Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics
Abstract
:1. Introduction
2. Rho Family GTPases and ASD
3. RhoGEF Family and ASD
3.1. ARHGEF9 (SFARI Gene Score: 1, High Confidence)
3.2. TRIO (SFARI Gene Score: 1, High Confidence)
3.3. DOCK8 (SFARI Gene Score: 2, Strong Candidate)
3.4. PREX1 (SFARI Gene Score: 2, Strong Candidate)
3.5. ARHGEF10 (SFARI Gene Score: 3, Suggestive Evidence)
3.6. DOCK1 (SFARI Gene Score: 3, Suggestive Evidence)
3.7. DOCK4 (SFARI Gene Score: 3, Suggestive Evidence)
4. RhoGAP Family and ASD
4.1. MYO9B (SFARI Gene Score: 2, Strong Candidate)
4.2. OPHN1 (SFARI Gene Score: 2, Strong Candidate)
4.3. ARHGAP5 (SFARI Gene Score: 3, Suggestive Evidence)
4.4. ARHGAP11B (SFARI Gene Score: 3, Suggestive Evidence)
4.5. ARHGAP32 (SFARI Gene Score: 3, Suggestive Evidence)
4.6. SRGAP3 (SFARI Gene Score: 3, Suggestive Evidence)
4.7. OCRL (SFARI Gene Score: S, Syndromic)
5. Rho GTPase Effectors and ASD
5.1. NCKAP1 (SFARI Gene Score: 1, High Confidence)
5.2. CYFIP1 (SFARI Gene Score: 2, Strong Candidate)
5.3. PAK2 (SFARI Gene Score: 2, Strong Candidate)
5.4. ITPR1 (SFARI Gene Score: 3, Suggestive Evidence)
5.5. PRKCA (SFARI Gene Score: 3, Suggestive Evidence)
5.6. WASF1 (SFARI Gene Score: S, Syndromic)
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Elsabbagh, M.; Divan, G.; Koh, Y.-J.; Kim, Y.S.; Kauchali, S.; Marcin, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global Prevalence of Autism and Other Pervasive Developmental Disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron-Cohen, S.; Gullon-Scott, F.; Allison, C.; Williams, J.; Bolton, P.; E Matthews, F.; Brayne, C. Prevalence of autism-spectrum conditions: UK school-based population study. Br. J. Psychiatry 2009, 194, 500–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Leventhal, B.L.; Koh, Y.-J.; Fombonne, E.; Laska, E.; Lim, E.-C.; Cheon, K.-A.; Kim, S.-J.; Kim, Y.-K.; Lee, H.; et al. Prevalence of Autism Spectrum Disorders in a Total Population Sample. Am. J. Psychiatry 2011, 168, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kočovská, E.; Biskupstø, R.; Gillberg, I.C.; Ellefsen, A.; Kampmann, H.; Stóra, T.; Billstedt, E.; Gillberg, C. The Rising Prevalence of Autism: A Prospective Longitudinal Study in the Faroe Islands. J. Autism Dev. Disord. 2012, 42, 1959–1966. [Google Scholar] [CrossRef]
- Sun, X.; Allison, C.; E Matthews, F.; Sharp, S.; Auyeung, B.; Baron-Cohen, S.; Brayne, C. Prevalence of autism in mainland China, Hong Kong and Taiwan: a systematic review and meta-analysis. Mol. Autism 2013, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Hu, Q.; Li, T.; Jiang, L.; Du, Y.; Feng, L.; Wong, J.C.-M.; Li, C.-B. Prevalence of autism spectrum disorders among children in China: a systematic review. Shanghai Arch. Psychiatry 2013, 25, 70–80. [Google Scholar] [PubMed]
- Baio, J.; Wiggins, L.; Christence, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef]
- Lai, M.C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef]
- Colvert, E.; Tick, B.; McEwen, F.; Stewart, C.; Curran, S.R.; Woodhouse, E.L.; Gillan, N.; Hallett, V.; Lietz, S.; Garnett, T.; et al. Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample. JAMA Psychiatry 2015, 72, 415–423. [Google Scholar] [CrossRef]
- Tick, B.; Bolton, P.; Happé, F.; Rutter, M.L.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2015, 57, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Banerjee-Basu, S.; Packer, A. SFARI Gene: An evolving database for the autism research community. Dis. Model. Mech. 2010, 3, 133–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahams, B.S.; Arking, D.E.; Campbell, D.; Mefford, H.C.; Morrow, E.M.; Weiss, L.A.; Menashe, I.; Wadkins, T.; Banerjee-Basu, S.; Packer, A. SFARI Gene 2.0: A community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 2013, 4, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: A gene reference resource for autism research. Nucleic Acids Res. 2008, 37, D832–D836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SFARI Gene. Available online: www.sfari.org/resource/sfari-gene/ (accessed on 27 March 2020).
- AutDB. Available online: http://autism.mindspec.org/autdb/Welcome.do (accessed on 27 March 2020).
- Ebert, D.H.; Greenberg, M.E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 2013, 493, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, M.; LaNoue, V.; Hotulainen, P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84 Pt B, 362–381. [Google Scholar] [CrossRef] [Green Version]
- Tolias, K.F.; Duman, J.; Um, K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog. Neurobiol. 2011, 94, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Govek, E.-E.; Newey, S.E.; Van Aelst, L. The role of the Rho GTPases in neuronal development. Genome Res. 2005, 19, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 2008, 9, 690–701. [Google Scholar] [CrossRef]
- Hodge, R.G.; Ridley, A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Boil. 2016, 17, 496–510. [Google Scholar] [CrossRef]
- Bai, Y.; Xiang, X.; Liang, C.; Shi, L. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs. BioMed. Res. Int. 2015, 2015, 632450. [Google Scholar] [CrossRef] [PubMed]
- Fort, P.; Blangy, A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol. Evol. 2017, 9, 1471–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossman, K.L.; Der, C.J.; Sondek, J. GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 2005, 6, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Amin, E.; Jaiswal, M.; Derewenda, U.; Reis, K.; Nouri, K.; Koessmeier, K.T.; Aspenström, P.; Somlyo, A.V.; Dvorsky, R.; Ahmadian, M.R. Deciphering the Molecular and Functional Basis of RHOGAP Family Proteins. J. Biol. Chem. 2016, 291, 20353–20371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustelo, X.R.; Sauzeau, V.; Berenjeno, I.M. GTP-binding proteins of the Rho/Rac family: Regulation, effectors and functions in vivo. BioEssays 2007, 29, 356–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L. Dock protein family in brain development and neurological disease. Commun. Integr. Biol. 2013, 6, e26839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, B.J.; Zhu, Y.; Lu, Q. Rho GTPases as therapeutic targets in Alzheimer’s disease. Alzheimer’s Res. Ther. 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-H.; Sun, Z.-L.; Li, H.-J.; Feng, D.-F. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol. Cell. Neurosci. 2017, 80, 18–31. [Google Scholar] [CrossRef]
- Zamboni, V.; Jones, R.; Umbach, A.; Ammoni, A.; Passafaro, M.; Hirsch, E.; Merlo, G. Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int. J. Mol. Sci. 2018, 19, 1821. [Google Scholar] [CrossRef] [Green Version]
- Niftullayev, S.; Lamarche-Vane, N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int. J. Mol. Sci. 2019, 20, 1497. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, T.R.; Linseman, D.A. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front. Cell. Neurosci. 2014, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.C.; Sanders, L.C.; Bokoch, G.M.; Gill, G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1999, 1, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Tahirovic, S.; Hellal, F.; Neukirchen, R.; Hindges, R.; Garvalov, B.K.; Flynn, K.C.; Stradal, T.; Chrostek-Grashoff, A.; Brakebusch, C.; Bradke, F. Rac1 Regulates Neuronal Polarization through the WAVE Complex. J. Neurosci. 2010, 30, 6930–6943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Park, H.; Kim, E. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. Neuropharmacology 2016, 100, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mpey, S.; Davare, M.; Lasiek, A.; Fortin, D.; Ando, H.; Varlamova, O.; Obrietan, K.; Soderling, T.R.; Goodman, R.H.; Wayman, G.A. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol. Cell. Neurosci. 2009, 43, 146–156. [Google Scholar]
