The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs
Abstract
:1. TNBCs and CSCs – in Need of New Targets
2. A Role for lncRNAs in Breast Cancer
3. Breast CSC-Associated lncRNAs
3.1. HOTAIR
3.2. H19
3.3. NEAT1
3.4. MALAT1
3.5. BCAR4
3.6. DANCR
3.7. NRAD1/LINC00284
3.8. LINC-ROR
3.9. LINC01133
3.10. LINC00617
3.11. CCAT1
3.12. SPRY4-IT1
3.13. LncRNA-Hh
3.14. RP1-5O6.5
3.15. LINC00511
3.16. FEZF1-AS1
3.17. LncRNA ES1/LINC01108
3.18. LncRNA-HAL
4. Breast CSC-Associated lncRNA Correlations with CSC Markers and Signaling Pathways in TNBC and All Breast Cancer Patient Tumors
5. Are Breast CSC-Associated lncRNAs Enriched in TNBCs/Basal-Like Breast Cancers?
6. Clinical Value of Breast CSC-Associated lncRNAs in TNBC
6.1. Therapeutic Targets
6.2. Challenges
6.3. Biomarkers
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al. Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Chiu, K.T.; Edmiston, S.; et al. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. J. Am. Med. Assoc. 2006, 295, 2492–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The Triple Negative Paradox: Primary Tumor Chemosensitivity of Breast Cancer Subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perou, C.M.; Sørile, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Ress, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular Portraits of Human Breast Tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Cervera, N.; Esterni, B.; Hermitte, F.; Viens, P.; Birnbaum, D. How Basal Are Triple-Negative Breast Cancers? Int. J. Cancer 2008, 123, 236–240. [Google Scholar] [CrossRef]
- Li, H.; Ma, F.; Wang, H.; Lin, C.; Fan, Y.; Zhang, X.; Qian, H.; Xu, B. Stem Cell Marker Aldehyde Dehydrogenase 1 (ALDH1)-Expressing Cells Are Enriched in Triple-Negative Breast Cancer. Int. J. Biol. Markers 2013, 28. [Google Scholar] [CrossRef]
- Ma, F.; Li, H.; Li, Y.; Ding, X.; Wang, H.; Fan, Y.; Lin, C.; Qian, H.; Xu, B. Aldehyde Dehydrogenase 1 (ALDH1) Expression Is an Independent Prognostic Factor in Triple Negative Breast Cancer (TNBC). Medicine (U.S.) 2017, 96. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Song, Y.; Wang, S.; Huang, X.; Xuan, Q.; Kang, X.; Zhang, Q. CD44+/CD24- Phenotype Predicts a Poor Prognosis in Triple-Negative Breast Cancer. Oncol. Lett. 2017, 14, 5890–5898. [Google Scholar] [CrossRef] [Green Version]
- Honeth, G.; Bendahl, P.O.; Ringnér, M.; Saal, L.H.; Gruvberger-Saal, S.K.; Lövgren, K.; Grabau, D.; Fernö, M.; Borg, Å.; Hegardt, C. The CD44+/CD24-Phenotype Is Enriched in Basal-like Breast Tumors. Breast Cancer Res. 2008, 10. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, S.; Vieira, A.F.; Gerhard, R.; Leitão, D.; Pinto, R.; Cameselle-Teijeiro, J.F.; Milanezi, F.; Schmitt, F.; Paredes, J. Breast Cancer Stem Cell Markers CD44, CD24 and ALDH1: Expression Distribution within Intrinsic Molecular Subtype. J. Clin. Pathol. 2011, 64, 937–944. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Sivridis, E.; Fiska, A.; Koukourakis, M.I. The CD44+/CD24- Phenotype Relates to “triple-Negative” State and Unfavorable Prognosis in Breast Cancer Patients. Med. Oncol. 2011, 28, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sarkissyan, M.; Elshimali, Y.; Vadgama, J.V. Triple Negative Breast Tumors in African-American and Hispanic/Latina Women Are High in CD44+, Low in CD24+, and Have Loss of PTEN. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, J.Y.S.; Huang, Y.H.; Luo, M.H.; Ni, Y.B.; Chan, S.K.; Lui, P.C.W.; Yu, A.M.C.; Tan, P.H.; Tse, G.M. Cancer Stem Cell Markers Are Associated with Adverse Biomarker Profiles and Molecular Subtypes of Breast Cancer. Breast Cancer Res. Treat. 2012, 136, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Idowu, M.O.; Kmieciak, M.; Dumur, C.; Burton, R.S.; Grimes, M.M.; Powers, C.N.; Manjili, M.H. CD44 +/CD24 -/Low Cancer Stem/Progenitor Cells Are More Abundant in Triple-Negative Invasive Breast Carcinoma Phenotype and Are Associated with Poor Outcome. Hum. Pathol. 2012, 43, 364–373. [Google Scholar] [CrossRef]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective Identification of Tumorigenic Breast Cancer Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.L.; Coyle, K.M.; Sultan, M.; Vaghar-Kashani, A.; Marcato, P. Chemoresistance in Cancer Stem Cells and Strategies to Overcome Resistance. Chemotherapy 2014, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.H.; Calcagno, A.M.; Salcido, C.D.; Carlson, M.D.; Ambudkar, S.V.; Varticovski, L. Brca1 Breast Tumors Contain Distinct CD44+/CD24-and CD133+cells with Cancer Stem Cell Characteristics. Breast Cancer Res. 2008, 10. [Google Scholar] [CrossRef] [Green Version]
