. J. Leukoc. Biol. 2014, 96, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Szekeres-Bartho, J.; Barakonyi, A.; Polgar, B.; Par, G.; Faust, Z.; Palkovics, T.; Szereday, L. The role of gamma/delta T cells in progesterone-mediated immunomodulation during pregnancy: A review. Am. J. Reprod. Immunol. 1999, 42, 44–48. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Barakonyi, A.; Miko, E.; Polgar, B.; Palkovics, T. The role of gamma/delta T cells in the feto-maternal relationship. Semin. Immunol. 2001, 13, 229–233. [Google Scholar] [CrossRef]
- Chapman, J.C.; Chapman, F.M.; Michael, S.D. The production of alpha/beta and gamma/delta double negative (DN) T-cells and their role in the maintenance of pregnancy. Reprod. Biol. Endocrinol. 2015, 13, 73. [Google Scholar] [CrossRef] [Green Version]
- Heyborne, K.; Fu, Y.X.; Nelson, A.; Farr, A.; O’Brien, R.; Born, W. Recognition of trophoblasts by gamma delta T cells. J. Immunol. 1994, 153, 2918–2926. [Google Scholar] [PubMed]
- Polgar, B.; Barakonyi, A.; Xynos, I.; Szekeres-Bartho, J. The role of gamma/delta T cell receptor positive cells in pregnancy. Am. J. Reprod. Immunol. 1999, 41, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Barakonyi, A.; Polgar, B.; Szekeres-Bartho, J. The role of gamma/delta T-cell receptor-positive cells in pregnancy: Part II. Am. J. Reprod. Immunol. 1999, 42, 83–87. [Google Scholar] [PubMed]
- Barakonyi, A.; Miko, E.; Varga, P.; Szekeres-Bartho, J. V-chain preference of gamma/delta T-cell receptors in peripheral blood during term labor. Am. J. Reprod. Immunol. 2008, 59, 201–205. [Google Scholar] [CrossRef]
- Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S.; Roizman, B.; Whitley, R.; Yamanishi, K. (Eds.) Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-82714-0. [Google Scholar]
- Goodrum, F.; Caviness, K.; Zagallo, P. Human cytomegalovirus persistence. Cell. Microbiol. 2012, 14, 644–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noriega, V.; Redmann, V.; Gardner, T.; Tortorella, D. Diverse immune evasion strategies by human cytomegalovirus. Immunol. Res. 2012, 54, 140–151. [Google Scholar] [CrossRef]
- Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015, 235, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Navarro, D. Expanding role of cytomegalovirus as a human pathogen. J. Med. Virol. 2016, 88, 1103–1112. [Google Scholar] [CrossRef]
- Déchanet, J.; Merville, P.; Bergé, F.; Bone-Mane, G.; Taupin, J.L.; Michel, P.; Joly, P.; Bonneville, M.; Potaux, L.; Moreau, J.F. Major expansion of gammadelta T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J. Infect. Dis. 1999, 179, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Déchanet, J.; Merville, P.; Lim, A.; Retière, C.; Pitard, V.; Lafarge, X.; Michelson, S.; Méric, C.; Hallet, M.M.; Kourilsky, P.; et al. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 1999, 103, 1437–1449. [Google Scholar] [CrossRef] [Green Version]
- Halary, F.; Pitard, V.; Dlubek, D.; Krzysiek, R.; de la Salle, H.; Merville, P.; Dromer, C.; Emilie, D.; Moreau, J.-F.; Déchanet-Merville, J. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 2005, 201, 1567–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, A.; Madrigal, A.J.; Grace, S.; Sivakumaran, J.; Kottaridis, P.; Mackinnon, S.; Travers, P.J.; Lowdell, M.W. The role of Vδ2-negative γδ T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 2010, 116, 2164–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitard, V.; Roumanes, D.; Lafarge, X.; Couzi, L.; Garrigue, I.; Lafon, M.-E.; Merville, P.; Moreau, J.-F.; Déchanet-Merville, J. Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 2008, 112, 1317–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawelec, G.; Derhovanessian, E. Role of CMV in immune senescence. Virus Res. 2011, 157, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G. Immunosenenescence: Role of cytomegalovirus. Exp. Gerontol. 2014, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sciammas, R.; Kodukula, P.; Tang, Q.; Hendricks, R.L.; Bluestone, J.A. T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J. Exp. Med. 1997, 185, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Puttur, F.K.; Fernandez, M.A.; White, R.; Roediger, B.; Cunningham, A.L.; Weninger, W.; Jones, C.A. Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J. Immunol. Baltim. Md 1950 2010, 185, 477–487. [Google Scholar]