- Reijnders, M.R.; Ansor, N.M.; Kousi, M.; Yue, W.W.; Tan, P.L.; Clarkson, K.; Clayton-Smith, J.; Corning, K.; Jones, J.R.; Lam, W.W.; et al. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes. Am. J. Hum. Genet. 2017, 101, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Bolis, A.; Corbetta, S.; Cioce, A.; De Curtis, I. Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur. J. Neurosci. 2003, 18, 2417–2424. [Google Scholar] [CrossRef]
- Tanabe, K.; Tachibana, T.; Yamashita, T.; Che, Y.H.; Yoneda, Y.; Ochi, T.; Tohyama, M.; Yoshikawa, H.; Kiyama, H. The Small GTP-Binding Protein TC10 Promotes Nerve Elongation in Neuronal Cells, and Its Expression Is induced during Nerve Regeneration in Rats. J. Neurosci. 2000, 20, 4138–4144. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, S.; Gualdoni, S.; Albertinazzi, C.; Paris, S.; Croci, L.; Consalez, G.G.; De Curtis, I. Generation and Characterization of Rac3 Knockout Mice. Mol. Cell. Biol. 2005, 25, 5763–5776. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, K.; Nakatsuji, N.; Nakamura, K.; Nakao, K.; Hashimoto, R.; Otani, H.; Sakagami, H.; Kondo, H.; Nozawa, S.; Aiba, A.; et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 1998, 17, 3427–3433. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liao, G.; Waclaw, R.R.; Burns, K.A.; Linquist, D.; Campbell, K.; Zheng, Y.; Kuan, C.-Y. Rac1 Controls the Formation of Midline Commissures and the Competency of Tangential Migration in Ventral Telencephalic Neurons. J. Neurosci. 2007, 27, 3884–3893. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Melendez, J.; Campbell, K.; Kuan, C.-Y.; Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol. 2009, 325, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Z.L.; Emiliani, F.E.; Nathans, J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidaki, M.; Tivodar, S.; Doulgeraki, K.; Tybulewicz, V.L.; Kessaris, N.; Pachnis, V.; Karagogeos, D. Rac1-Dependent Cell Cycle Exit of MGE Precursors and GABAergic Interneuron Migration to the Cortex. Cereb. Cortex 2011, 22, 680–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haditsch, U.; Leone, D.P.; Farinelli, M.; Chrostek-Grashoff, A.; Brakebusch, C.; Mansuy, I.M.; McConnell, S.K.; Palmer, T.D. A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol. Cell. Neurosci. 2009, 41, 409–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haditsch, U.; Anderson, M.P.; Freewoman, J.; Cord, B.; Babu, H.; Brakebusch, C.; Palmer, T.D. Neuronal Rac1 is required for learning-evoked neurogenesis. J. Neurosci. 2013, 33, 12229–12241. [Google Scholar] [CrossRef]
- Pennucci, R.; Talpo, F.; Astro, V.; Montinaro, V.; Morè, L.; Cursi, M.; Castoldi, V.; Chiaretti, S.; Bianchi, V.; Marenna, S.; et al. Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks. Cereb. Cortex 2016, 26, 873–890. [Google Scholar] [CrossRef] [Green Version]
- Viaud, J.; Gaits-Iacovoni, F.; Payrastre, B. Regulation of the DH–PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv. Biol. Regul. 2012, 52, 303–3144. [Google Scholar] [CrossRef]
- Lawson, C.D.; Ridley, A.J. Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. 2017, 217, 447–457. [Google Scholar] [CrossRef]
- Cote, J.F.; Vuori, K. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains. Methods Enzymol. 2006, 406, 41–57. [Google Scholar]
- Namekata, K.; Kimura, A.; Kawamura, K.; Harada, C.; Harada, T. Dock GEFs and their therapeutic potential: Neuroprotection and axon regeneration. Prog. Retin. Eye Res. 2014, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.O.F.; Griesi-Oliveira, K.; Rosenberg, C.; Kok, F.; Martins, S.; Passos-Bueno, M.R.; Sertie, A. Collybistin binds and inhibits mTORC1 signaling: A potential novel mechanism contributing to intellectual disability and autism. Eur. J. Hum. Genet. 2015, 24, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, G.; Lagrave, D.; Millson, A.; Herriges, J.; Lamb, A.N.; Matalon, R. Xq11.1-11.2 deletion involving ARHGEF9 in a girl with autism spectrum disorder. Eur. J. Med. Genet. 2016, 59, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Alber, M.; Kalscheuer, V.M.; Marco, E.; Sherr, E.; Lesca, G.; Till, M.; Gradek, G.; Wiesener, A.; Korenke, C.; Mercier, S.; et al. ARHGEF9 disease: Phenotype clarification and genotype-phenotype correlation. Neurol. Genet. 2017, 3, e148. [Google Scholar] [CrossRef] [Green Version]
- Aarabi, M.; Infante, E.; Madan-Khetarpal, S.; Surti, U.; Bellissimo, D.; Rajkovic, A.; Yatsenko, S.A. Autism spectrum disorder in females with ARHGEF9 alterations and a random pattern of X chromosome inactivation. Eur. J. Med. Genet. 2018, 62, 239–242. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, S.; Pang, N.; Deng, X.; Yang, L.; He, F.; Wu, L.; Chen, C.; Yin, F.; Peng, J. Neurological Diseases with Autism Spectrum Disorder: Role of ASD Risk Genes. Front. Mol. Neurosci. 2019, 13, 349. [Google Scholar] [CrossRef]
- Kins, S.; Betz, H.; Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat. Neurosci. 2000, 3, 22–29. [Google Scholar] [CrossRef]
- De Groot, C.; Floriou-Servou, A.; Tsai, Y.-C.; Früh, S.; Kohler, M.; Parkin, G.; Schwerdel, C.; Bosshard, G.; Kaila, K.; Fritschy, J.-M.; et al. RhoGEF9 splice isoforms influence neuronal maturation and synapse formation downstream of α2 GABAA receptors. PLoS Genet. 2017, 13, e1007073. [Google Scholar] [CrossRef] [Green Version]
- Kneussel, M.; Engelkamp, D.; Betz, H. Distribution of transcripts for the brain-specific GDP/GTP exchange factor collybistin in the developing mouse brain. Eur. J. Neurosci. 2001, 13, 487–492. [Google Scholar] [CrossRef]
- Ibaraki, K.; Mizuno, M.; Aoki, H.; Niwa, A.; Iwamoto, I.; Hara, A.; Tabata, H.; Ito, H.; Nagata, K.-I. Biochemical and Morphological Characterization of a Guanine Nucleotide Exchange Factor ARHGEF9 in Mouse Tissues. Acta Histochem. ET Cytochem. 2018, 51, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, T.; Korte, M.; Eulenburg, V.; Kubota, H.; Retiounskaia, M.; Harvey, R.J.; Harvey, K.; O’Sullivan, G.A.; Laube, B.; Hülsmann, S.; et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J. 2007, 26, 3888–3899. [Google Scholar] [CrossRef] [PubMed]
