Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Cloning, Overexpression and Purification of VDAC Proteins
VDAC1 | (direct) | ggggacaagtttgtacaaaaaagcaggcttggtgaaaggtcccggtctc |
VDAC1 | (reverse) | ggggaccactttgtacaagaaagctgggtaaggcttgagtgcgagagcc |
VDAC2 | (direct) | ggggacaagtttgtacaaaaaagcaggcttgagcaaaggtccaggactctt |
VDAC2 | (reverse) | ggggaccactttgtacaagaaagctgggtaaggtttgagagcaagagag |
VDAC3 | (direct) | ggggacaagtttgtacaaaaaagcaggcttggttaaaggtccaggactcta |
VDAC3 | (reverse) | ggggaccactttgtacaagaaagctgggtagggcttgagagcgagagc |
VDAC4 | (direct) | ggggacaagtttgtacaaaaaagcaggcttgggaagcagtccagctccg |
VDAC4 | (reverse) | ggggaccactttgtacaagaaagctgggtatggtttgagggcgagggc |
2.3. Northwestern Experiments
2.4. Mitochondria Preparation
2.5. Northern Blots
- Cytosolic tRNALys: 5′ CGCCCACCGTGGGGCTCGAACCC 3′
- Imported tRNAAla: 5′ ACCATCTGAGCTACATCCCC 3′
- Imported tRNAGlyCCC: 5′ TGCGCATCCAGGGAATCGAAC 3′
- Native tRNAGlyGCC: 5′ AGCGGAAGGAGGGACTTGAACCCTCA 3′
2.6. RNA Extraction, Reverse Transcription and RT-qPCR
2.7. O2 Consumption
2.8. Proteomics
2.9. Western Blot and Antibodies
3. Results
3.1. VDAC4 Strongly Interacts with tRNAs
3.2. A VDAC3 mRNA Isoform is Specifically Induced in Stress Conditions
3.3. Mitochondrial Proteomes and OXPHOS Respiration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Homble, F.; Krammer, E.M.; Prevost, M. Plant VDAC: Facts and speculations. Biochem. Biophys. Acta 2012, 1818, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Koulintchenko, M.; Konstantinov, Y.; Dietrich, A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 2003, 22, 1245–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinas, T.; Duchene, A.M.; Delage, L.; Nilsson, S.; Glaser, E.; Zaepfel, M.; Marechal-Drouard, L. The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc. Natl. Acad. Sci. USA 2006, 103, 18362–18367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tateda, C.; Watanabe, K.; Kusano, T.; Takahashi, Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J. Exp. Bot. 2011, 62, 4773–4785. [Google Scholar] [CrossRef] [Green Version]
- Robert, N.; D’Erfurth, I.; Marmagne, A.; Erhardt, M.; Allot, M.; Boivin, K.; Gissot, L.; Monachello, D.; Michaud, M.; Duchêne, A.M.; et al. Voltage-Dependent-Anion-Channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. Plant Mol. Biol. 2012, 78, 431–446. [Google Scholar] [CrossRef]
- Fuchs, P.; Rugen, N.; Carrie, C.; Elsasser, M.; Finkemeier, I.; Giese, J.; Hildebrandt, T.M.; Kuhn, K.; Maurino, V.G.; Ruberti, C.; et al. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 2020, 101, 420–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, M.; Ubrig, E.; Filleur, S.; Erhardt, M.; Ephritikhine, G.; Marechal-Drouard, L.; Duchene, A.M. Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology. Proc. Natl. Acad. Sci. USA 2014, 111, 8991–8996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Busso, D.; Delagoutte-Busso, B.; Moras, D. Construction of a set Gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal. Biochem. 2005, 343, 313–321. [Google Scholar] [CrossRef]
- Salinas, T.; El Farouk-Ameqrane, S.; Ubrig, E.; Sauter, C.; Duchene, A.M.; Marechal-Drouard, L. Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res. 2014, 42, 9937–9948. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, V.; Dietrich, A.; Maréchal-Drouard, L.; Cosset, A.; Pelletier, G.; Small, I. Characterization of some major identity elements in plant alanine and phenylalanine transfer RNAs. Plant Mol. Biol. 1994, 26, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Day, D.A.; Neuburger, M.; Douce, R. Biochemical Characterization of Chlorophyll-Free Mitochondria From Pea Leaves. Aus. J. Plant Physiol. 1985, 12, 219–228. [Google Scholar] [CrossRef]