- Rakasz, E.; Mueller, A.; Perlman, S.; Lynch, R.G. Gammadelta T cell response induced by vaginal Herpes simplex 2 infection. Immunol. Lett. 1999, 70, 89–93. [Google Scholar] [CrossRef]
- Nishimura, H.; Yajima, T.; Kagimoto, Y.; Ohata, M.; Watase, T.; Kishihara, K.; Goshima, F.; Nishiyama, Y.; Yoshikai, Y. Intraepithelial gammadelta T cells may bridge a gap between innate immunity and acquired immunity to herpes simplex virus type 2. J. Virol. 2004, 78, 4927–4930. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-O.; Cha, H.-R.; Kim, E.-D.; Kweon, M.-N. Pathological effect of IL-17A-producing TCRγδ(+) T cells in mouse genital mucosa against HSV-2 infection. Immunol. Lett. 2012, 147, 34–40. [Google Scholar] [CrossRef]
- Maccario, R.; Revello, M.G.; Comoli, P.; Montagna, D.; Locatelli, F.; Gerna, G. HLA-unrestricted killing of HSV-1-infected mononuclear cells. Involvement of either gamma/delta+ or alpha/beta+ human cytotoxic T lymphocytes. J. Immunol. 1993, 150, 1437–1445. [Google Scholar] [PubMed]
- Verjans, G.M.G.M.; Roest, R.W.; van der Kooi, A.; van Dijk, G.; van der Meijden, W.I.; ’D M Osterhaus, A. E. Isopentenyl pyrophosphate-reactive Vgamma9Vdelta 2 T helper 1-like cells are the major gammadelta T cell subset recovered from lesions of patients with genital herpes. J. Infect. Dis. 2004, 190, 489–493. [Google Scholar]
- Pedersen, A.; Hornsleth, A. Recurrent aphthous ulceration: A possible clinical manifestation of reactivation of varicella zoster or cytomegalovirus infection. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 1993, 22, 64–68. [Google Scholar] [CrossRef]
- Pedersen, A.; Ryder, L.P. Gamma delta T-cell fraction of peripheral blood is increased in recurrent aphthous ulceration. Clin. Immunol. Immunopathol. 1994, 72, 98–104. [Google Scholar] [CrossRef]
- Lam, V.; DeMars, R.; Chen, B.P.; Hank, J.A.; Kovats, S.; Fisch, P.; Sondel, P.M. Human T cell receptor-gamma delta-expressing T-cell lines recognize MHC-controlled elements on autologous EBV-LCL that are not HLA-A, -B, -C, -DR, -DQ, or -DP. J. Immunol. 1990, 145, 36–45. [Google Scholar] [PubMed]
- Häcker, G.; Kromer, S.; Falk, M.; Heeg, K.; Wagner, H.; Pfeffer, K. V delta 1+ subset of human gamma delta T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J. Immunol. 1992, 149, 3984–3989. [Google Scholar] [PubMed]
- Orsini, D.L.; Res, P.C.; Van Laar, J.M.; Muller, L.M.; Soprano, A.E.; Kooy, Y.M.; Tak, P.P.; Koning, F. A subset of V delta 1+ T cells proliferates in response to Epstein-Barr virus-transformed B cell lines in vitro. Scand. J. Immunol. 1993, 38, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Orsini, D.L.; van Gils, M.; Kooy, Y.M.; Struyk, L.; Klein, G.; van den Elsen, P.; Koning, F. Functional and molecular characterization of B cell-responsive V delta 1+ gamma delta T cells. Eur. J. Immunol. 1994, 24, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Toga, A.; Sakakibara, Y.; Toma, T.; Hasegawa, M.; Takehara, K.; Shigemura, T.; Agematsu, K.; Yachie, A. Clonal expansion of Epstein-Barr virus (EBV)-infected γδ T cells in patients with chronic active EBV disease and hydroa vacciniforme-like eruptions. Int. J. Hematol. 2012, 96, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Hirai, Y.; Yamamoto, T.; Kimura, H.; Ito, Y.; Tsuji, K.; Miyake, T.; Morizane, S.; Suzuki, D.; Fujii, K.; Iwatsuki, K. Hydroa vacciniforme is associated with increased numbers of Epstein-Barr virus-infected γδT cells. J. Invest. Dermatol. 2012, 132, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Choe, J.-Y.; Bisig, B.; de Leval, L.; Jeon, Y.K. Primary γδ T cell lymphoma of the lung: Report of a case with features suggesting derivation from intraepithelial γδ T lymphocytes. Virchows Arch. Int. J. Pathol. 2014, 465, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Asano, N.; Miyata-Takata, T.; Takata, K.; Elsayed, A.A.; Satou, A.; Takahashi, E.; Kinoshita, T.; Nakamura, S. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): A clinicopathologic study of 39 cases. Am. J. Surg. Pathol. 2015, 39, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Oyoshi, M.K.; Nagata, H.; Kimura, N.; Zhang, Y.; Demachi, A.; Hara, T.; Kanegane, H.; Matsuo, Y.; Yamaguchi, T.; Morio, T.; et al. Preferential expansion of Vgamma9-JgammaP/Vdelta2-Jdelta3 gammadelta T cells in nasal T-cell lymphoma and chronic active Epstein-Barr virus infection. Am. J. Pathol. 2003, 162, 1629–1638. [Google Scholar] [CrossRef]