- Jedlicka, P.; Papadopoulos, T.; Deller, T.; Betz, H.; Schwarzacher, S.W. Increased network excitability and impaired induction of long-term potentiation in the dentate gyrus of collybistin-deficient mice in vivo. Mol. Cell. Neurosci. 2009, 41, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Jedlicka, P.; Muellerleile, J.; Schwarzacher, S.W. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights fromIn VivoRecordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts. Neural Plast. 2018, 2018, 6015753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, W.; Liu, S.; Wang, X.; Zhang, J.; Zhang, T.; Liu, Z.; Wang, N.; Zhang, A.; Zhu, M.; Gao, J. Trio gene is required for mouse learning ability. Brain Res. 2015, 1608, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katrancha, S.M.; Shaw, J.E.; Zhao, A.Y.; Myers, S.A.; Cocco, A.R.; Jeng, A.T.; Zhu, M.; Pittenger, C.; Greer, C.A.; Carr, S.A.; et al. Trio Haploinsufficiency Causes Neurodevelopmental Disease-Associated Deficits. Cell Rep. 2019, 26, 2805–2817.e9. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chai, A.; Wang, L.; Ma, Y.; Wu, Z.; Yu, H.; Mei, L.; Lu, L.; Zhang, C.; Yue, W.; et al. Synaptic P-Rex1 signaling regulates hippocampal long-term depression and autism-like social behavior. Proc. Natl. Acad. Sci. USA 2015, 112, E6964–E6972. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.-H.; Liao, H.-M.; Chen, C.-H.; Tu, H.-J.; Liou, H.-C.; Gau, S.S.-F.; Fu, W.-M. Impairment of social behaviors in Arhgef10 knockout mice. Mol. Autism 2018, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Peng, Y.; Wang, L.; Sun, X.; Wang, X.; Liang, C.; Yang, X.; Li, S.; Xu, J.; Ye, W.-C.; et al. Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol. Psychiatry 2019. [Google Scholar] [CrossRef] [Green Version]
- Khelfaoui, M.; Denis, C.; van Galen, E.; de Bock, F.; Schmitt, A.; Houbron, C.; Morice, E.; Giros, B.; Ramakers, G.; Fagni, L.; et al. Loss of X-linked mental retardation gene oligophrenin 1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J. Neurosci. 2007, 27, 9439–9450. [Google Scholar] [CrossRef]
- Meziane, H.; Khelfaoui, M.; Morello, N.; Hiba, B.; Calcagno, E.; Reibel-Foisset, S.; Selloum, M.; Chelly, J.; Humeau, Y.; Riet, F.; et al. Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability. Hum. Mol. Genet. 2016, 25, 2314–2323. [Google Scholar] [CrossRef]
- Redolfi, N.; Galla, L.; Maset, A.; Murru, L.; Savoia, E.; Zamparo, I.; Gritti, A.; Billuart, P.; Passafaro, M.; Lodovichi, C. Oligophrenin-1 regulates number, morphology and synaptic properties of adult-born inhibitory interneurons in the olfactory bulb. Hum. Mol. Genet. 2016, 25, 5198–5211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khelfaoui, M.; Gambino, F.; Houbaert, X.; Ragazzon, B.; Müller, C.; Carta, M.; Lanore, F.; Srikumar, B.N.; Gastrein, P.; Lepleux, M.; et al. Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 369, 20130160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-L.; Aime, M.; Laheranne, E.; Houbaert, X.; El Oussini, H.; Martin, C.; Lepleux, M.; Normand, E.; Chelly, J.; Herzog, E.; et al. Protein Kinase A Deregulation in the Medial Prefrontal Cortex Impairs Working Memory in Murine Oligophrenin-1 Deficiency. J. Neurosci. 2017, 37, 11114–11126. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Arima-Yoshida, F.; Sakaue, F.; Nasu-Nishimura, Y.; Takeda, Y.; Matsuura, K.; Akshoomoff, N.; Mattson, S.N.; Grossfeld, P.D.; Manabe, T.; et al. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking. Nat. Commun. 2016, 7, 10861. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sakaue, F.; Nasu-Nishimura, Y.; Takeda, Y.; Matsuura, K.; Akiyama, T. The Autism-Related Protein PX-RICS Mediates GABAergic Synaptic Plasticity in Hippocampal Neurons and Emotional Learning in Mice. Ebiomedicine 2018, 34, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.R.; Lloyd, K.E.; Kruszewski, A.; Kim, I.-H.; Rodriguiz, R.M.; Heindel, C.; Faytell, M.; Dudek, S.M.; Wetsel, W.C.; Soderling, S.H. WRP/srGAP3 Facilitates the Initiation of Spine Development by an Inverse F-BAR Domain, and Its Loss Impairs Long-Term Memory. J. Neurosci. 2011, 31, 2447–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltereit, R.; Leimer, U.; Halbach, O.v.B.U.; Panke, J.; Hoelter, S.M.; Garrett, L.; Wittig, K.; Schneider, M.; Schmitt, C.; Calzada-Wack, J.; et al. Srgap3(-/-) mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J. 2012, 26, 4418–4428. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.; Koschuetzke, L.; Pfannmoeller, J.P.; Esche, J.; van Diepen, L.; Kuss, A.W.; Hartmann, B.; Bartsch, D.; Lotze, M.; van Halbach, O.B.U. Morphological and behavioral characterization of adult mice deficient for SrGAP3. Cell Tissue Res. 2016, 366, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Janne, P.A.; Suchy, S.F.; Bernard, D.; MacDonald, M.; Crawley, J.; Grinberg, A.; Wynshaw-Boris, A.; Westphal, H.; Nussbaum, R.L. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Investig 1998, 101, 2042–2053. [Google Scholar] [CrossRef] [Green Version]
- Festa, B.P.; Berquez, M.; Gassama, A.; Amrein, I.; Ismail, H.M.; Samardzija, M.; Staiano, L.; Luciani, A.; Grimm, C.; Nussbaum, R.L.; et al. OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum. Mol. Genet. 2019, 28, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Bozdagi, O.; Sakurai, T.; Dorr, N.; Pilorge, M.; Takahashi, N.; Buxbaum, J.D. Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PLoS ONE 2012, 7, e42422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, S.O.; Sledziowska, M.; Cross, E.; Kalbassi, S.; Waldron, S.; Chen, F.; Ranson, A.; Baudouin, S.J. Behavioral training rescues motor deficits in Cyfip1 haploinsufficiency mouse model of autism spectrum disorders. Transl. Psychiatry 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, L.; Wang, X.; Zhu, L.; Towers, A.J.; Cao, X.; Kim, I.H.; Jiang, Y.-H. Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res. 2015, 1629, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Iturza, N.; Lo, A.C.; Shah, D.; Armendáriz, M.; Vannelli, A.; Mercaldo, V.; Trusel, M.; Li, K.W.; Gastaldo, D.; Santos, A.R.; et al. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat. Commun. 2019, 10, 3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.I.; Haddon, J.E.; Ahmed Syed, Y.; Trent, S.; Lin, T.-C.E.; Patel, Y.; Carter, J.; Haan, N.; Honey, R.C.; Humby, T.; et al. Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nat. Commun. 2019, 10, 3455. [Google Scholar] [CrossRef]
- Fricano-Kugler, C.; Gordon, A.; Shin, G.; Gao, K.; Nguyen, J.; Berg, J.; Starks, M.; Geschwind, D.H. CYFIP1 overexpression increases fear response in mice but does not affect social or repetitive behavioral phenotypes. Mol. Autism 2019, 10, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, C.; Li, J.; Zhou, Z.; Ju, X.; Xia, S.; Li, Y.; Liu, A.; Teng, H.; Zhang, K.; et al. PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep. 2018, 24, 2029–2041. [Google Scholar] [CrossRef] [Green Version]
- Ogura, H.; Matsumoto, M.; Mikoshiba, K. Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav. Brain Res. 2001, 122, 215–219. [Google Scholar] [CrossRef]
- Sugawara, T.; Hisatsune, C.; Le, T.D.; Hashikawa, T.; Hirono, M.; Hattori, M.; Nagao, S.; Mikoshiba, K. Type 1 Inositol Trisphosphate Receptor Regulates Cerebellar Circuits by Maintaining the Spine Morphology of Purkinje Cells in Adult Mice. J. Neurosci. 2013, 33, 12186. [Google Scholar] [CrossRef] [Green Version]