- Ginestier, C.; Hur, M.H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C.G.; Liu, S.; et al. ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell 2007, 1, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Seymour, T.; Twigger, A.-J.; Kakulas, F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain. Int. J. Mol. Sci. 2015, 16, 27288–27301. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Tang, H.; Song, C.; Wang, J.; Chen, B.; Huang, X.; Pei, X.; Liu, L. SOX2 Promotes Cell Proliferation and Metastasis in Triple Negative Breast Cancer. Front. Pharmacol. 2018, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, D.; Kusdra, L.; Huskey, N.E.; Chandriani, S.; Lenburg, M.E.; Gonzalez-Angulo, A.M.; Creasman, K.J.; Bazarov, A.V.; Smyth, J.W.; Davis, S.E.; et al. MYC Pathway Activation in Triple-Negative Breast Cancer Is Synthetic Lethal with CDK Inhibition. J. Exp. Med. 2012, 209, 679–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Choi, J.H.; Nam, J.S. Targeting Cancer Stem Cells in Triple-Negative Breast Cancer. Cancers 2019, 11, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-Cell Growth and Anti-Cancer Stem Cell Activities of the Non-Canonical Hedgehog Inhibitor GANT61 in Triple-Negative Breast Cancer Cells. Breast Cancer 2017, 24, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Satriyo, P.; Bamodu, O.; Chen, J.-H.; Aryandono, T.; Haryana, S.; Yeh, C.-T.; Chao, T.-Y. Cadherin 11 Inhibition Downregulates β-Catenin, Deactivates the Canonical WNT Signalling Pathway and Suppresses the Cancer Stem Cell-Like Phenotype of Triple Negative Breast Cancer. J. Clin. Med. 2019, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Bhola, N.E.; Jansen, V.M.; Koch, J.P.; Li, H.; Formisano, L.; Williams, J.A.; Grandis, J.R.; Arteaga, C.L. Treatment of Triple-Negative Breast Cancer with TORC1/2 Inhibitors Sustains a Drug-Resistant and Notch-Dependent Cancer Stem Cell Population. Cancer Res. 2016, 76, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Felipe Lima, J.; Nofech-Mozes, S.; Bayani, J.; Bartlett, J. EMT in Breast Carcinoma—A Review. J. Clin. Med. 2016, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Cong, Y.; Wang, D.; Sun, Y.; Deng, L.; Liu, Y.; Martin-Trevino, R.; Shang, L.; McDermott, S.P.; Landis, M.D.; et al. Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of Their Normal Counterparts. Stem Cell Rep. 2014, 2, 78–91. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Gelmon, K.A.; Tischkowitz, M.; Mackay, H.; Swenerton, K.; Robidoux, A.; Tonkin, K.; Hirte, H.; Huntsman, D.; Clemons, M.; Gilks, B.; et al. Olaparib in Patients with Recurrent High-Grade Serous or Poorly Differentiated Ovarian Carcinoma or Triple-Negative Breast Cancer: A Phase 2, Multicentre, Open-Label, Non-Randomised Study. Lancet Oncol. 2011, 12, 852–861. [Google Scholar] [CrossRef]
- Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/MTOR Pathway in Triple-Negative Breast Cancer: A Review. Breast Cancer Res. Treat. 2018, 169, 397–406. [Google Scholar] [CrossRef]
- Duncan, J.S.; Whittle, M.C.; Nakamura, K.; Abell, A.N.; Midland, A.A.; Zawistowski, J.S.; Johnson, N.L.; Granger, D.A.; Jordan, N.V.; Darr, D.B.; et al. Dynamic Reprogramming of the Kinome in Response to Targeted MEK Inhibition in Triple-Negative Breast Cancer. Cell 2012, 149, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; et al. RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clin. Cancer Res. 2016, 22, 1499–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholomeusz, C.; Xie, X.; Pitner, M.K.; Kondo, K.; Dadbin, A.; Lee, J.; Saso, H.; Smith, P.D.; Dalby, K.N.; Ueno, N.T. MEK Inhibitor Selumetinib (AZD6244; ARRY-142886) Prevents Lung Metastasis in a Triple-Negative Breast Cancer Xenograft Model. Mol. Cancer Ther. 2015, 14, 2773–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Cui, K.; Nie, F.; Wang, L.; Brandl, M.B.; Jin, G.; Li, F.; Mao, Y.; Xue, Z.; Rodriguez, A.; et al. The Effect of MTOR Inhibition Alone or Combined with MEK Inhibitors on Brain Metastasis: An In Vivo Analysis in Triple-Negative Breast Cancer Models. Breast Cancer Res. Treat. 2012, 131, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Proia, D.A.; Bates, R.C. Ganetespib and HSP90: Translating Preclinical Hypotheses into Clinical Promise. Cancer Res. 2014, 74, 1294–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schech, A.; Kazi, A.; Yu, S.; Shah, P.; Sabnis, G. Histone Deacetylase Inhibitor Entinostat Inhibits Tumor-Initiating Cells in Triple-Negative Breast Cancer Cells. Mol. Cancer Ther. 2015, 14, 1848–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caiazza, F.; Murray, A.; Madden, S.F.; Synnott, N.C.; Ryan, E.J.; O’Donovan, N.; Crown, J.; Duffy, M.J. Preclinical Evaluation of the AR Inhibitor Enzalutamide in Triple-Negative Breast Cancer Cells. Endocr. Relat. Cancer 2016, 23, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Qiu, Y.; Lu, W.; Jiang, Y.; Wang, J. Immunotherapeutic Interventions of Triple Negative Breast Cancer. J. Transl. Med. 2018, 16, 147. [Google Scholar] [CrossRef] [Green Version]
- Takebe, N.; Harris, P.J.; Warren, R.Q.; Ivy, S.P. Targeting Cancer Stem Cells by Inhibiting Wnt, Notch, and Hedgehog Pathways. Nat. Rev. Clin. Oncol. 2011, 8, 97–106. [Google Scholar] [CrossRef]
- Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt Pathways in Cancer Stem Cells: Clinical Update. Nat. Rev. Clin. Oncol. 2015, 12, 445–464. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, R.; Pan, S.; Yang, X.; Yuan, W.; Tu, Z.; Xu, M.; Zhu, Y.; Yin, Q.; Wu, Y.; et al. Uncovering the Roles of Long Non-Coding RNAs in Cancer Stem Cells. J. Hematol. Oncol. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eades, G.; Zhang, Y.S.; Li, Q.L.; Xia, J.X.; Yao, Y.; Zhou, Q. Long Non-Coding RNAs in Stem Cells and Cancer. World J. Clin. Oncol. 2014, 5, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhu, J.; Wang, F.; Guan, Z.; Ge, Y.; Yang, X.; Cai, J. LncRNAs and Their Role in Cancer Stem Cells. Oncotarget 2017, 8, 110685–110692. [Google Scholar] [CrossRef] [PubMed]