- Xiang, Z.; Liu, Y.; Zheng, J.; Liu, M.; Lv, A.; Gao, Y.; Hu, H.; Lam, K.-T.; Chan, G.C.-F.; Yang, Y.; et al. Targeted activation of human Vγ9Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 2014, 26, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Lusso, P.; Garzino-Demo, A.; Crowley, R.W.; Malnati, M.S. Infection of gamma/delta T lymphocytes by human herpesvirus 6: Transcriptional induction of CD4 and susceptibility to HIV infection. J. Exp. Med. 1995, 181, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Barcy, S.; De Rosa, S.C.; Vieira, J.; Diem, K.; Ikoma, M.; Casper, C.; Corey, L. Gamma delta+ T cells involvement in viral immune control of chronic human herpesvirus 8 infection. J. Immunol. Baltim. Md 1950 2008, 180, 3417–3425. [Google Scholar]
- Hammerich, L.; Tacke, F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J. Gastrointest. Pathophysiol. 2014, 5, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Yasukawa, M.; Inatsuki, A.; Yakushijin, Y.; Kobayashi, Y. Human T-cell leukemia virus type I(HTLV-I) infection of T cells bearing T-cell receptor gamma delta: Effects of HTLV-I infection on cytotoxicity. Int. J. Cancer 1992, 50, 431–437. [Google Scholar] [CrossRef]
- Gao, Y.; Williams, A.P. Role of Innate T Cells in Anti-Bacterial Immunity. Front. Immunol. 2015, 6, 302. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Kojiro, N.; Ikeda, T.; Ito, T.; Funada, J.; Kokubu, T. Increased proportions of peripheral blood gamma delta T cells in patients with pulmonary tuberculosis. Chest 1992, 102, 195–197. [Google Scholar] [CrossRef]
- Balbi, B.; Valle, M.T.; Oddera, S.; Giunti, D.; Manca, F.; Rossi, G.A.; Allegra, L. T-lymphocytes with gamma delta+ V delta 2+ antigen receptors are present in increased proportions in a fraction of patients with tuberculosis or with sarcoidosis. Am. Rev. Respir. Dis. 1993, 148, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Mizuno, Y.; Takaki, K.; Takada, H.; Akeda, H.; Aoki, T.; Nagata, M.; Ueda, K.; Matsuzaki, G.; Yoshikai, Y. Predominant activation and expansion of V gamma 9-bearing gamma delta T cells in vivo and in vitro in Salmonella infection. J. Clin. Invest. 1992, 90, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Ottones, F.; Dornand, J.; Naroeni, A.; Liautard, J.P.; Favero, J. V gamma 9V delta 2 T cells impair intracellular multiplication of Brucella suis in autologous monocytes through soluble factor release and contact-dependent cytotoxic effect. J. Immunol. Baltim. Md 1950 2000, 165, 7133–7139. [Google Scholar]
- Kroca, M.; Johansson, A.; Sjöstedt, A.; Tärnvik, A. V gamma 9V delta 2 T cells in human legionellosis. Clin. Diagn. Lab. Immunol. 2001, 8, 949–954. [Google Scholar]
- Jouen-Beades, F.; Paris, E.; Dieulois, C.; Lemeland, J.F.; Barre-Dezelus, V.; Marret, S.; Humbert, G.; Leroy, J.; Tron, F. In vivo and in vitro activation and expansion of gammadelta T cells during Listeria monocytogenes infection in humans. Infect. Immun. 1997, 65, 4267–4272. [Google Scholar] [CrossRef] [Green Version]
- Kroca, M.; Tärnvik, A.; Sjöstedt, A. The proportion of circulating gammadelta T cells increases after the first week of onset of tularaemia and remains elevated for more than a year. Clin. Exp. Immunol. 2000, 120, 280–284. [Google Scholar] [CrossRef]
- Caldwell, C.W.; Everett, E.D.; McDonald, G.; Yesus, Y.W.; Roland, W.E. Lymphocytosis of gamma/delta T cells in human ehrlichiosis. Am. J. Clin. Pathol. 1995, 103, 761–766. [Google Scholar] [CrossRef]
- Roussilhon, C.; Agrapart, M.; Ballet, J.J.; Bensussan, A. T lymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria. J. Infect. Dis. 1990, 162, 283–285. [Google Scholar] [CrossRef]
- Perera, M.K.; Carter, R.; Goonewardene, R.; Mendis, K.N. Transient increase in circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms. J. Exp. Med. 1994, 179, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, E.; Shapiro, R.; Shina, S.; Bank, I. Delayed expansion of V delta 2+ and V delta 1+ gamma delta T cells after acute Plasmodium falciparum and Plasmodium vivax malaria. J. Allergy Clin. Immunol. 1996, 97, 1387–1392. [Google Scholar] [CrossRef]