- Hisatsune, C.; Miyamoto, H.; Hirono, M.; Yamaguchi, N.; Sugawara, T.; Ogawa, N.; Ebisui, E.; Ohshima, T.; Yamada, M.; Hensch, T.K.; et al. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front. Neural Circuits 2013, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Soderling, S.H.; Langeberg, L.K.; Soderling, J.A.; Davee, S.M.; Simerly, R.; Raber, J.; Scott, J.D. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc. Natl. Acad. Sci. USA 2003, 100, 1723–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Wen, L.; Gao, X.; Jin, C.; Xue, Y.; Yao, X. DOG 1.0: illustrator of protein domain structures. Cell Res. 2009, 19, 271–273. [Google Scholar] [CrossRef] [PubMed]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; E Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Singh, T.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.N.; Hormozdiari, F.; Duyzend, M.; McClymont, S.A.; Hook, P.W.; Iossifov, I.; Raja, A.; Baker, C.; Hoekzema, K.; Stessman, H.A.; et al. Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. Am. J. Hum. Genet. 2016, 98, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Takata, A.; Miyake, N.; Tsurusaki, Y.; Fukai, R.; Miyatake, S.; Koshimizu, E.; Kushima, I.; Okada, T.; Morikawa, M.; Uno, Y.; et al. Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. Cell Rep. 2018, 22, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Stessman, H.; Xiong, B.; Coe, B.P.; Wang, T.; Hoekzema, K.; Fenckova, M.; Kvarnung, M.; Gerdts, J.; Trinh, S.; Cosemans, N.; et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 2017, 49, 515–526. [Google Scholar] [CrossRef]
- Aspromonte, M.C.; Bellini, M.; Gasparini, A.; Carraro, M.; Bettella, E.; Polli, R.; Cesca, F.; Bigoni, S.; Carlet, O.; Negrin, S.; et al. Characterization of intellectual disability and autism comorbidity through gene panel sequencing. Hum. Mutat. 2019, 40, 1346–1363. [Google Scholar] [CrossRef] [Green Version]
- Sadybekov, A.; Tian, C.; Arnesano, C.; Katritch, V.; Herring, B.E. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat. Commun. 2017, 8, 601. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, S.; Greville-Heygate, S.; Bonnet, M.; Godwin, A.; Fagotto-Kaufmann, C.; Kajava, A.V.; Laouteouet, D.; Mawby, R.; Wai, H.A.; Dingemans, A.J.; et al. Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders. Am. J. Hum. Genet. 2020, 106, 338–355. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Debant, A. Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases 2014, 5, e29769. [Google Scholar] [CrossRef] [Green Version]
- Medley, Q.G.; Serra-Pagès, C.; Iannotti, E.; Seipel, K.; Tang, M.; O’Brien, S.; Streuli, M. The Trio Guanine Nucleotide Exchange Factor Is a RhoA Target. J. Biol. Chem. 2000, 275, 36116–36123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, C.E.; Eipper, B.A.; Mains, R.E. Multiple novel isoforms of Trio are expressed in the developing rat brain. Gene 2005, 347, 125–135. [Google Scholar] [CrossRef]
- Portales-Casamar, E.; Briançon-Marjollet, A.; Fromont, S.; Triboulet, R.; Debant, A. Identification of novel neuronal isoforms of the Rho-GEF Trio. Biol. Cell 2006, 98, 183–193. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.P.; Seipel, K.; Medley, Q.G.; Bronson, R.; Segal, R.; Streuli, M. Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc. Natl. Acad. Sci. USA 2000, 97, 12074–12078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.-J.; He, W.-Q.; Tang, J.; Tao, T.; Chen, C.; Gao, Y.-Q.; Zhang, W.-C.; He, X.; Dai, Y.-Y.; Zhu, N.-C.; et al. Trio Is a Key Guanine Nucleotide Exchange Factor Coordinating Regulation of the Migration and Morphogenesis of Granule Cells in the Developing Cerebellum. J. Biol. Chem. 2010, 285, 24834–24844. [Google Scholar] [CrossRef] [Green Version]
- Goebbels, S.; Bormuth, I.; Bode, U.; Hermanson, O.; Schwab, M.H.; Nave, K. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 2006, 44, 611–621. [Google Scholar] [CrossRef]
- Huang, M.; Liang, C.; Li, S.; Zhang, J.; Guo, D.; Zhao, B.; Liu, Y.; Peng, Y.; Xu, J.; Liu, W.; et al. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front. Cell. Neurosci. 2020, 13, 577. [Google Scholar] [CrossRef] [Green Version]
- Nishikimi, A.; Kukimoto-Niino, M.; Yokoyama, S.; Fukui, Y. Immune regulatory functions of DOCK family proteins in health and disease. Exp. Cell Res. 2013, 319, 2343–2349. [Google Scholar] [CrossRef]
- Harada, Y.; Tanaka, Y.; Terasawa, M.; Pieczyk, M.; Habiro, K.; Katakai, T.; Hanawa-Suetsugu, K.; Kukimoto-Niino, M.; Nishizaki, T.; Shirouzu, M.; et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012, 119, 4451–4461. [Google Scholar] [CrossRef] [Green Version]
- Kunimura, K.; Uruno, T.; Fukui, Y. DOCK family proteins: Key players in immune surveillance mechanisms. Int. Immunol. 2020, 32, 5–15. [Google Scholar] [CrossRef]
- Allen-Brady, K.; Miller, J.; Matsunami, N.; Stevens, J.; Block, H.; Farley, M.; Krasny, L.; Pingree, C.; Lainhart, J.; Leppert, M.; et al. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol. Psychiatry 2008, 14, 590–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coon, H.; E Villalobos, M.; Robison, R.J.; Camp, N.J.; Cannon, D.S.; Allen-Brady, K.; Miller, J.S.; McMahon, W.M. Genome-wide linkage using the Social Responsiveness Scale in Utah autism pedigrees. Mol. Autism 2010, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Guo, H.; Xiong, B.; Stessman, H.A.; Wu, H.; Coe, B.P.; Turner, T.; Liu, Y.; Zhao, W.; Hoekzema, K.; et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat. Commun. 2016, 7, 13316. [Google Scholar] [CrossRef] [PubMed]
- Glessner, J.; Li, J.; Wang, D.; March, M.; Lima, L.; Desai, A.; Hadley, D.; Kao, C.; Gur, R.E.; Sleiman, P.M.; et al. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Med. 2017, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Krgovic, D.; Vokac, N.K.; Zagorac, A.; Kumperscak, H.G. Rare structural variants in the DOCK8 gene identified in a cohort of 439 patients with neurodevelopmental disorders. Sci. Rep. 2018, 8, 9449. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Wu, H.; Long, M.; Coe, B.P.; Li, H.; Xun, G.; Ou, J.-J.; Chen, B.; Duan, G.; et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism 2018, 9, 64. [Google Scholar] [CrossRef]
- Ruzzo, E.K.; Pérez-Cano, L.; Jung, J.Y.; Wang, L.K.; Kashef-Haghighi, D.; Hartl, C.; Singh, C.; Xu, J.; Hoekstra, J.N.; Leventhal, O.; et al. Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 2019, 178, 850–866.e26. [Google Scholar] [CrossRef] [Green Version]
- Biggs, C.; Keles, S.; Chatila, T.A. DOCK8 deficiency: Insights into pathophysiology, clinical features and management. Clin. Immunol. 2017, 181, 75–82. [Google Scholar] [CrossRef]
- Namekata, K.; Guo, X.; Kimura, A.; Arai, N.; Harada, C.; Harada, T. DOCK8 is expressed in microglia, and it regulates microglial activity during neurodegeneration in murine disease models. J. Biol. Chem. 2019, 294, 13421–13433. [Google Scholar] [CrossRef]
- Rynkiewicz, N.; Liu, T.; Balamatsias, D.; Mitchell, C.A. INPP4A/INPP4B and P-Rex proteins: Related but different? Adv. Biol. Regul. 2012, 52, 265–279. [Google Scholar] [CrossRef]
- Welch, H. Regulation and function of P-Rex family Rac-GEFs. Small GTPases 2015, 6, 49–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, H.C.; Coadwell, W.J.; Ellson, C.D.; Ferguson, G.J.; Andrews, S.R.; Erdjument-Bromage, H.; Tempst, P.; Hawkins, P.T.; Stephens, L.R. P-Rex1, a PtdIns(3,4,5)P-3- and G beta gamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002, 108, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, M.; Kawauchi, T.; Sone, M.; Nishimura, Y.V.; Terao, M.; Chihama, K.; Nabeshima, Y.-I.; Hoshino, M. Involvement of a Rac Activator, P-Rex1, in Neurotrophin-Derived Signaling and Neuronal Migration. J. Neurosci. 2005, 25, 4406–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, S.; Humby, T.; Fyfe, I.; Segonds-Pichon, A.; Walker, S.; Andrews, S.R.; Coadwell, W.J.; Emson, P.; Wilkinson, L.S.; Welch, H. P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proc. Natl. Acad. Sci. USA 2008, 105, 4483–4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Mata, R.; Burridge, K. Catching a GEF by its tail. Trends Cell Biol. 2007, 17, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Chaya, T.; Shibata, S.; Tokuhara, Y.; Yamaguchi, W.; Matsumoto, H.; Kawahara, I.; Kogo, M.; Ohoka, Y.; Inagaki, S. Identification of a Negative Regulatory Region for the Exchange Activity and Characterization of T332I Mutant of Rho Guanine Nucleotide Exchange Factor 10 (ARHGEF10). J. Biol. Chem. 2011, 286, 29511–29520. [Google Scholar] [CrossRef] [Green Version]