- Heery, R.; Finn, S.; Cuffe, S.; Gray, S. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of Transcription in Human Cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Fang, Y.; Fullwood, M.J. Roles, Functions, and Mechanisms of Long Non-Coding RNAs in Cancer. Genom. Proteom. Bioinform. 2016, 14, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Prensner, J.R.; Chinnaiyan, A.M. The Emergence of LncRNAs in Cancer Biology. Cancer Discov. 2011, 1, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Xie, B.; Ma, Z.; Yu, W.; Wang, W.; Xu, D.; Yan, X.; Chen, B.; Yu, L.; Li, J.; et al. Identification of Novel Long Non-Coding RNAs in Triple-Negative Breast Cancer. Oncotarget 2015, 6, 21730–21739. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; He, Y.; Yang, S.; Hu, J.; Zhang, Q.; Chen, W.; Xu, H.; Zhang, H.; Zhong, S.; Zhao, J.; et al. The Regulatory Roles of LncRNAs in the Process of Breast Cancer Invasion and Metastasis. Biosci. Rep. 2018. [Google Scholar] [CrossRef] [Green Version]
- Malih, S.; Saidijam, M.; Malih, N. A Brief Review on Long Noncoding RNAs: A New Paradigm in Breast Cancer Pathogenesis, Diagnosis and Therapy. Tumor Biol. 2016, 37, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Luo, Z.; Zhang, Y.; Zhang, L.; Wu, L.; Liu, L.; Yang, J.; Song, X.; Liu, J. Circulating LncRNA H19 in Plasma as a Novel Biomarker for Breast Cancer. Cancer Biomark. 2016, 17, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Pecero, M.L.; Salvador-Bofill, J.; Molina-Pinelo, S. Long Non-Coding RNAs as Monitoring Tools and Therapeutic Targets in Breast Cancer. Cell. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.; Xu, P.; Wu, Y.; Huang, L.; Li, W.; Lv, S.; Wu, X.; Zeng, X.; Shen, R.; Jia, X.; et al. LncRNAs as New Biomarkers to Differentiate Triple Negative Breast Cancer from Non-Triple Negative Breast Cancer. Oncotarget 2016, 7, 13047–13059. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Li, P.; Zhang, Q.; Yang, Z.; Fu, S. A Four-Long Non-Coding RNA Signature in Predicting Breast Cancer Survival. J. Exp. Clin. Cancer Res. 2014, 33, 84. [Google Scholar] [CrossRef]
- Zhou, M.; Zhong, L.; Xu, W.; Sun, Y.; Zhang, Z.; Zhao, H.; Yang, L.; Sun, J. Discovery of Potential Prognostic Long Non-Coding RNA Biomarkers for Predicting the Risk of Tumor Recurrence of Breast Cancer Patients. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Wu, D.; Zhou, K.; Li, H.; Gong, X.; Wei, Q.; Du, M.; Lei, P.; Zha, J.; Zhu, H.; et al. An Eight-LncRNA Signature Predicts Survival of Breast Cancer Patients: A Comprehensive Study Based on Weighted Gene Co-Expression Network Analysis and Competing Endogenous RNA Network. Breast Cancer Res. Treat. 2019, 175, 59–75. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Xia, P.; Wan, L.; Zhang, L.; Yu, L.; Wang, L.; Chen, X.; Xiao, Y.; Xu, C. Identification of a Five-LncRNA Signature for Predicting the Risk of Tumor Recurrence in Patients with Breast Cancer. Int. J. Cancer 2018, 143, 2150–2160. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, G.; Zhou, C.-F.; Zhang, H.-B.; Sun, H.; Zhang, W.; Zhou, H.-H.; Liu, R.; Zhu, Y.-S. LncRNA Profile Study Reveals a Three-LncRNA Signature Associated with the Pathological Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Schoch, K.M.; Miller, T.M. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron 2017, 94, 1056–1070. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Yang, M.; Jiang, R.; An, N.; Wang, X.; Liu, B. Long Non-Coding RNA HOTAIR Regulates the Proliferation, Self-Renewal Capacity, Tumor Formation and Migration of the Cancer Stem- like Cell (CSC) Subpopulation Enriched from Breast Cancer Cells. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, F.; Wang, J.H.; Fan, W.J.; Meng, Y.T.; Li, M.M.; Li, T.T.; Cui, B.; Wang, H.F.; Zhao, Y.; An, F.; et al. Glycolysis Gatekeeper PDK1 Reprograms Breast Cancer Stem Cells under Hypoxia. Oncogene 2018, 37, 1062–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, H.; Kida, K.; Adachi, S.; Yamada, A.; Sugae, S.; Narui, K.; Miyagi, Y.; Nishi, M.; Ryo, A.; Murata, S.; et al. Lnc RNA H19 Is Associated with Poor Prognosis in Breast Cancer Patients and Promotes Cancer Stemness. Breast Cancer Res. Treat. 2018, 170, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Siu, M.T.; Ho, C.W.; Wang, X.; Jin, H.; Kwong, A. Long Non-Coding RNA NEAT1 Confers Oncogenic Role in Triple-Negative Breast Cancer through Modulating Chemoresistance and Cancer Stemness. Cell Death Dis. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Yan, B.; Lu, Q.; Lin, Y.; Ma, L. Reciprocal Regulation of Hsa-MiR-1 and Long Noncoding RNA MALAT1 Promotes Triple-Negative Breast Cancer Development. Tumor Biol. 2016, 37, 7383–7394. [Google Scholar] [CrossRef] [PubMed]
- Bamodu, O.A.; Huang, W.-C.; Lee, W.-H.; Wu, A.; Wang, L.S.; Hsiao, M.; Yeh, C.-T.; Chao, T.-Y. Aberrant KDM5B Expression Promotes Aggressive Breast Cancer through MALAT1 Overexpression and Downregulation of Hsa-MiR-448. BMC Cancer 2016, 16, 160. [Google Scholar] [CrossRef] [Green Version]
- Latorre, E.; Carelli, S.; Raimondi, I.; D’Agostino, V.; Castiglioni, I.; Zucal, C.; Moro, G.; Luciani, A.; Ghilardi, G.; Monti, E.; et al. The Ribonucleic Complex HuR-MALAT1 Represses CD133 Expression and Suppresses Epithelial-Mesenchymal Transition in Breast Cancer. Cancer Res. 2016, 76, 2626–2636. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Park, P.K.; Lin, C.; Yang, L. LncRNA BCAR4 Wires up Signaling Transduction in Breast Cancer. Rna Biol. 2015, 12, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Sha, S.; Yuan, D.; Liu, Y.; Han, B.; Zhong, N. Targeting Long Non-Coding RNA DANCR Inhibits Triple Negative Breast Cancer Progression. Biol. Open 2017. [Google Scholar] [CrossRef] [Green Version]