- Scalise, F.; Gerli, R.; Castellucci, G.; Spinozzi, F.; Fabietti, G.M.; Crupi, S.; Sensi, L.; Britta, R.; Vaccaro, R.; Bertotto, A. Lymphocytes bearing the gamma delta T-cell receptor in acute toxoplasmosis. Immunology 1992, 76, 668–670. [Google Scholar] [PubMed]
- De Paoli, P.; Basaglia, G.; Gennari, D.; Crovatto, M.; Modolo, M.L.; Santini, G. Phenotypic profile and functional characteristics of human gamma and delta T cells during acute toxoplasmosis. J. Clin. Microbiol. 1992, 30, 729–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, D.M.; Armitage, R.J.; Barral-Netto, M.; Barral, A.; Grabstein, K.H.; Reed, S.G. Antigen-reactive gamma delta T cells in human leishmaniasis. J. Immunol. 1993, 151, 3712–3718. [Google Scholar] [PubMed]
- Kabelitz, D.; Wesch, D.; He, W. Perspectives of gammadelta T cells in tumor immunology. Cancer Res. 2007, 67, 5–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, R.; Ashihara, E.; Sato, K.; Kimura, S.; Kuroda, J.; Takeuchi, M.; Kawata, E.; Taniguchi, K.; Okamoto, M.; Shimura, K.; et al. Gamma delta T cells kill myeloma cells by sensing mevalonate metabolites and ICAM-1 molecules on cell surface. Biochem. Biophys. Res. Commun. 2007, 354, 613–618. [Google Scholar] [CrossRef]
- Maeurer, M.J.; Martin, D.; Walter, W.; Liu, K.; Zitvogel, L.; Halusczcak, K.; Rabinowich, H.; Duquesnoy, R.; Storkus, W.; Lotze, M.T. Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J. Exp. Med. 1996, 183, 1681–1696. [Google Scholar] [CrossRef]
- Knight, A.; Mackinnon, S.; Lowdell, M.W. Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 2012, 14, 1110–1118. [Google Scholar] [CrossRef]
- Lança, T.; Correia, D.V.; Moita, C.F.; Raquel, H.; Neves-Costa, A.; Ferreira, C.; Ramalho, J.S.; Barata, J.T.; Moita, L.F.; Gomes, A.Q.; et al. The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to gammadelta T-cell cytotoxicity. Blood 2010, 115, 2407–2411. [Google Scholar] [CrossRef] [Green Version]
- McClanahan, J.; Fukushima, P.I.; Stetler-Stevenson, M. Increased peripheral blood gamma delta T-cells in patients with lymphoid neoplasia: A diagnostic dilemma in flow cytometry. Cytometry 1999, 38, 280–285. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Wang, C.; Zhu, L.; Hu, J.; Chen, S.; Wu, X.; Li, B.; Li, Y. The feature of distribution and clonality of TCR γ/δ subfamilies T cells in patients with B-cell non-Hodgkin lymphoma. J. Immunol. Res. 2014, 2014, 241246. [Google Scholar] [CrossRef]
- Ishida, M.; Iwai, M.; Yoshida, K.; Kagotani, A.; Okabe, H. Primary cutaneous B-cell lymphoma with abundant reactive gamma/delta T-cells within the skin lesion and peripheral blood. Int. J. Clin. Exp. Pathol. 2014, 7, 1193–1199. [Google Scholar] [PubMed]
- Lee, A.-J.; Kim, S.-G.; Chae, H.-D.; Lee, G.H.; Shin, I.-H. γδ T cells are increased in the peripheral blood of patients with gastric cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2012, 413, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Bas, M.; Bier, H.; Schirlau, K.; Friebe-Hoffmann, U.; Scheckenbach, K.; Balz, V.; Whiteside, T.L.; Hoffmann, T.K. Gamma-delta T-cells in patients with squamous cell carcinoma of the head and neck. Oral Oncol. 2006, 42, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Tanaka, Y.; Yagi, J.; Toma, H.; Uchiyama, T. Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol. Immunother. CII 2001, 50, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Gaafar, A.; Aljurf, M.D.; Al-Sulaiman, A.; Iqniebi, A.; Manogaran, P.S.; Mohamed, G.E.H.; Al-Sayed, A.; Alzahrani, H.; Alsharif, F.; Mohareb, F.; et al. Defective gammadelta T-cell function and granzyme B gene polymorphism in a cohort of newly diagnosed breast cancer patients. Exp. Hematol. 2009, 37, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Wistuba-Hamprecht, K.; Di Benedetto, S.; Schilling, B.; Sucker, A.; Schadendorf, D.; Garbe, C.; Weide, B.; Pawelec, G. Phenotypic characterization and prognostic impact of circulating γδ and αβ T-cells in metastatic malignant melanoma. Int. J. Cancer 2016, 138, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Lafont, V.; Sanchez, F.; Laprevotte, E.; Michaud, H.-A.; Gros, L.; Eliaou, J.-F.; Bonnefoy, N. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front. Immunol. 2014, 5, 622. [Google Scholar] [CrossRef] [Green Version]