- Shibata, S.; Teshima, Y.; Niimi, K.; Inagaki, S. Involvement of ARHGEF10, GEF for RhoA, in Rab6/Rab8-mediating membrane traffic. Small GTPases 2019, 10, 169–177. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Guo, H.; Shi, L.; Zhang, K.; Tang, M.; Hu, S.; Dong, S.; Liu, C.; Wang, T.; et al. Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol. Psychiatry 2017, 22, 1282–1290. [Google Scholar] [CrossRef]
- Verhoeven, K.; De Jonghe, P.; Van De Putte, T.; Nelis, E.; Zwijsen, A.; Verpoorten, N.; De Vriendt, E.; Jacobs, A.; Van Gerwen, V.; Francis, A.; et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant Rho guanine-nucleotide exchange factor 10. Am. J. Hum. Genet. 2003, 73, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Cote, J.F.; Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 2002, 115 Pt 24, 4901–4913. [Google Scholar] [CrossRef] [Green Version]
- Griswold, A.J.; Dueker, N.D.; Van Booven, D.J.; Rantus, J.A.; Jaworski, J.M.; Slifer, S.H.; Schmidt, M.A.; Hulme, W.; Konidari, I.; Whitehead, P.G.; et al. Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants. Mol. Autism 2015, 6, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coci, E.G.; Auhuber, A.; Langenbach, A.; Mrasek, K.; Riedel, J.; Leenen, A.; Liehr, T.; Lücke, T. Novel Unbalanced Translocations Affecting the Long Arms of Chromosomes 10 and 22 Cause Complex Syndromes with Very Severe Neurodevelopmental Delay, Speech Impairment, Autistic Behavior, and Epilepsy. Cytogenet. Genome Res. 2017, 151, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Oh, M.H.; Bernard, L.P.; Macara, I.G.; Zhang, H. The RhoG/ELMO1/Dock180 signaling module is required for spine morphogenesis in hippocampal neurons. J. Biol. Chem. 2011, 286, 37615–37624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurin, M.; Fradet, N.; Blangy, A.; Hall, A.; Vuori, K.; Coté, J.-F. The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 15446–15451. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, E.; Pagnamenta, A.T.; Lamb, J.; Bacchelli, E.; Sykes, N.H.; De Sousa, I.G.M.; Toma, C.; Barnby, G.; Butler, H.; Winchester, L.; et al. High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L–DOCK4 gene region in autism susceptibility. Mol. Psychiatry 2009, 15, 954–968. [Google Scholar] [CrossRef] [Green Version]
- Pagnamenta, A.T.; Bacchelli, E.; De Jonge, M.V.; Mirza, G.; Scerri, T.S.; Minopoli, F.; Chiocchetti, A.; Ludwig, K.U.; Hoffmann, P.; Paracchini, S.; et al. Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia. Biol. Psychiatry 2010, 68, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Wang, X.-L.; Zou, M.-Y.; Wang, H.; Zhou, X.; Sun, C.-H.; Xia, W.; Wu, L.-J.; Fujisawa, T.X.; Tomoda, A. Family-based association study of ZNF533, DOCK4 and IMMP2L gene polymorphisms linked to autism in a northeastern Chinese Han population. J. Zhejiang Univ. Sci. B 2014, 15, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Peng, Y.; Wan, J.; Tang, G.; Chen, Y.; Tang, J.; Ye, W.-C.; Ip, N.Y.; Shi, L. The Atypical Guanine Nucleotide Exchange Factor Dock4 Regulates Neurite Differentiation through Modulation of Rac1 GTPase and Actin Dynamics. J. Biol. Chem. 2013, 288, 20034–20045. [Google Scholar] [CrossRef] [Green Version]
- Tcherkezian, J.; Lamarche-Vane, N. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 2007, 99, 67–86. [Google Scholar] [CrossRef]
- Reinhard, J.; Scheel, A.; Diekmann, D.; Hall, A.; Ruppert, C.; Bähler, M. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 1995, 14, 697–704. [Google Scholar] [CrossRef]
- Müller, R.T.; Honnert, U.; Reinhard, J.; Bähler, M. The Rat Myosin myr 5 Is a GTPase-activating Protein for Rho In Vivo: Essential Role of Arginine 1695. Mol. Biol. Cell 1997, 8, 2039–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.C.; E Cheney, R. Myosins in cell junctions. BioArchitecture 2012, 2, 158–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, J.A.; Jensen, K.A.; Post, P.L.; Bement, W.M.; Mooseker, M.S. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell Sci. 1996, 109 Pt 3, 653–661. [Google Scholar]
- Wang, M.-J.; Xu, X.-L.; Yao, G.-L.; Yu, Q.; Zhu, C.-F.; Kong, Z.-J.; Zhao, H.; Tang, L.-M.; Qin, X.-H. MYO9B gene polymorphisms are associated with the risk of inflammatory bowel diseases. Oncotarget 2016, 7, 58862–58875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, K.A.; Monsuur, A.J.; McArdle, W.; Kumar, P.J.; Travis, S.P.L.; Walters, J.R.F.; Jewell, D.P.; Strachan, D.P.; Playford, R.J.; Wijmenga, C.; et al. Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut 2006, 55, 969–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, P.J.; Xu, Y.; Kronlage, M.; Grobe, K.; Schoen, P.; Song, J.; Sorokin, L.; Schwab, A.; Baehler, M. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc. Natl. Acad. Sci. USA 2010, 107, 12145–12150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Pektor, S.; Balkow, S.; Hemkemeyer, S.A.; Liu, Z.; Grobe, K.; Hanley, P.J.; Shen, L.; Bros, M.; Schmidt, T.; et al. Dendritic Cell Motility and T Cell Activation Requires Regulation of Rho-Cofilin Signaling by the Rho-GTPase Activating Protein Myosin IXb. J. Immunol. 2014, 192, 3559–3568. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Zhu, X.; Yang, P.; Gao, Q.; Chen, Y.; Ma, L. Myo9b and RICS Modulate Dendritic Morphology of Cortical Neurons. Cereb. Cortex 2013, 23, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Govek, E.E.; Newey, S.E.; Akerman, C.J.; Cross, J.R.; Van der Veken, L.; Van Aelst, L. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat. Neurosci. 2004, 7, 364–372. [Google Scholar] [CrossRef]
- Zanni, G.; Saillour, Y.; Nagara, M.; Billuart, P.; Castelnau, L.; Moraine, C.; Faivre, L.; Bertini, E.; Durr, A.; Guichet, A.; et al. Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia. Neurology 2005, 65, 1364–1369. [Google Scholar] [CrossRef]
- Celestino-Soper, P.B.S.; Shaw, C.A.; Sanders, S.J.; Li, J.; Murtha, M.T.; Ercan-Sencicek, A.G.; Davis, L.; Thomson, S.; Gambin, T.; Chinault, A.C.; et al. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Hum. Mol. Genet. 2011, 20, 4360–4370. [Google Scholar] [CrossRef] [PubMed]
- Piton, A.; Gauthier, J.; Hamdan, F.F.; Lafreniere, R.G.; Yang, Y.; Henrion, E.; Laurent, S.; Noreau, A.; Thibodeau, P.; Karemera, L.; et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol. Psychiatry 2011, 16, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Duyzend, M.H.; Coe, B.P.; Baker, C.; Hoekzema, K.; Gerdts, J.; Turner, T.N.; Zody, M.C.; Beighley, J.S.; Murali, S.C.; et al. Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet. Med. 2019, 21, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Barresi, S.; Tomaselli, S.; Athanasiadis, A.; Galeano, F.; Locatelli, F.; Bertini, E.; Zanni, G.; Gallo, A. Oligophrenin-1 (OPHN1), a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development. PLoS ONE 2014, 9, e91351. [Google Scholar] [CrossRef] [Green Version]