- Brubacher-Kauffmann, S.; Marechal-Drouard, L.; Cosset, A.; Dietrich, A.; Duchene, A.M. Differential import of nuclear-encoded tRNAGly isoacceptors into Solanum tuberosum mitochondria. Nucleic Acids Res. 1999, 27, 2037–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, M.; Marechal-Drouard, L.; Duchene, A.M. RNA trafficking in plant cells: Targeting of cytosolic mRNAs to the mitochondrial surface. Plant Mol. Biol. 2010, 73, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Chicois, C.; Scheer, H.; Garcia, S.; Zuber, H.; Mutterer, J.; Chicher, J.; Hammann, P.; Gagliardi, D.; Garcia, D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. Plant J. 2018, 96, 119–132. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Beard, K.F.M.; Swart, C.; Bergmann, S.; Krahnert, I.; Nikoloski, Z.; Graf, A.; Ratcliffe, R.G.; Sweetlove, L.J.; Fernie, A.R.; et al. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat. Commun. 2017, 8, 15212. [Google Scholar] [CrossRef]
- Senkler, J.; Senkler, M.; Eubel, H.; Hildebrandt, T.; Lengwenus, C.; Schertl, P.; Schwarzlander, M.; Wagner, S.; Wittig, I.; Braun, H.P. The mitochondrial complexome of Arabidopsis thaliana. Plant J. 2017, 89, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.S.; Salvato, F.; Thal, B.; Eubel, H.; Thelen, J.J.; Moller, I.M. The proteome of higher plant mitochondria. Mitochondrion 2017, 33, 22–37. [Google Scholar] [CrossRef]
- Waltz, F.; Nguyen, T.T.; Arrive, M.; Bochler, A.; Chicher, J.; Hammann, P.; Kuhn, L.; Quadrado, M.; Mireau, H.; Hashem, Y.; et al. Small is big in Arabidopsis mitochondrial ribosome. Nat. Plants 2019, 5, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Uyttewaal, M.; Mireau, H.; Rurek, M.; Hammani, K.; Arnal, N.; Quadrado, M.; Giege, P. PPR336 is associated with polysomes in plant mitochondria. J. Mol. Biol. 2008, 375, 626–636. [Google Scholar] [CrossRef]
- Elthon, T.E.; Nickels, R.L.; McIntosh, L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989, 89, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, A.M.; Maréchal-Drouard, L. The chloroplast-derived trnW and trnM-e genes are not expressed in Arabidopsis mitochondria. Biochem. Biophysic. Res. Commun. 2001, 285, 1213–1216. [Google Scholar] [CrossRef]
- Li, Z.Y.; Xu, Z.S.; He, G.Y.; Yang, G.X.; Chen, M.; Li, L.C.; Ma, Y. The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int. J. Mol. Sci. 2013, 14, 701–713. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Takano, T.; Liu, S.; Zhang, X. Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett. 2015, 589, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Juszczuk, I.M.; Szal, B.; Rychter, A.M. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. Plant Cell Environ. 2012, 35, 296–307. [Google Scholar] [CrossRef]
- Saha, B.; Borovskii, G.; Panda, S.K. Alternative oxidase and plant stress tolerance. Plant Signal. Behav. 2016, 11, e1256530. [Google Scholar] [CrossRef]
- Murcha, M.W.; Kubiszewski-Jakubiak, S.; Teixeira, P.F.; Gugel, I.L.; Kmiec, B.; Narsai, R.; Ivanova, A.; Megel, C.; Schock, A.; Kraus, S.; et al. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. Plant Physiol. 