- Wesch, D.; Peters, C.; Siegers, G.M. Human gamma delta T regulatory cells in cancer: Fact or fiction? Front. Immunol. 2014, 5, 598. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Wang, H.Y.; Peng, W.; Kiniwa, Y.; Seo, K.H.; Wang, R.-F. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 2007, 27, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zhang, Q.; Ye, J.; Wang, F.; Zhang, Y.; Wevers, E.; Schwartz, T.; Hunborg, P.; Varvares, M.A.; Hoft, D.F.; et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 2012, 189, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Ma, C.; Wang, F.; Hsueh, E.C.; Toth, K.; Huang, Y.; Mo, W.; Liu, S.; Han, B.; Varvares, M.A.; et al. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res. 2013, 73, 6137–6148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Ma, C.; Hsueh, E.C.; Eickhoff, C.S.; Zhang, Y.; Varvares, M.A.; Hoft, D.F.; Peng, G. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 2013, 190, 2403–2414. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, J.F.; Morita, C.T.; Brenner, M.B. Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: Implications for innate immunity. Immunity 1999, 11, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Caccamo, N.; Meraviglia, S.; Cicero, G.; Gulotta, G.; Moschella, F.; Cordova, A.; Gulotta, E.; Salerno, A.; Dieli, F. Aminobisphosphonates as new weapons for gammadelta T Cell-based immunotherapy of cancer. Curr. Med. Chem. 2008, 15, 1147–1153. [Google Scholar] [CrossRef]
- Wang, H.; Sarikonda, G.; Puan, K.-J.; Tanaka, Y.; Feng, J.; Giner, J.-L.; Cao, R.; Mönkkönen, J.; Oldfield, E.; Morita, C.T. Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism. J. Immunol. 2011, 187, 5099–5113. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Rogers, M.J. Statins prevent bisphosphonate-induced gamma, delta-T-cell proliferation and activation in vitro. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2004, 19, 278–288. [Google Scholar] [CrossRef]
- Lü, H.-Z.; Li, B.-Q. Effect of HMG-CoA reductase inhibitors on activation of human gammadeltaT cells induced by Mycobacterium tuberculosis antigens. Immunopharmacol. Immunotoxicol. 2009, 31, 485–491. [Google Scholar] [CrossRef]
- Vantourout, P.; Hayday, A. Six-of-the-best: Unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 2013, 13, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Caccamo, N.; Meraviglia, S.; Ferlazzo, V.; Angelini, D.; Borsellino, G.; Poccia, F.; Battistini, L.; Dieli, F.; Salerno, A. Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur. J. Immunol. 2005, 35, 1764–1772. [Google Scholar] [CrossRef]
- Toia, F.; Buccheri, S.; Anfosso, A.; Moschella, F.; Dieli, F.; Meraviglia, S.; Cordova, A. Skewed Differentiation of Circulating Vγ9Vδ2 T Lymphocytes in Melanoma and Impact on Clinical Outcome. PLoS ONE 2016, 11, e0149570. [Google Scholar] [CrossRef] [Green Version]
- Jouen-Beades, F.; Gilbert, D.; Ramzaoui, S.; Borsa-Lebas, F.; Humbert, G.; Tron, F. Similarity of expression of activation markers and CD28 on gamma delta and alpha beta-receptor T cells in HIV infection. Clin. Immunol. Immunopathol. 1996, 79, 189–193. [Google Scholar] [CrossRef]
- Ueda-Hayakawa, I.; Hasegawa, M.; Hamaguchi, Y.; Takehara, K.; Fujimoto, M. Circulating γ/δ T cells in systemic sclerosis exhibit activated phenotype and enhance gene expression of proalpha2(I) collagen of fibroblasts. J. Dermatol. Sci. 2013, 69, 54–60. [Google Scholar] [CrossRef]
- Brandes, M.; Willimann, K.; Moser, B. Professional antigen-presentation function by human gammadelta T Cells. Science 2005, 309, 264–268. [Google Scholar] [CrossRef]
- Moser, B.; Eberl, M. γδ T-APCs: A novel tool for immunotherapy? Cell. Mol. Life Sci. CMLS 2011, 68, 2443–2452. [Google Scholar] [CrossRef] [PubMed]
- Ismaili, J.; Olislagers, V.; Poupot, R.; Fournié, J.-J.; Goldman, M. Human gamma delta T cells induce dendritic cell maturation. Clin. Immunol. Orlando Fla 2002, 103, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Wesch, D.; Glatzel, A.; Kabelitz, D. Differentiation of resting human peripheral blood gamma delta T cells toward Th1- or Th2-phenotype. Cell. Immunol. 2001, 212, 110–117. [Google Scholar] [CrossRef]