- Fauchereau, F.; Herbrand, U.; Chafey, P.; Eberth, A.; Koulakoff, A.; Vinet, M.C.; Ahmadian, M.R.; Chelly, J.; Billuart, P. The RhoGAP activity of OPHN1, a new F-actin-binding protein, is negatively controlled by its amino-terminal domain. Mol. Cell. Neurosci. 2003, 23, 574–586. [Google Scholar] [CrossRef]
- Redish, A.D. Vicarious trial and error. Nat. Rev. Neurosci. 2016, 17, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Burbelo, P.D.; Miyamoto, S.; Utani, A.; Brill, S.; Yamada, K.M.; Hall, A.; Yamada, Y. p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J. Biol. Chem. 1995, 270, 30919–30926. [Google Scholar] [CrossRef] [Green Version]
- Bustos, R.I.; Forget, M.-A.; Settleman, J.E.; Hansen, S.H. Coordination of Rho and Rac GTPase Function via p190B RhoGAP. Curr. Biol. 2008, 18, 1606–1611. [Google Scholar] [CrossRef] [Green Version]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Stiegler, A.L.; Boggon, T.J. p190RhoGAP proteins contain pseudoGTPase domains. Nat. Commun. 2017, 8, 506. [Google Scholar] [CrossRef]
- Héraud, C.; Pinault, M.; Lagrée, V.; Moreau, V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Sordella, R.; Classon, M.; Hu, K.Q.; Matheson, S.F.; Brouns, M.R.; Fine, B.; Zhang, L.; Takami, H.; Yamada, Y.; Settleman, J. Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev. Cell 2002, 2, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Matheson, S.F.; Hu, K.-Q.; Brouns, M.R.; Sordella, R.; VanderHeide, J.D.; Settleman, J. Distinct but overlapping functions for the closely related p190 RhoGAPs in neural development. Dev. Neurosci. 2006, 28, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Heckman, B.M.; Chakravarty, G.; Vargo-Gogola, T.; Gonzales-Rimbau, M.; Hadsell, D.L.; Lee, A.V.; Settleman, J.; Rosen, J.M. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev. Biol. 2007, 309, 137–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, R.; Kumar, R.S.; Hinge, A.; Kumar, S.; Nayak, R.; Xu, J.; Szczur, K.; Cancelas, J.A.; Filippi, M.D. p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment. Leukemia 2013, 27, 2209–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinge, A.; Xu, J.; Javier, J.; Mose, E.; Kumar, S.; Kapur, R.; Srour, E.F.; Malik, P.; Aronow, B.J.; Filippi, M.-D. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 2017, 8, 14382. [Google Scholar] [CrossRef] [PubMed]
- Heide, M.; Long, K.R.; Huttner, W.B. Novel gene function and regulation in neocortex expansion. Curr. Opin. Cell Biol. 2017, 49, 22–30. [Google Scholar] [CrossRef]
- Chiliana, B.; Abdollahpour, H.; Bierhals, T.; Haltrich, I.; Fekete, G.; Nagel, I.; Rosenberger, G.; Kutsche, K. Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin. Genet. 2013, 84, 560–565. [Google Scholar] [CrossRef]
- Chen, J.; Calhoun, V.D.; Perrone-Bizzozero, N.I.; Pearlson, G.D.; Sui, J.; Du, Y.; Liu, J. A pilot study on commonality and specificity of copy number variants in schizophrenia and bipolar disorder. Transl. Psychiatry 2016, 6, e824. [Google Scholar] [CrossRef] [Green Version]
- Vadgama, N.; Pittman, A.; Simpson, M.; Nirmalananthan, N.; Murray, R.; Yoshikawa, T.; De Rijk, P.; Rees, E.; Kirov, G.; Hughes, D.; et al. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. Eur. J. Hum. Genet. 2019, 27, 1121–1133. [Google Scholar] [CrossRef]
- Leblond, C.S.; Heinrich, J.; Delorme, R.; Proepper, C.; Betancur, C.; Huguet, G.; Konyukh, M.; Chaste, P.; Ey, E.; Rastam, M.; et al. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 2012, 8, e1002521. [Google Scholar] [CrossRef] [Green Version]
- Florio, M.; Albert, M.; Taverna, E.; Namba, T.; Brandl, H.; Lewitus, E.; Haffner, C.; Sykes, A.; Wong, F.K.; Peters, J.; et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 2015, 347, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Wilsch-Braeuninger, M.; Florio, M.; Huttner, W.B. Neocortex expansion in development and evolution - from cell biology to single genes. Curr. Opin. Neurobiol. 2016, 39, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Florio, M.; Namba, T.; Pääbo, S.; Hiller, M.; Huttner, W.B. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Sci. Adv. 2016, 2, e1601941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akshoomoff, N.; Mattson, S.N.; Grossfeld, P.D. Evidence for autism spectrum disorder in Jacobsen syndrome: identification of a candidate gene in distal 11q. Genet. Med. 2015, 17, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.M.; Ma, H.; Bossy-Wetzel, E.; Lipton, S.A.; Zhang, Z.H.; Feng, G.S. GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2. J. Biol. Chem. 2003, 278, 34641–34653. [Google Scholar] [CrossRef] [Green Version]
- Okabe, T.; Nakamura, T.; Nishimura, Y.N.; Kohu, K.; Ohwada, S.; Morishita, Y.; Akiyama, T. RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 2003, 278, 9920–9927. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Komiya, M.; Sone, K.; Hirose, E.; Gotoh, N.; Morii, H.; Ohta, Y.; Mori, N. Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol. Cell. Biol. 2002, 22, 8721–8734. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, T.; Watabe, A.M.; Tezuka, T.; Yoshida, Y.; Yokoyama, K.; Umemori, H.; Inoue, A.; Okabe, S.; Manabe, T.; Yamamoto, T. p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-D-aspartate receptor signaling. Mol. Biol. Cell 2003, 14, 2921–2934. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.Y.; Zang, H.S.; Zheng, Y. Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP. J. Biol. Chem. 2003, 278, 4151–4159. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Hayashi, T.; Nasu-Nishimura, Y.; Sakaue, F.; Morishita, Y.; Okabe, T.; Ohwada, S.; Matsuura, K.; Akiyama, T. PX-RICS mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Genes Dev. 2008, 22, 1244–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasu-Nishimura, Y.; Hayashi, T.; Ohishi, T.; Okabe, T.; Ohwada, S.; Hasegawa, Y.; Senda, T.; Toyoshima, C.; Nakamura, T.; Akiyama, T. Role of the Rho GTPase-activating protein RICS in neurite outgrowth. Genes Cells 2006, 11, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Huang, H.; Zhou, X.; Liu, X.; Ou, S.; Xu, T.; Li, R.; Ma, L.; Chen, Y. MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plast. 2016, 2016, 5108489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, T.; Okabe, T.; Nasu-Nishimura, Y.; Sakaue, F.; Ohwada, S.; Matsuura, K.; Akiyama, T.; Nakamura, T. PX-RICS, a novel splicing variant of RICS, is a main isoform expressed during neural development. Genes Cells 2007, 12, 929–939. [Google Scholar] [CrossRef]
- Endris, V.; Wogatzky, B.; Leimer, U.; Bartsch, D.; Zatyka, M.; Latif, F.; Maher, E.R.; Tariverdian, G.; Kirsch, S.; Karch, D.; et al. The novel Rho-GTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc. Natl. Acad. Sci. USA 2002, 99, 11754–11759. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Mi, Y.-J.; Dai, Y.-K.; Fu, H.-L.; Cui, D.-X.; Jin, W.-L. The inverse F-BAR domain protein srGAP2 acts through srGAP3 to modulate neuronal differentiation and neurite outgrowth of mouse neuroblastoma cells. PLoS ONE 2013, 8, e57865. [Google Scholar] [CrossRef]