2016, 172, 2471–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misson, J.; Raghothama, K.G.; Jain, A.; Jouhet, J.; Block, M.A.; Bligny, R.; Ortet, P.; Creff, A.; Somerville, S.; Rolland, N.; et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. USA 2005, 102, 11934–11939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaxton, W.C.; Tran, H.T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Hoang, M.H.; Han, H.J.; Kim, H.S.; Lee, K.; Kim, K.E.; Kim, D.H.; Lee, S.Y.; Chung, W.S. Pathogen inducible voltage-dependent anion channel (AtVDAC) isoforms are localized to mitochondria membrane in Arabidopsis. Mol. Cells 2009, 27, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.; Vingadassalon, A.; Ubrig, E.; Azeredo, K.; Srour, O.; Cognat, V.; Graindorge, S.; Salinas, T.; Marechal-Drouard, L.; Duchene, A.M. A genome-scale analysis of mRNAs targeting to plant mitochondria: Upstream AUGs in 5′ untranslated regions reduce mitochondrial association. Plant J. 2017, 92, 1132–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Chou, H.L.; Fukuda, M.; Kumamaru, T.; Okita, T.W. mRNA Localization in Plant Cells. Plant Physiol. 2020, 182, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.W.; Williams, T.C.; Morgan, M.; Fernie, A.R.; Ratcliffe, R.G.; Sweetlove, L.J. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 2007, 19, 3723–3738. [Google Scholar] [CrossRef] [Green Version]
- Wojtera-Kwiczor, J.; Gross, F.; Leffers, H.M.; Kang, M.; Schneider, M.; Scheibe, R. Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton. Front. Plant Sci. 2012, 3, 284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, S.; Takano, T.; Zhang, X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. Planta 2019, 249, 417–429. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, Z.W.; Xu, T.; Qu, Z.; Pan, X.D.; Qin, X.H.; Ren, D.T.; Liu, G.Q. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. Plant Cell 2011, 23, 1093–1106. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Knuesting, J.; Birkholz, O.; Heinisch, J.J.; Scheibe, R. Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 2018, 18, 184. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Chen, Z.; Yang, X.; Liu, G. Arabidopsis voltage-dependent anion channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS ONE 2014, 9, e106941. [Google Scholar] [CrossRef] [Green Version]
Gene | Efficiency | Direct/Reverse | Sequence (5′ to 3′) |
---|---|---|---|
RPL2 | 1.945 | Direct | CCGAAGACGGATCAAGGTAA |
(mito) | Reverse | CGCAATTCATCACCATTTTG | |
GAPDH | 1.967 | Direct | AGGCTGCTGCTCACTTGAA |
(At1g13440) | Reverse | AACATGGGCGCATCTTTG | |
RPL12 | 1.887 | Direct | GACGTGTACGTCCGAGTAACC |
Reverse | GACCGATTTTGGGAGCTAGA | ||
VDAC3 long | 2.008 | Direct | TCCATATCTTTTACTTGGTTCTCTCTT |
Reverse | GGGAACTCCAAATGGAACAA | ||
VDAC3 | 1.974 | Direct | CACTGAAATCGGCAAAAAGG |
Reverse | TGTTCCCGTTGTAGTGATCG | ||
VDAC1 | 1.984 | Direct | GCTCTTGTTCTTTCGATTCTCAG |
Reverse | TGGTCACTGTTGTGGTCTTTG | ||
VDAC2 | 1.974 | Direct | CCGATCTCTCTCAATCTCCG |
Reverse | AGTCTCTCGTCAACAGATCTTTGG | ||
VDAC4 | 1.914 | Direct | CGTCGATCTTCCATTTTCG |
Reverse | AATCCTTGTTTAGGAGATCTTTGG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemono, M.; Ubrig, É.; Azeredo, K.; Salinas-Giegé, T.; Drouard, L.; Duchêne, A.-M. Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria. Cells 2020, 9, 1023. https://doi.org/10.3390/cells9041023
Hemono M, Ubrig É, Azeredo K, Salinas-Giegé T, Drouard L, Duchêne A-M. Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria. Cells. 2020; 9(4):1023. https://doi.org/10.3390/cells9041023
Chicago/Turabian StyleHemono, Mickaële, Élodie Ubrig, Kevin Azeredo, Thalia Salinas-Giegé, Laurence Drouard, and Anne-Marie Duchêne. 2020. "Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria" Cells 9, no. 4: 1023. https://doi.org/10.3390/cells9041023
APA StyleHemono, M., Ubrig, É., Azeredo, K., Salinas-Giegé, T., Drouard, L., & Duchêne, A. -M. (2020). Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria. Cells, 9(4), 1023. https://doi.org/10.3390/cells9041023