- Mangan, B.A.; Dunne, M.R.; O’Reilly, V.P.; Dunne, P.J.; Exley, M.A.; O’Shea, D.; Scotet, E.; Hogan, A.E.; Doherty, D.G. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J. Immunol. Baltim. Md 1950 2013, 191, 30–34. [Google Scholar] [CrossRef]
- Wesch, D.; Kabelitz, D. Differential expression of natural killer receptors on Vdelta1 gammadelta T cells in HIV-1-infected individuals. J. Acquir. Immune Defic. Syndr. 1999 2003, 33, 420–425. [Google Scholar] [CrossRef] [PubMed]
- D’Ombrain, M.C.; Hansen, D.S.; Simpson, K.M.; Schofield, L. gammadelta-T cells expressing NK receptors predominate over NK cells and conventional T cells in the innate IFN-gamma response to Plasmodium falciparum malaria. Eur. J. Immunol. 2007, 37, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.A.Z.; Maniar, A.; Cummings, J.-S.; Hebbeler, A.M.; Schulze, D.H.; Gastman, B.R.; Pauza, C.D.; Strome, S.E.; Chapoval, A.I. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res. 2008, 14, 4232–4240. [Google Scholar] [CrossRef] [Green Version]
- Moens, E.; Brouwer, M.; Dimova, T.; Goldman, M.; Willems, F.; Vermijlen, D. IL-23R and TCR signaling drives the generation of neonatal Vgamma9Vdelta2 T cells expressing high levels of cytotoxic mediators and producing IFN-gamma and IL-17. J. Leukoc. Biol. 2011, 89, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, N.; Battistini, L.; Bonneville, M.; Poccia, F.; Fournié, J.J.; Meraviglia, S.; Borsellino, G.; Kroczek, R.A.; La Mendola, C.; Scotet, E.; et al. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 2006, 177, 5290–5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinuesa, C.G.; Tangye, S.G.; Moser, B.; Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 2005, 5, 853–865. [Google Scholar] [CrossRef]
- Kühl, A.A.; Pawlowski, N.N.; Grollich, K.; Blessenohl, M.; Westermann, J.; Zeitz, M.; Loddenkemper, C.; Hoffmann, J.C. Human peripheral gammadelta T cells possess regulatory potential. Immunology 2009, 128, 580–588. [Google Scholar] [CrossRef]
- Peters, C.; Oberg, H.-H.; Kabelitz, D.; Wesch, D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell. Mol. Life Sci. 2014, 71, 1943–1960. [Google Scholar] [CrossRef] [Green Version]
- Call, M.E.; Wucherpfennig, K.W. Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol. Immunol. 2004, 40, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Genin, C. CD3 bright lymphocyte population reveal gammadelta T cells. Cytometry B Clin. Cytom. 2004, 61, 45–53. [Google Scholar] [CrossRef]
- El Hentati, F.-Z.; Gruy, F.; Iobagiu, C.; Lambert, C. Variability of CD3 membrane expression and T cell activation capacity. Cytometry B Clin. Cytom. 2010, 78, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baseggio, L.; Berger, F.; Monneret, G.; Magaud, J.-P.; Salles, G.; Felman, P. The expression of TCR-gamma delta/CD3 complex in neoplastic gamma delta T-cell. Haematologica 2006, 91, 1717–1719. [Google Scholar]
- Wistuba-Hamprecht, K.; Pawelec, G.; Derhovanessian, E. OMIP-020: Phenotypic characterization of human γδ T-cells by multicolor flow cytometry. Cytom. Part J. Int. Soc. Anal. Cytol. 2014, 85, 522–524. [Google Scholar] [CrossRef]
- Wistuba-Hamprecht, K.; Pawelec, G. Characterization of γδ T-cells via flow cytometry. Age Dordr. Neth. 2015, 37, 123. [Google Scholar] [CrossRef] [Green Version]
- Raman, C. CD5, an important regulator of lymphocyte selection and immune tolerance. Immunol. Res. 2002, 26, 255–263. [Google Scholar] [CrossRef]
- Dalloul, A. CD5: A safeguard against autoimmunity and a shield for cancer cells. Autoimmun. Rev. 2009, 8, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Spour, E.F.; Leemhuis, T.; Jenski, L.; Redmond, R.; Fillak, D.; Jansen, J. Characterization of normal human CD3+ CD5- and gamma delta T cell receptor positive T lymphocytes. Clin. Exp. Immunol. 1990, 80, 114–121. [Google Scholar] [PubMed]
- De Rosa, S.C.; Mitra, D.K.; Watanabe, N.; Herzenberg, L.A.; Herzenberg, L.A.; Roederer, M. Vdelta1 and Vdelta2 gammadelta T cells express distinct surface markers and might be developmentally distinct lineages. J. Leukoc. Biol. 2001, 70, 518–526. [Google Scholar]
- Tabbekh, M.; Mokrani-Hammani, M.; Bismuth, G.; Mami-Chouaib, F. T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology 2013, 2, e22841. [Google Scholar]