- Bacon, C.; Endris, V.; Rappold, G.A. The cellular function of srGAP3 and its role in neuronal morphogenesis. Mech. Dev. 2013, 130, 391–395. [Google Scholar] [CrossRef]
- Wuertenberger, S.; Groemping, Y. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. FEBS Lett. 2015, 589, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Waltereit, R.; Kautt, S.; Bartsch, D. Expression of MEGAP mRNA during embryonic development. Gene Expr. Patterns 2008, 8, 307–310. [Google Scholar] [CrossRef]
- Bacon, C.; Endris, V.; Rappold, G. Dynamic Expression of the Slit-Robo GTPase Activating Protein Genes during Development of the Murine Nervous System. J. Comp. Neurol. 2009, 513, 224–236. [Google Scholar] [CrossRef]
- Yao, Q.; Jin, W.-L.; Wang, Y.; Ju, G. Regulated shuttling of Slit-Robo-GTPase activating proteins between nucleus and cytoplasm during brain development. Cell. Mol. Neurobiol. 2008, 28, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Faucherre, A.; Desbois, P.; Satre, V.; Lunardi, J.; Dorseuil, O.; Gacon, G. Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum. Mol. Genet. 2003, 12, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Kenworthy, L.; Park, T.; Charnas, L.R. Cognitive and behavioral profile of the oculocerebrorenal syndrome of Lowe. Am. J. Med Genet. 1993, 46, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.; Berg, K.; Moss, J.; Arron, K.; Burbidge, C. Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity. J. Autism Dev. Disord. 2011, 41, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Schroer, R.J.; Beaudet, A.L.; Shinawi, M.; Sahoo, T.; Patel, A.; Sun, Q.; Skinner, C.; Stevenson, R.E. Duplication of OCRL and Adjacent Genes Associated with Autism but not Lowe Syndrome. Am. J. Med. Genet. Part A 2012, 158A, 2602–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdmann, K.S.; Mao, Y.; McCrea, H.J.; Zoncu, R.; Lee, S.; Paradise, S.; Modregger, J.; Biemesderfer, D.; Toomre, D.; De Camillil, P. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 2007, 13, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Balkin, D.M.; Zoncu, R.; Erdmann, K.S.; Tomasini, L.; Hu, F.; Jin, M.M.; Hodsdon, M.E.; De Camilli, P. A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J. 2009, 28, 1831–1842. [Google Scholar] [CrossRef]
- Bothwell, S.P.; Chan, E.; Bernardini, I.M.; Kuo, Y.-M.; Gahl, W.A.; Nussbaum, R.L. Mouse Model for Lowe Syndrome/Dent Disease 2 Renal Tubulopathy. J. Am. Soc. Nephrol. 2011, 22, 443–448. [Google Scholar] [CrossRef]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef]
- Kitamura, Y.; Kitamura, T.; Sakaue, H.; Maeda, T.; Ueno, H.; Nishio, S.; Ohno, S.; Osada, S.i.; Sakaue, M.; Ogawa, W.; et al. Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac. Biochem. J. 1997, 322 Pt 3, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.-h.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iossifov, I.; Levy, D.; Allen, J.; Ye, K.; Ronemus, M.; Lee, Y.-h.; Yamrom, B.; Wigler, M. Low load for disruptive mutations in autism genes and their biased transmission. Proc. Natl. Acad. Sci. United States Am. 2015, 112, E5600–E5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freed, D.; Pevsner, J. The Contribution of Mosaic Variants to Autism Spectrum Disorder. PLoS Genet. 2016, 12, e1006245. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Kitamura, Y.; Yonezawa, K.; Totty, N.F.; Gout, I.; Hara, K.; Waterfield, M.D.; Sakaue, M.; Ogawa, W.; Kasuga, M. Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem. Biophys. Res. Commun. 1996, 219, 509–514. [Google Scholar] [CrossRef]
- Suzuki, T.; Nishiyama, K.; Yamamoto, A.; Inazawa, J.; Iwaki, T.; Yamada, T.; Kanazawa, I.; Sakaki, Y. Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 2000, 63, 246–254. [Google Scholar] [CrossRef]
- Yokota, Y.; Ring, C.; Cheung, R.; Pevny, L.; Anton, E.S. Nap1-regulated neuronal cytoskeletal dynamics is essential for the final differentiation of neurons in cerebral cortex. Neuron 2007, 54, 429–445. [Google Scholar] [CrossRef] [Green Version]
- Doornbos, M.; Sikkema-Raddatz, B.; Ruijvenkamp, C.A.L.; Dijkhuizen, T.; Bijlsma, E.K.; Gijsbers, A.C.J.; Hilhorst-Hofstee, Y.; Hordijk, R.; Verbruggen, K.T.; Kerstjens-Frederikse, W.S.; et al. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances. Eur. J. Med. Genet. 2009, 52, 108–115. [Google Scholar] [CrossRef]
- Van der Zwaag, B.; Staal, W.G.; Hochstenbach, R.; Poot, M.; Spierenburg, H.A.; de Jonge, M.V.; Verbeek, N.E.; van’t Slot, R.; van Es, M.A.; Staal, F.J.; et al. A Co-segregating Microduplication of Chromosome 15q11.2 Pinpoints Two Risk Genes for Autism Spectrum Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 960–966. [Google Scholar] [CrossRef] [Green Version]
- Picinelli, C.; Lintas, C.; Piras, I.S.; Gabriele, S.; Sacco, R.; Brogna, C.; Persico, A.M. Recurrent 15q11.2 BP1-BP2 Microdeletions and Microduplications in the Etiology of Neurodevelopmental Disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 1088–1098. [Google Scholar] [CrossRef]
- Cox, D.M.; Butler, M.G. The 15q11.2 BP1-BP2 Microdeletion Syndrome: A Review. Int. J. Mol. Sci. 2015, 16, 4068–4082. [Google Scholar] [CrossRef]
- Isabel Alvarez-Mora, M.; Calvo Escalona, R.; Puig Navarro, O.; Madrigal, I.; Quintela, I.; Amigo, J.; Martinez-Elurbe, D.; Linder-Lucht, M.; Aznar Lain, G.; Carracedo, A.; et al. Comprehensive molecular testing in patients with high functioning autism spectrum disorder. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2016, 784, 46–52. [Google Scholar] [CrossRef]
- Waltes, R.; Duketis, E.; Knapp, M.; Anney, R.J.L.; Huguet, G.; Schlitt, S.; Jarczok, T.A.; Sachse, M.; Kaempfer, L.M.; Kleinboeck, T.; et al. Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders. Hum. Genet. 2014, 133, 781–792. [Google Scholar] [CrossRef]
- Toma, C.; Torrico, B.; Hervas, A.; Valdes-Mas, R.; Tristan-Noguero, A.; Padillo, V.; Maristany, M.; Salgado, M.; Arenas, C.; Puente, X.S.; et al. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol. Psychiatry 2014, 19, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tao, Y.; Song, F.; Sun, Y.; Ott, J.; Saffen, D. Common Regulatory Variants of CYFIP1 Contribute to Susceptibility for Autism Spectrum Disorder (ASD) and Classical Autism. Ann. Hum. Genet. 2015, 79, 329–340. [Google Scholar] [CrossRef]
- Noroozi, R.; Omrani, M.D.; Sayad, A.; Taheri, M.; Ghafouri-Fard, S. Cytoplasmic FMRP interacting protein 1/2 (CYFIP1/2) expression analysis in autism. Metab. Brain Dis. 2018, 33, 1353–1358. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kuroda, S.; Fukata, M.; Nakamura, T.; Nagase, T.; Nomura, N.; Matsuura, Y.; Yoshida-Kubomura, N.; Iwamatsu, A.; Kaibuchi, K. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 1998, 273, 291–295. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, S.; Pasciuto, E.; Li, K.W.; Fernandez, E.; Di Marino, D.; Buzzi, A.; Ostroff, L.E.; Klann, E.; Zwartkruis, F.J.T.; Komiyama, N.H.; et al. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron 2013, 79, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Koster, F.; Schinke, B.; Niemann, S.; Hermans-Borgmeyer, I. Identification of shyc, a novel gene expressed in the murine developing and adult nervous system. Neurosci. Lett. 1998, 252, 69–71. [Google Scholar] [CrossRef]
- Bonaccorso, C.M.; Spatuzza, M.; Di Marco, B.; Gloria, A.; Barrancotto, G.; Cupo, A.; Musumeci, S.A.; D’Antoni, S.; Bardoni, B.; Catania, M.V. Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int. J. Dev. Neurosci. 2015, 42, 15–23. [Google Scholar] [CrossRef]