- Vidovic, D.; Huynh, T.T.; Konda, P.; Dean, C.; Cruickshank, B.M.; Sultan, M.; Coyle, K.M.; Gujar, S.; Marcato, P. ALDH1A3-Regulated Long Non-Coding RNA NRAD1 Is a Potential Novel Target for Triple-Negative Breast Tumors and Cancer Stem Cells. Cell Death Differ. 2019. [Google Scholar] [CrossRef]
- Hou, P.; Zhao, Y.; Li, Z.; Yao, R.; Ma, M.; Gao, Y.; Zhao, L.; Zhang, Y.; Huang, B.; Lu, J. LincRNA-ROR Induces Epithelial-to-Mesenchymal Transition and Contributes to Breast Cancer Tumorigenesis and Metastasis. Cell Death Dis. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Z.; Schmöllerl, J.; Cuiffo, B.G.; Karnoub, A.E. Microenvironmental Regulation of Long Noncoding RNA LINC01133 Promotes Cancer Stem Cell-Like Phenotypic Traits in Triple-Negative Breast Cancers. Stem Cells 2019, 37, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, L.; Xu, L.; Qin, K.; Liu, C.; Yu, Y.; Su, D.; Wu, K.; Sheng, Y. Long Noncoding RNA Linc00617 Exhibits Oncogenic Activity in Breast Cancer. Mol. Carcinog. 2017, 56, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Guo, C.; Xia, T.; Zhang, R.; Zen, K.; Pan, Y.; Jin, L. LncCCAT1 Promotes Breast Cancer Stem Cell Function through Activating WNT/β-Catenin Signaling. Theranostics 2019, 9, 7384–7402. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Fan, Q.; Liu, G.; Yin, J. CCAT1 Promotes Triple-Negative Breast Cancer Progression by Suppressing MiR-218/ZFX Signaling. Aging (Albany NY) 2019, 11, 4858–4875. [Google Scholar] [CrossRef]
- Song, X.; Zhang, X.; Wang, X.; Chen, L.; Jiang, L.; Zheng, A.; Zhang, M.; Zhao, L.; Wei, M. LncRNA SPRY4-IT1 Regulates Breast Cancer Cell Stemness through Competitively Binding MiR-6882-3p with TCF7L2. J. Cell. Mol. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Hou, Y.; Yang, G.; Zhang, H.; Tu, G.; Du, Y.E.; Wen, S.; Xu, L.; Tang, X.; Tang, S.; et al. LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway. Stem Cells 2016, 34, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Shi, L.; Wang, X.; Luo, L.; Ling, L.; Yin, J.; Song, Y.; Zhang, Z.; Qiu, N.; Liu, H.; et al. KLF5 Regulated LncRNA RP1 Promotes the Growth and Metastasis of Breast Cancer via Repressing P27kip1 Translation. Cell Death Dis. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Li, Y.; Ma, Y.; Lu, J.; Chen, Y.; Jiang, Q.; Qin, Q.; Zhao, L.; Huang, Q.; Luo, Z.; et al. Long Noncoding RNA LINC00511 Contributes to Breast Cancer Tumourigenesis and Stemness by Inducing the MiR-185-3p/E2F1/Nanog Axis. J. Exp. Clin. Cancer Res. 2018, 37. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, L.; Zhang, Y.; Lu, G.; Li, Y.; Wei, Z. Long Non-Coding RNA FEZF1-AS1 Promotes Breast Cancer Stemness and Tumorigenesis via Targeting MiR-30a/Nanog Axis. J. Cell. Physiol. 2018, 233, 8630–8638. [Google Scholar] [CrossRef]
- Keshavarz, M.; Asadi, M.H. Long Non-Coding RNA ES1 Controls the Proliferation of Breast Cancer Cells by Regulating the Oct4/Sox2/MiR-302 Axis. Febs J. 2019, 286, 2611–2623. [Google Scholar] [CrossRef]
- García-Venzor, A.; Mandujano-Tinoco, E.A.; Lizarraga, F.; Zampedri, C.; Krötzsch, E.; Salgado, R.M.; Dávila-Borja, V.M.; Encarnación-Guevara, S.; Melendez-Zajgla, J.; Maldonado, V. Microenvironment-Regulated LncRNA-HAL Is Able to Promote Stemness in Breast Cancer Cells. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell 2007, 129, 1311–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR Is a Negative Prognostic Factor and Exhibits Pro-Oncogenic Activity in Pancreatic Cancer. Oncogene 2013, 32, 1616–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loewen, G.; Jayawickramarajah, J.; Zhuo, Y.; Shan, B. Functions of LncRNA HOTAIR in Lung Cancer. J. Hematol. Oncol. 2014, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xie, S.; Yang, J.; Xiong, H.; Jia, Y.; Zhou, Y.; Chen, Y.; Ying, X.; Chen, C.; Ye, C.; et al. The Long Noncoding RNA H19 Promotes Tamoxifen Resistance in Breast Cancer via Autophagy. J. Hematol. Oncol. 2019, 12, 81. [Google Scholar] [CrossRef]
- Collette, J.; Le Bourhis, X.; Adriaenssens, E. Regulation of Human Breast Cancer by the Long Non-Coding RNA H19. Int. J. Mol. Sci. 2017, 18, 2319. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.N.; Wang, G.; Guo, Y.; Peng, Y.; Zhang, R.; Deng, J.L.; Li, Z.X.; Zhu, Y.S. LncRNA H19 Is a Major Mediator of Doxorubicin Chemoresistance in Breast Cancer Cells through a Cullin4A-MDR1 Pathway. Oncotarget 2017, 8, 91990–92003. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, H.; Albukhari, A.; Morotti, M.; Haider, S.; Moralli, D.; Smythies, J.; Schödel, J.; Green, C.M.; Camps, C.; Buffa, F.; et al. Tumor Hypoxia Induces Nuclear Paraspeckle Formation through HIF-2α Dependent Transcriptional Activation of NEAT1 Leading to Cancer Cell Survival. Oncogene 2015, 34, 4482–4490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, W.B.; Wang, Z.W.; Wang, X.H. LncRNA NEAT1 Is Closely Related with Progression of Breast Cancer via Promoting Proliferation and EMT. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1020–1026. [Google Scholar]
- Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1, a Novel Noncoding RNA, and Thymosin Β4 Predict Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer. Oncogene 2003, 22, 8031–8041. [Google Scholar] [CrossRef] [Green Version]
- Meijer, D.; Van Agthoven, T.; Bosma, P.T.; Nooter, K.; Dorssers, L.C.J. Functional Screen for Genes Responsible for Tamoxifen Resistance in Human Breast Cancer Cells. Mol. Cancer Res. 2006, 4, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Tan, X.; Guo, L. The Long Non-coding RNA DANCR Regulates the Inflammatory Phenotype of Breast Cancer Cells and Promotes Breast Cancer Progression via EZH2-dependent Suppression of SOCS3 Transcription. Mol. Oncol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Loewer, S.; Cabili, M.N.; Guttman, M.; Loh, Y.H.; Thomas, K.; Park, I.H.; Garber, M.; Curran, M.; Onder, T.; Agarwal, S.; et al. Large Intergenic Non-Coding RNA-RoR Modulates Reprogramming of Human Induced Pluripotent Stem Cells. Nat. Genet. 2010, 42, 1113–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xu, Z.; Jiang, J.; Xu, C.; Kang, J.; Xiao, L.; Wu, M.; Xiong, J.; Guo, X.; Liu, H. Endogenous MiRNA Sponge LincRNA-RoR Regulates Oct4, Nanog, and Sox2 in Human Embryonic Stem Cell Self-Renewal. Dev. Cell 2013, 25, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.; Sun, W.; Li, C.; Wan, L.; Wang, S.; Wu, Y.; Xu, E.; Zhang, H.; Lai, M. Long Non-Coding RNA LINC01133 Inhibits Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer by Interacting with SRSF6. Cancer Lett. 2016, 380, 476–484. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, N.; Chen, X. A Novel Long Noncoding RNA LINC01133 Is Upregulated in Lung Squamous Cell Cancer and Predicts Survival. Tumor Biol. 2015, 36, 7465–7471. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Nie, F.Q.; Wang, Q.; Sun, M.; Li, W.; He, J.; Zhang, M.; Lu, K.H. Long Non-Coding RNA LINC01133 Represses KLF2, P21 and E-Cadherin Transcription through Binding with EZH2, LSD1 in Non Small Cell Lung Cancer. Oncotarget 2016, 7, 11696–11707. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Li, J.; Chen, H.; Fu, J.; Ray, S.; Huang, S.; Zheng, H.; Ai, W. Kruppel-like Factor 4 (KLF4) Is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion. Oncogene 2011, 30, 2161–2172. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.; Chang, K.Y.; Li, Z.; Gates, K.; Rana, Z.A.; Dang, J.; Zhang, D.; Han, T.; Yang, C.S.; Cunningham, T.J.; et al. An Evolutionarily Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural Lineage Commitment. Mol. Cell 2014, 53, 1005–1019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, Q.J.; Hann, S.S. The Functions and Oncogenic Roles of CCAT1 in Human Cancer. Biomed. Pharmacother. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tennis, M.A.; Van Scoyk, M.M.; Freeman, S.V.; Vandervest, K.M.; Nemenoff, R.A.; Winn, R.A. Sprouty-4 Inhibits Transformed Cell Growth, Migration and Invasion, and Epithelial-Mesenchymal Transition, and Is Regulated by Wnt7a through PPARγ in Non-Small Cell Lung Cancer. Mol. Cancer Res. 2010, 8, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Sun, L.; Song, Y. FEZF1-AS1: A Novel Vital Oncogenic LncRNA in Multiple Human Malignancies. Biosci. Rep. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.-Y.; Johnson, R.; Stanton, L.W. Human Long Non-Coding RNAs Promote Pluripotency and Neuronal Differentiation by Association with Chromatin Modifiers and Transcription Factors. Embo J. 2012, 31, 522–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Lu, R.; Gu, J.; Chen, Y.; Zhang, X.; Zhang, L.; Wu, H.; Hua, W.; Zeng, J. Aldehyde Dehydrogenase 1A1 Up-Regulates Stem Cell Markers in Benzo[a]Pyrene-Induced Malignant Transformation of BEAS-2B Cells. Environ. Toxicol. Pharmacol. 2016, 45, 241–250. [Google Scholar] [CrossRef]
- Kwon, M.J.; Han, J.; Seo, J.H.; Song, K.; Jeong, H.M.; Choi, J.-S.; Kim, Y.J.; Lee, S.-H.; Choi, Y.-L.; Shin, Y.K. CD24 Overexpression Is Associated with Poor Prognosis in Luminal A and Triple-Negative Breast Cancer. PLoS ONE 2015, 10, e0139112. [Google Scholar] [CrossRef]
- Gómez-Miragaya, J.; Palafox, M.; Paré, L.; Yoldi, G.; Ferrer, I.; Vila, S.; Galván, P.; Pellegrini, P.; Pérez-Montoyo, H.; Igea, A.; et al. Resistance to Taxanes in Triple-Negative Breast Cancer Associates with the Dynamics of a CD49f+ Tumor-Initiating Population. Stem Cell Rep. 2017, 8, 1392–1407. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Hu, Z.; Mangala, L.S.; Stine, Z.E.; Hu, X.; Jiang, D.; Xiang, Y.; Zhang, Y.; Pradeep, S.; Rodriguez-Aguayo, C.; et al. MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing P21 Levels. Cancer Res. 2018, 78, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Ye, X.L.; Xu, J.; Cao, M.G.; Fang, Z.Y.; Li, L.Y.; Guan, G.H.; Liu, Q.; Qian, Y.H.; Xie, D. The LncRNA H19 Mediates Breast Cancer Cell Plasticity during EMT and MET Plasticity by Differentially Sponging MiR-200b/c and Let-7b. Sci. Signal. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yao, H.; Wang, K.; Liu, X. Long Non-Coding RNA MALAT1 Regulates ZEB1 Expression by Sponging MiR-143-3p and Promotes Hepatocellular Carcinoma Progression. J. Cell. Biochem. 2017, 118, 4836–4843. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, S.; Su, N.; Wang, Y.; Yu, J.; Qiu, H.; He, X. Overexpression of Long Non-Coding RNA HOTAIR Leads to Chemoresistance by Activating the Wnt/β-Catenin Pathway in Human Ovarian Cancer. Tumor Biol. 2016, 37, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Hao, G.; Sun, Y.; Li, L.; Wang, Y. Long Noncoding RNA H19 Mediated the Chemosensitivity of Breast Cancer Cells via Wnt Pathway and EMT Process. Onco Targets Ther. 2018, 11, 8001–8012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhao, W.; Zhang, L.