- Ahmad, E.; Kingma, D.W.; Jaffe, E.S.; Schrager, J.A.; Janik, J.; Wilson, W.; Stetler-Stevenson, M. Flow cytometric immunophenotypic profiles of mature gamma delta T-cell malignancies involving peripheral blood and bone marrow. Cytometry B Clin. Cytom. 2005, 67, 6–12. [Google Scholar] [CrossRef]
- Rodríguez-Pinilla, S.M.; Ortiz-Romero, P.L.; Monsalvez, V.; Tomás, I.E.; Almagro, M.; Sevilla, A.; Camacho, G.; Longo, M.I.; Pulpillo, Á.; Diaz-Pérez, J.A.; et al. TCR-γ expression in primary cutaneous T-cell lymphomas. Am. J. Surg. Pathol. 2013, 37, 375–384. [Google Scholar] [CrossRef]
- Wilson, A.L.; Swerdlow, S.H.; Przybylski, G.K.; Surti, U.; Choi, J.K.; Campo, E.; Trucco, M.M.; Van Oss, S.B.; Felgar, R.E. Intestinal γδ T-cell lymphomas are most frequently of type II enteropathy-associated T-cell type. Hum. Pathol. 2013, 44, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Bucy, R.P.; Chen, C.L.; Cooper, M.D. Tissue localization and CD8 accessory molecule expression of T gamma delta cells in humans. J. Immunol. 1989, 142, 3045–3049. [Google Scholar]
- Kadivar, M.; Petersson, J.; Svensson, L.; Marsal, J. CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J. Immunol. 2016, 197, 4584–4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-C.; Tan, K.; Hsu, Y.-M. CD8alphabeta has two distinct binding modes of interaction with peptide-major histocompatibility complex class I. J. Biol. Chem. 2006, 281, 28090–28096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbings, D.; Befus, A.D. CD4 and CD8: An inside-out coreceptor model for innate immune cells. J. Leukoc. Biol. 2009, 86, 251–259. [Google Scholar] [CrossRef]
- Garcia, K.C.; Scott, C.A.; Brunmark, A.; Carbone, F.R.; Peterson, P.A.; Wilson, I.A.; Teyton, L. CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 1996, 384, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kavathas, P.B. Comparison of the roles of CD8 alpha alpha and CD8 alpha beta in interaction with MHC class I. J. Immunol. Baltim. Md 1950 1997, 159, 6077–6082. [Google Scholar]
- Arcaro, A.; Grégoire, C.; Bakker, T.R.; Baldi, L.; Jordan, M.; Goffin, L.; Boucheron, N.; Wurm, F.; van der Merwe, P.A.; Malissen, B.; et al. CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes. J. Exp. Med. 2001, 194, 1485–1495. [Google Scholar] [CrossRef] [Green Version]
- Pang, D.J.; Hayday, A.C.; Bijlmakers, M.-J. CD8 Raft localization is induced by its assembly into CD8alpha beta heterodimers, Not CD8alpha alpha homodimers. J. Biol. Chem. 2007, 282, 13884–13894. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.F.; Willcox, B.E.; Wyer, J.R.; Boulter, J.M.; O’Callaghan, C.A.; Maenaka, K.; Stuart, D.I.; Jones, E.Y.; Van Der Merwe, P.A.; Bell, J.I.; et al. Classical and nonclassical class I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8alphaalpha. J. Biol. Chem. 2000, 275, 15232–15238. [Google Scholar] [CrossRef] [Green Version]
- Chumbley, G.; King, A.; Robertson, K.; Holmes, N.; Loke, Y.W. Resistance of HLA-G and HLA-A2 transfectants to lysis by decidual NK cells. Cell. Immunol. 1994, 155, 312–322. [Google Scholar] [CrossRef]
- Braud, V.M.; Allan, D.S.; O’Callaghan, C.A.; Söderström, K.; D’Andrea, A.; Ogg, G.S.; Lazetic, S.; Young, N.T.; Bell, J.I.; Phillips, J.H.; et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998, 391, 795–799. [Google Scholar] [CrossRef]
- Cheroutre, H.; Lambolez, F. Doubting the TCR coreceptor function of CD8alphaalpha. Immunity 2008, 28, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, S.G. CD28: A signalling perspective. Biochem. J. 1996, 318 Pt 2, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Boćko, D.; Kosmaczewska, A.; Ciszak, L.; Teodorowska, R.; Frydecka, I. CD28 costimulatory molecule--expression, structure and function. Arch. Immunol. Ther. Exp. (Warsz.) 2002, 50, 169–177. [Google Scholar] [PubMed]
- Ribot, J.C.; Debarros, A.; Mancio-Silva, L.; Pamplona, A.; Silva-Santos, B. B7-CD28 costimulatory signals control the survival and proliferation of murine and human γδ T cells via IL-2 production. J. Immunol. 2012, 189, 1202–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribot, J.C.; Silva-Santos, B. Differentiation and activation of γδ T Lymphocytes: Focus on CD27 and CD28 costimulatory receptors. Adv. Exp. Med. Biol. 2013, 785, 95–105. [Google Scholar]