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. MALAT1-MiR-101-SOX9 Feedback Loop Modulates the Chemoresistance of Lung Cancer Cell to DDP via Wnt Signaling Pathway. Oncotarget 2017, 8, 94317–94329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Gao, S.; Li, H.; Lv, M.; Lu, C. Long Noncoding RNAs (LncRNAs) in Triple Negative Breast Cancer. J. Cell. Physiol. 2017, 232, 3226–3233. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Yang, Y.; Xiang, T.; Song, W.; Liu, S. Microarray Expression Profiling of Dysregulated Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cancer Biol. Ther. 2015, 16, 856–865. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; et al. Comprehensive Transcriptome Analysis Identifies Novel Molecular Subtypes and Subtype-Specific RNAs of Triple-Negative Breast Cancer. Breast Cancer Res. 2016, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Gong, Z.; Wang, M.; Hao, R.; Lin, S.; Liu, K.; Guan, F.; Xu, P.; Deng, Y.; Song, D.; et al. Identification of Long Non-Coding RNA Signatures in Triple-Negative Breast Cancer. Cancer Cell Int. 2018, 18, 103. [Google Scholar] [CrossRef]
- Rodríguez Bautista, R.; Ortega Gómez, A.; Hidalgo Miranda, A.; Zentella Dehesa, A.; Villarreal-Garza, C.; Ávila-Moreno, F.; Arrieta, O. Long Non-Coding RNAs: Implications in Targeted Diagnoses, Prognosis, and Improved Therapeutic Strategies in Human Non- and Triple-Negative Breast Cancer. Clin. Epigenetics 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Q.; Hu, Z.; Feng, Y.; Fan, L.; Tang, Z.; Yuan, J.; Shan, W.; Li, C.; Hu, X.; et al. Long Noncoding RNA LINP1 Regulates Repair of DNA Double-Strand Breaks in Triple-Negative Breast Cancer. Nat. Struct. Mol. Biol. 2016, 23, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, D.; Gao, X.; Li, X.; Shi, G. LncRNA NEAT1 Regulates Cell Viability and Invasion in Esophageal Squamous Cell Carcinoma through the MiR-129/CTBP2 Axis. Dis. Markers 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, N.S.; Chi, Y.Y.; Xue, J.Y.; Liu, M.Y.; Huang, S.; Mo, M.; Zhou, S.L.; Wu, J. Long Non-Coding RNA Metastasis Associated in Lung Adenocarcinoma Transcript 1 (MALAT1) Interacts with Estrogen Receptor and Predicted Poor Survival in Breast Cancer. Oncotarget 2016, 7, 37957–37965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamori, S.; Nozaki, Y.; Motomura, H.; Nakane, H.; Katayama, R.; Onaga, C.; Kikuchi, E.; Shimada, N.; Suzuki, Y.; Noike, M.; et al. Glyoxalase 1 Gene Is Highly Expressed in Basal-like Human Breast Cancers and Contributes to Survival of ALDH1-Positive Breast Cancer Stem Cells. Oncotarget 2018, 9, 36515–36529. [Google Scholar] [CrossRef] [Green Version]
- Györffy, B.; Lanczky, A.; Eklund, A.C.; Denkert, C.; Budczies, J.; Li, Q.; Szallasi, Z. An Online Survival Analysis Tool to Rapidly Assess the Effect of 22,277 Genes on Breast Cancer Prognosis Using Microarray Data of 1,809 Patients. Breast Cancer Res. Treat. 2010, 123, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Lennox, K.A.; Behlke, M.A. Cellular Localization of Long Non-Coding RNAs Affects Silencing by RNAi More than by Antisense Oligonucleotides. Nucleic Acids Res. 2016, 44, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; et al. Melanoma Addiction to the Long Non-Coding RNA SAMMSON. Nature 2016, 531, 518–522. [Google Scholar] [CrossRef]
- Xing, Z.; Lin, A.; Li, C.; Liang, K.; Wang, S.; Liu, Y.; Park, P.K.; Qin, L.; Wei, Y.; Hawke, D.H.; et al. LncRNA Directs Cooperative Epigenetic Regulation Downstream of Chemokine Signals. Cell 2014, 159, 1110–1125. [Google Scholar] [CrossRef] [Green Version]
- Gutschner, T.; Hämmerle, M.; Eißmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Groß, M.; et al. The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Meng, X.; Pan, J.; Jiang, N.; Zhou, C.; Wu, Z.; Gong, Z. CRISPR/Cas9-Mediated Noncoding RNA Editing in Human Cancers. RNA Biol. 2018, 15, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; Hua, L.; Liu, Y.H.; Sun, X.M.; Jiang, M.M.; Chen, W.; Zhao, L.; Li, X. Inhibition of Long Non-Coding RNA UCA1 by CRISPR/Cas9 Attenuated Malignant Phenotypes of Bladder Cancer. Oncotarget 2017, 8, 9634–9646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, A.M.; Sun, Z.; Ayat, N.; Schilb, A.; Liu, X.; Jiang, H.; Sun, D.; Scheidt, J.; Qian, V.; He, S.; et al. Systemic Delivery of Tumor-Targeting SiRNA Nanoparticles against an Oncogenic LncRNA Facilitates Effective Triple-Negative Breast Cancer Therapy. Bioconjug. Chem. 2019, 30, 907–919. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Liu, Y.R.; Xu, X.E.; Jin, X.; Hu, X.; Yu, K.D.; Shao, Z.M. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated MRNA-LncRNA Signature with Predictive and Prognostic Value. Cancer Res. 2016, 76, 2105–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Ren, J.; Cui, Q.; Zhang, D.; Kong, D.; Liao, X.; Lu, M.; Gong, Y.; Wu, G. A Prognostic 10-LncRNA Expression Signature for Predicting the Risk of Tumour Recurrence in Breast Cancer Patients. J. Cell. Mol. Med. 2019, 23, 6775–6784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating MicroRNAs as Potential Cancer Biomarkers: The Advantage and Disadvantage. Clin. Epigenetics 2018, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sole, C.; Arnaiz, E.; Manterola, L.; Otaegui, D.; Lawrie, C.H. The Circulating Transcriptome as a Source of Cancer Liquid Biopsy Biomarkers. Semin. Cancer Biol. 2019, 58, 100–108. [Google Scholar] [CrossRef]
- Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; et al. The Landscape of Long Noncoding RNAs in the Human Transcriptome. Nat. Genet. 2015, 47, 199–208. [Google Scholar] [CrossRef]
lncRNA | Mechanism of Action in Breast CSCs | Evidence for TNBC Enrichment | miRNA Sponged |
---|---|---|---|
HOTAIR | Regulates stemness in triple-negative breast cancer (TNBC) by sponging miR-34a, promoting upregulation of SOX2. HOTAIR promotes proliferation of CSCs within breast cancer cell lines by binding the promoters of p53 and p21 [61]. | - | miR-34a |
H19 | Sponges miRNA tumor suppressor, let-7, promoting an increase in breast CSC-enriched pluripotency factor LIN28 and glycolytic enzyme PDK1 [62]. | [63] | miR-200b/c let-7b |
NEAT1 | Promotes tumor growth, chemoresistance and maintenance of CD44highCD24low, ALDHhigh, and SOX2high CSC populations in TNBC [64]. | [64] | - |
MALAT1 | Competing endogenous RNA (ceRNA) of miR-1 allowing MALAT1 interaction with Slug, prompting TNBC progression [65]. Also promotes TNBC progression by regulating KDM5B which regulates formation/maintenance of breast CSCs [66]. Binds RPB HuR, forming a repressive complex regulating CD133 [67]. | [67] | miR-1 |
BCAR4 | Regulates non-canonical Hh cascade gene transcription in a GLI2-dependent manner to promote metastasis in TNBC [68]. | - | |
DANCR | Involved in positive regulation of stemness factors CD44, ABCG2, and ALDH1 [69]. | [69] | − |
NRAD1 (LINC00284) | Oncogenic chromatin-binding lncRNA regulated by ALDH1A3 that contributes to ALDH1A3-mediated gene expression [70]. | [70] | - |
LINC-ROR | Induces epithelial-mesenchymal transition (EMT) to promote the formation of breast CSCs [71]. | - | miR-145 |
LINC01133 | Induced by mesenchymal stem cells (MSCs) in TNBC cells and associated with generation of breast CSC-like cells and modulation of the miR-199a-FOXP2 pathway. Regulates pluripotency factor, KLF4, which promotes stemness [72]. | [72] | miR-199a |
LINC00617 | Induces EMT in TNBC cell lines promoting an increase in CD44+/CD24- cells, increased mammosphere formation, and metastasis through regulation of the SOX2 stemness factor [73]. | - | - |
CCAT1 | Regulates stem factors NANOG, SOX2, OCT4 and ALDH1A1; Acts as a ceRNA for miR-204/211 which targets TCF4, a transcription factor in the Wnt/β-catenin pathway [74]. | [75] | miR-204/211 |
SPRY4-IT1 | Promotes stemness by sequestering miR-6882-3p which targets TCF4, allowing initiation of canonical Wnt signaling [76]. | [76] | miR-6882-3p |
lncRNA-Hh | Twist-induced lncRNA that directly targets GAS1 to initiate Hh signaling in breast cancer, promoting SOX2 and OCT4 expression, EMT, tumorigenesis, and cells with CSC properties [77]. | - | - |
RP1-5O6.5 | Regulated by KLF5, induces breast cancer growth and metastasis by inhibiting translation of cell cycle inhibitor p27kip1, promoting stemness [78]. | [78] | - |
LINC00511 | Functions as a ceRNA, sequestering miR-185-3p to upregulate NANOG via E2F1 [79]. Also, among several lncRNAs enriched in Aldefluor+ CSC populations in TNBCs [70]. | [70] | miR-185-3p |
FEZF1-AS1 | Acts as a ceRNA for miR-39a, which targets NANOG, OCT4 and SOX2 [80]. | - | miR-39a |
LncRNA ES1 (LINC01108) | Acts as a ceRNA for miR-106b to decrease expression of E-cadherin and miR-200; Regulates stemness factors SOX2 and OCT4 and their downstream targets, miR-306, miR-106b [81]. | - | miR-302 miR-106b miR-200 |
LncRNA-HAL | Regulates the expression of CD44, CD24 and NANOG [82]. | [82] | - |
Gene Names | HOTAIR | H19 | NEAT1 | MALAT1 | BCAR4 | DANCR | NRAD1 | ||
---|---|---|---|---|---|---|---|---|---|
CSC Markers | ALDH1A1 | TNBC | 0.105 | 0.061 | 0.208 | 0.328 ** | −0.176 | −0.113 | −0.122 |
All BC | 0.082 * | 0.3 **** | 0.066 | 0.077 * | −0.084 * | −0.084 * | 0.128 *** | ||
ALDH1A3 | TNBC | 0.077 | 0.098 | 0.026 | 0.125 | −0.021 | −0.014 | 0.238 * | |
All BC | 0.174 **** | 0.189 **** | −0.124 *** | −0.113 ** | −0.022 | −0.009 | 0.389 **** | ||
CD24 | TNBC | 0.013 | −0.037 | 0.144 | 0.1 | 0.176 | 0.122 | 0.364 *** | |
All BC | 0.236 **** | −0.117 *** | −0.157 **** | −0.068 | 0.131 *** | 0.092 ** | 0.202 **** | ||
CD44 | TNBC | −0.095 | −0.103 | −0.28* | −0.208 | −0.074 | 0.007 | −0.019 | |
All BC | −0.087 * | −0.105 ** | −0.069 * | −0.015 | −0.106 ** | 0.068 | 0.071* | ||
CD49f | TNBC | −0.035 | −0.02 | −0.361 *** | −0.107 | −0.141 | −0.023 | 0.07 | |
All BC | −0.066 | 0.021 | −0.173 **** | −0.156 **** | −0.132 *** | −0.067 | 0.097 ** | ||
CD133 | TNBC | −0.099 | 0.022 | −0.033 | −0.002 | 0.261 * | 0.051 | 0.438 **** | |
All BC | 0.212 **** | 0.012 | −0.21 **** | −0.174 **** | 0.058 | 0.165 **** | 0.548 **** | ||
Stemness Factors | OCT4 | TNBC | −0.091 | −0.192 | 0.045 | −0.004 | −0.001 | −0.039 | 0.029 |
All BC | 0.11 ** | −0.024 | −0.14 **** | −0.112 ** | 0.022 | 0.123 *** | 0.274 **** | ||
SOX2 | TNBC | 0.155 | −0.02 | −0.061 | 0.085 | −0.16 | −0.046 | −0.249 * | |
All BC | 0.194**** | 0.024 | 0.021 | 0.047 | −0.019 | −0.067 | −0.057 | ||
NANOG | TNBC | 0.053 | 0.103 | −0.131 | −0.203 | 0.047 | −0.196 | 0.052 | |