- Ribeiro, S.T.; Ribot, J.C.; Silva-Santos, B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front. Immunol. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Strioga, M.; Pasukoniene, V.; Characiejus, D. CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011, 134, 17–32. [Google Scholar] [CrossRef]
- Maly, K.; Schirmer, M. The story of CD4+ CD28- T cells revisited: Solved or still ongoing? J. Immunol. Res. 2015, 2015, 348746. [Google Scholar]
- Mou, D.; Espinosa, J.; Lo, D.J.; Kirk, A.D. CD28 negative T cells: Is their loss our gain? Am. J. Transplant. 2014, 14, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Chidrawar, S.; Khan, N.; Wei, W.; McLarnon, A.; Smith, N.; Nayak, L.; Moss, P. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin. Exp. Immunol. 2009, 155, 423–432. [Google Scholar] [CrossRef]
- Tan, C.T.Y.; Wistuba-Hamprecht, K.; Xu, W.; Nyunt, M.S.Z.; Vasudev, A.; Lee, B.T.K.; Pawelec, G.; Puan, K.J.; Rotzschke, O.; Ng, T.P.; et al. Vδ2+ and α/ß T cells show divergent trajectories during human aging. Oncotarget 2016, 7, 44906–44918. [Google Scholar] [PubMed]
- Trinchieri, G.; Valiante, N. Receptors for the Fc fragment of IgG on natural killer cells. Nat. Immun. 1993, 12, 218–234. [Google Scholar]
- Lafont, V.; Liautard, J.; Liautard, J.P.; Favero, J. Production of TNF-alpha by human V gamma 9V delta 2 T cells via engagement of Fc gamma RIIIA, the low affinity type 3 receptor for the Fc portion of IgG, expressed upon TCR activation by nonpeptidic antigen. J. Immunol. Baltim. Md 1950 2001, 166, 7190–7199. [Google Scholar]
- Angelini, D.F.; Borsellino, G.; Poupot, M.; Diamantini, A.; Poupot, R.; Bernardi, G.; Poccia, F.; Fournié, J.-J.; Battistini, L. FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways. Blood 2004, 104, 1801–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couzi, L.; Pitard, V.; Sicard, X.; Garrigue, I.; Hawchar, O.; Merville, P.; Moreau, J.-F.; Déchanet-Merville, J. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 2012, 119, 1418–1427. [Google Scholar] [CrossRef]
- Urban, E.M.; Li, H.; Armstrong, C.; Focaccetti, C.; Cairo, C.; Pauza, C.D. Control of CD56 expression and tumor cell cytotoxicity in human Vgamma2Vdelta2 T cells. BMC Immunol. 2009, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Urban, E.M.; Chapoval, A.I.; Pauza, C.D. Repertoire development and the control of cytotoxic/effector function in human gammadelta T cells. Clin. Dev. Immunol. 2010, 2010, 732893. [Google Scholar] [CrossRef] [Green Version]
Method (Equipment) | Parameter | Median (Min –Max) | Mean ± SD |
---|---|---|---|
Automated hematology analyzer (Coulter LH750) | Hemoglobin (g/dl) | 14.4 (11.8–16.9) | 14.2 ± 1.3 |
Platelets (×109/L) | 207 (133–332) | 225 ± 56 | |
WBC (cells/μL) | 6700 (4800–9800) | 6927 ± 1362 | |
Neutrophils (% WBC) | 58.1 (44.1–78.8) | 58.7 ± 7.7 | |
Neutrophils (cells/μL) | 4034 (2506–7092) | 4097 ± 1121 | |
Lymphocytes (% WBC) | 30.8 (18.3–47.8) | 30.6 ± 7.2 | |
Lymphocytes (cells/μL) | 2087 (1122–3704) | 2102 ± 601 | |
Flow cytometry (BD FACS Canto II) | Tc (% Lymphocytes) | 72.8 (57.4–85.6) | 72.8 ± 6.9 |
γδ Tc (% Tc) | 4.3 (1.2–15.4) | 5.0 ± 3.6 | |
Vδ1 Tc (% γδ Tc) | 24.6 (3.5–65.7) | 27.4 ± 16.1 | |
Vδ2 Tc (% γδ Tc) | 66.4 (15.7–96.0) | 60.0 ± 22.5 | |
Vγ9 Tc (% γδ Tc) | 69.1 (25.7–96.5) | 66.3 ± 20.5 | |
Vδ2/Vδ1 ratio | 2.7 (0.3–27.7) | 4.1 ± 5.4 | |
Dual platform | Tc (cells/μL) | 1547 (782–2356) | 1533 ± 454 |
γδ Tc (cells/μL) | 63 (9–253) | 78 ± 60 | |
Vδ1 Tc (cells/μL) | 16 (2–75) | 23 ± 19 | |
Vδ2 Tc (cells/μL) | 39 (6–243) | 63 ± 62 | |
Vγ9 Tc (cells/μL) | 40 (7–247) | 68 ± 62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, S.; Pereira, V.; Lau, C.; Teixeira, M.d.A.; Bini-Antunes, M.; Lima, M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020, 9, 729. https://doi.org/10.3390/cells9030729
Fonseca S, Pereira V, Lau C, Teixeira MdA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells. 2020; 9(3):729. https://doi.org/10.3390/cells9030729
Chicago/Turabian StyleFonseca, Sónia, Vanessa Pereira, Catarina Lau, Maria dos Anjos Teixeira, Marika Bini-Antunes, and Margarida Lima. 2020. "Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature" Cells 9, no. 3: 729. https://doi.org/10.3390/cells9030729
APA StyleFonseca, S., Pereira, V., Lau, C., Teixeira, M. d. A., Bini-Antunes, M., & Lima, M. (2020). Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells, 9(3), 729. https://doi.org/10.3390/cells9030729