All BC | 0.026 | −0.017 | 0.039 | 0.019 | 0.037 | 0.086* | 0.232 **** | ||
C−MYC | TNBC | −0.317 ** | −0.096 | −0.084 | −0.234 * | −0.036 | 0.341 ** | 0.119 | |
All BC | −0.033 | −0.041 | −0.079 * | −0.068 | 0.066 | 0.313 **** | 0.186 **** | ||
KLF5 | TNBC | −0.025 | −0.002 | −0.109 | −0.105 | −0.212 | −0.128 | 0.263 * | |
All BC | 0.169 **** | 0.075 * | −0.245 **** | −0.139 **** | −0.012 | 0.037 | 0.384 **** | ||
FOXP2 | TNBC | 0.134 | 0.026 | −0.094 | −0.046 | −0.176 | −0.059 | 0.054 | |
All BC | 0.077 * | 0.225 **** | −0.039 | 0.05 | −0.1 ** | −0.114 ** | 0.143 **** | ||
EMT Transcription Factors | SNAIL | TNBC | −0.07 | 0.083 | 0.136 | −0.01 | 0.049 | 0.05 | 0.179 |
All BC | 0.13 *** | 0.231 **** | −0.191 **** | −0.156 **** | 0.134 *** | 0.004 | 0.263 **** | ||
SLUG | TNBC | 0.034 | 0.332 ** | 0.097 | 0.061 | −0.023 | −0.117 | 0.063 | |
All BC | 0.12 *** | 0.37 **** | −0.056 | −0.03 | −0.06 | −0.123 *** | 0.194 **** | ||
TWIST | TNBC | 0.011 | 0.255 * | 0.082 | 0.078 | −0.02 | 0.014 | 0.04 | |
All BC | 0.214 **** | 0.39 **** | 0.001 | 0.018 | 0.003 | 0.019 | 0.161 **** | ||
ZEB1 | TNBC | 0.227 * | 0.194 | 0.153 | 0.329 ** | −0.037 | −0.252 * | −0.051 | |
All BC | 0.065 | 0.371 **** | 0.131 *** | 0.184 **** | −0.102 ** | −0.28 **** | 0.022 | ||
ZEB2 | TNBC | 0.027 | 0.072 | 0.241 * | 0.244 * | −0.091 | −0.232 * | −0.055 | |
All BC | 0.021 | 0.257 **** | 0.025 | 0.042 | −0.09 * | −0.268 **** | 0.132 *** | ||
Signaling Pathways | STAT3 | TNBC | −0.105 | −0.227 * | 0.018 | −0.007 | −0.255 * | −0.244 * | −0.027 |
All BC | −0.044 | −0.05 | 0.156 **** | 0.011 | −0.125 *** | −0.207 **** | 0.059 | ||
TCF4 | TNBC | 0.24 * | 0.34 ** | 0.044 | 0.236 * | 0.079 | −0.339 ** | −0.098 | |
All BC | 0.125 *** | 0.378 **** | 0.064 | 0.101 ** | −0.078* | −0.237 **** | 0.098 ** |
Targets | Subtype | |||||||
---|---|---|---|---|---|---|---|---|
Basal | Luminal A | Luminal B | HER2+ | TNBC | ER+ | PR+ | ||
lncRNA | HOTAIR | 0.84 | 1.01 | 0.94 | 1.12 | 1.09 | 0.96 | 0.96 |
H19 | 1.04 | 0.87 | 0.68 * | 0.84 | 1.36 | 0.97 | 0.97 | |
NEAT1 | 0.46 **** | 1.15 * | 1.01 | 1.01 | 0.46 **** | 1.13 ** | 1.17 **** | |
MALAT1 | 0.56 **** | 1.09 | 1.17 | 0.9 | 0.58 **** | 1.1 | 1.11 **** | |
BCAR4 | 0.83 | 0.83 | 0.88 | 1.52 | 0.40 * | 1.15 | 0.66 | |
DANCR | 1.63 **** | 0.81 **** | 0.98 | 1.03 | 1.43 ** | 0.89 ** | 0.88 **** | |
NRAD1 (LINC00284) | 5.38 *** | 0.24 **** | 0.16 **** | 0.81 | 4.09 * | 0.26 **** | 0.24 **** | |
Protein Target | ER (ESR1) | 0.03 **** | 1.42 **** | 1.38 **** | 0.70 *** | 0.04 **** | 1.25 **** | 1.29 **** |
PR (PGR) | 0.01 **** | 1.48 *** | 0.92 | 0.52 **** | 0.08 **** | 1.26 * | 1.43 **** | |
HER2 (ERBB2) | 0.38 **** | 0.61 *** | 1.09 | 3.58 **** | 0.22 **** | 0.88 | 0.80 ** | |
MYC | 1.79 **** | 0.73 **** | 0.84 * | 0.72 **** | 1.69 **** | 0.89 * | 0.87 **** | |
ALDH1A3 | 1.76 ** | 0.78 ** | 0.57 **** | 1.05 | 2.01 *** | 0.76 *** | 0.77 **** | |
ALDH1A1 | 0.75 | 0.83 ** | 0.76 | 0.98 | 1 | 0.99 | 1 | |
CD44 | 1.14 | 1.07 | 0.81 * | 0.77 **** | 1.24 | 0.96 | 0.99 | |
CD133 (PROM1) | 3.87 **** | 0.38 **** | 0.44 **** | 1.01 | 3.71 **** | 0.48 **** | 0.45 **** | |
β−catenin (CTNNB1) | 1.11 | 1.02 | 0.88 *** | 0.97 | 1.12 | 0.99 | 0.98 | |
TCF4 | 0.66 **** | 1.10 * | 0.86 ** | 1.02 | 0.81 ** | 1.05 | 1.07 **** |
Targets | Subtype | ||||||||
---|---|---|---|---|---|---|---|---|---|
Basal | Luminal A | Luminal B | HER2 | TNBC | ER+ | PR+ | All Breast Cancers | ||
lncRNA | HOTAIR | 1.04 | 1.30 * | 0.96 | 1.36 | 0.85 | 1.35 * | 1.43 | 1.15 |
NEAT1 | 0.69 * | 0.63 ** | 0.53 **** | 0.66 | 1.27 | 1.16 | 1.05 | 0.51 **** | |
MALAT1 | 0.83 | 0.98 | 1.03 | 1.11 | 0.62 | 1.04 | 1.09 | 0.83 * | |
BCAR4 | 0.98 | 0.99 | 0.77 | 1.11 | 1.01 | 1.04 | 0.94 | 0.94 | |
DANCR | 1.60 ** | 0.83 | 0.80 | 0.73 | 1.21 | 0.79 | 0.65 * | 0.94 | |
NRAD1 (LINC00284) | 1.66 ** | 0.81 | 0.9 | 1.12 | 1.05 | 0.87 | 0.8 | 1.06 | |
LINC01133 | 1.05 | 0.94 | 1.26 | 1.00 | 0.87 | 1.01 | 1.19 | 1.24 ** | |
Protein Target | ER (ESR1) | 0.81 | 0.85 | 0.92 | 0.62 * | 0.91 | 0.94 | 1.07 | 0.67 **** |
PR (PGR) | 0.63 ** | 0.53 **** | 0.77 | 0.86 | 0.94 | 0.56 **** | 0.72 | 0.53 **** | |
HER2 (ERBB2) | 0.85 | 0.77 ** | 1.1 | 1.05 | 0.91 | 1.09 | 0.93 | 0.93 | |
c-MYC | 1.02 | 1.06 | 0.94 | 0.82 | 0.81 | 1 | 1.06 | 1.12 * | |
ALDH1A3 | 1.41 ** | 0.89 | 0.95 | 0.99 | 1.18 | 0.93 | 0.81 | 1.04 | |
ALDH1A1 | 0.67 ** | 0.8 ** | 0.87 | 0.68 * | 0.64 * | 0.86 | 0.97 | 0.74 **** | |
CD44 | 0.97 | 0.67 **** | 0.7 *** | 1.01 | 0.85 | 0.68 **** | 0.51 *** | 0.72 **** | |
CD133 (PROM1) | 1.2 | 0.85 | 0.85 | 0.67 * | 0.88 | 0.81 ** | 0.64 * | 1.05 | |
Β-catenin (CTNNB1) | 1.08 | 0.86 | 0.9 | 1.47 | 1.4 | 0.84 * | 1.01 | 0.89 * | |
TCF4 (TCF7L2) | 1.15 | 0.87 * | 1.21 | 1.45 | 1.25 | 0.97 | 0.95 | 1.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.M.; Wasson, M.-C.D.; Marcato, P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020, 9, 763. https://doi.org/10.3390/cells9030763
Brown JM, Wasson M-CD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells. 2020; 9(3):763. https://doi.org/10.3390/cells9030763
Chicago/Turabian StyleBrown, Justin M, Marie-Claire D Wasson, and Paola Marcato. 2020. "The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs" Cells 9, no. 3: 763. https://doi.org/10.3390/cells9030763
APA StyleBrown, J. M., Wasson, M. -C. D., & Marcato, P. (2020). The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells, 9(3), 763. https://doi.org/10.3390/cells9030763