- Hsiao, K.; Harony-Nicolas, H.; Buxbaum, J.D.; Bozdagi-Gunal, O.; Benson, D.L. Cyfip1 Regulates Presynaptic Activity during Development. J. Neurosci. 2016, 36, 1564–1576. [Google Scholar] [CrossRef]
- Pathania, M.; Davenport, E.C.; Muir, J.; Sheehan, D.F.; López-Doménech, G.; Kittler, J.T. The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl. Psychiatry 2014, 4, e374. [Google Scholar] [CrossRef]
- Davenport, E.C.; Szulc, B.R.; Drew, J.; Taylor, J.; Morgan, T.; Higgs, N.F.; Lopez-Domenech, G.; Kittler, J.T. Autism and Schizophrenia-Associated CYFIP1 Regulates the Balance of Synaptic Excitation and Inhibition. Cell Rep. 2019, 26, 2037. [Google Scholar] [CrossRef] [Green Version]
- Yuen, R.K.C.; Merico, D.; Bookman, M.; Howe, J.L.; Thiruvahindrapuram, B.; Patel, R.V.; Whitney, J.; Deflaux, N.; Bingham, J.; Wang, Z.; et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 2017, 20, 602. [Google Scholar] [CrossRef]
- Willatt, L.; Cox, J.; Barber, J.; Cabanas, E.D.; Collins, A.; Donnai, D.; FitzPatrick, D.R.; Maher, E.; Martin, H.; Parnau, J.; et al. 3q29 Microdeletion syndrome: Clinical and molecular characterization of a new syndrome. Am. J. Hum. Genet. 2005, 77, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Quintero-Rivera, F.; Sharifi-Hannauer, P.; Martinez-Agosto, J.A. Autistic and Psychiatric Findings Associated With the 3q29 Microdeletion Syndrome: Case Report and Review. Am. J. Med Genet. Part A 2010, 152A, 2459–2467. [Google Scholar] [CrossRef]
- Glassford, M.R.; Rosenfeld, J.A.; Freedman, A.A.; Zwick, M.E.; Mulle, J.G. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry. Am. J. Med Genet. Part A 2016, 170, 999–1006. [Google Scholar] [CrossRef]
- Jaffer, Z.M.; Chernoff, J. p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol. 2002, 34, 713–717. [Google Scholar] [CrossRef]
- Rane, C.K.; Minden, A. P21 activated kinases: structure, regulation, and functions. Small Gtpases 2014, 5, e28003. [Google Scholar] [CrossRef]
- Kreis, P.; Barnier, J.-V. PAK signalling in neuronal physiology. Cell. Signal. 2009, 21, 384–393. [Google Scholar] [CrossRef]
- Arias-Romero, L.E.; Chernoff, J. A tale of two Paks. Biol. Cell 2008, 100, 97–108. [Google Scholar] [CrossRef]
- Hofmann, C.; Shepelev, M.; Chernoff, J. The genetics of Pak. J. Cell Sci. 2004, 117, 4343–4354. [Google Scholar] [CrossRef] [Green Version]
- Marlin, J.W.; Chang, Y.-W.E.; Ober, M.; Handy, A.; Xu, W.; Jakobi, R. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm. Genome 2011, 22, 306–317. [Google Scholar] [CrossRef]
- Geisheker, M.R.; Heymann, G.; Wang, T.; Coe, B.P.; Turner, T.N.; Stessman, H.A.F.; Hoekzema, K.; Kvarnung, M.; Shaw, M.; Friend, K.; et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 2017, 20, 1043. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Joseph, S.K.; Thomas, A.P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 1999, 25, 247–264. [Google Scholar] [CrossRef]
- Rosemblit, N.; Moschella, M.C.; Ondriasova, E.; Gutstein, D.E.; Ondrias, K.; Marks, A.R. Intracellular calcium release channel expression during embryogenesis. Dev. Biol. 1999, 206, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, S.; Maeda, N.; Mikoshiba, K. Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain. J. Neurosci. 1991, 11, 2075–2086. [Google Scholar] [CrossRef]
- Taylor, C.W.; Genazzani, A.A.; Morris, S.A. Expression of inositol trisphosphate receptors. Cell Calcium 1999, 26, 237–251. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nakagawa, T.; Inoue, T.; Nagata, E.; Tanaka, K.; Takano, H.; Minowa, O.; Kuno, J.; Sakakibara, S.; Yamada, M.; et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 1996, 379, 168–171. [Google Scholar] [CrossRef]
- Inoue, T.; Kato, K.; Kohda, K.; Mikoshiba, K. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J. Neurosci. 1998, 18, 5366–5373. [Google Scholar] [CrossRef]
- Fujii, S.; Matsumoto, M.; Igarashi, K.; Kato, H.; Mikoshiba, K. Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn. Mem. 2000, 7, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Nagase, T.; Ito, K.I.; Kato, K.; Kaneko, K.; Kohda, K.; Matsumoto, M.; Hoshino, A.; Inoue, T.; Fujii, S.; Kato, H.; et al. Long-term potentiation and long-term depression in hippocampal CA1 neurons of mice lacking the IP3 type 1 receptor. Neuroscience 2003, 117, 821–830. [Google Scholar] [CrossRef]
- Steinberg, S.F. Structural basis of protein kinase C isoform function. Physiol. Rev. 2008, 88, 1341–1378. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Kumar, S.; Gautam, P.K.; Tomar, M.S.; Verma, P.K.; Singh, S.P.; Kumar, S.; Acharya, A. Protein kinase C-alpha and the regulation of diverse cell responses. Biomol. Concepts 2017, 8, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Shuntoh, H.; Sakamoto, N.; Matsuyama, S.; Saitoh, M.; Tanaka, C. Molecular structure of the C beta catalytic subunit of rat cAMP-dependent protein kinase and differential expression of C alpha and C beta isoforms in rat tissues and cultured cells. Biochim. Et Biophys. Acta 1992, 1131, 175–180. [Google Scholar] [CrossRef]
- Letiges, M.; Plomann, M.; Standaert, M.L.; Bandyopadhyay, G.; Sajan, M.P.; Kanoh, Y.; Farese, R.V. Knockout of PKC alpha enhances insulin signaling through PI3K. Mol. Endocrinol. 2002, 16, 847–858. [Google Scholar]
- Ito, Y.; Carss, K.J.; Duarte, S.T.; Hartley, T.; Keren, B.; Kurian, M.A.; Marey, I.; Charles, P.; Mendonca, C.; Nava, C.; et al. De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. Am. J. Hum. Genet. 2018, 103, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Benachenhou, N.; Massy, I.; Vacher, J. Characterization and expression analyses of the mouse Wiskott-Aldrich syndrome protein (WASP) family member Wave1/Scar. Gene 2002, 290, 131–140. [Google Scholar] [CrossRef]
- Suetsugu, S.; Miki, H.; Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem. Biophys. Res. Commun. 1999, 260, 296–302. [Google Scholar] [CrossRef]
- Dahl, J.P.; Wang-Dunlop, J.; Gonzalez, C.; Goad, M.E.P.; Mark, R.J.; Kwak, S.P. Characterization of the WAVE1 knock-out mouse: Implications for CNS development. J. Neurosci. 2003, 23, 3343–3352. [Google Scholar] [CrossRef] [Green Version]
- Ceglia, I.; Lee, K.-W.; Cahill, M.E.; Graves, S.M.; Dietz, D.; Surmeier, D.J.; Nestler, E.J.; Nairn, A.C.; Greengard, P.; Kim, Y. WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proc. Natl. Acad. Sci. USA 2017, 114, 1395–1400. [Google Scholar] [CrossRef] [Green Version]
- Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B.; Dickstein, D.L.; Harony-Nicolas, H.; De Rubeis, S.; Drapeau, E.; Buxbaum, J.D.; et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017, 134, 537–566. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Pucci, L.; Bezzi, P. Astrocytes and Microglia and Their Potential Link with Autism Spectrum Disorders. Front. Cell. Neurosci. 2016, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef]
- Delorme, R.; Ey, E.; Toro, R.; Leboyer, M.; Gillberg, C.; Bourgeron, T. Progress toward treatments for synaptic defects in autism. Nat. Med. 2013, 19, 685–694. [Google Scholar] [CrossRef]
ASD Candidate Gene | Gene Name | Chromosome Location | Genetic Category | SFARI Gene Score | Upstream/DOWNSTREAM Rho GTPase(s) |
---|---|---|---|---|---|
Rho GTPase GEF | |||||
ARHGEF9 | Cdc42 guanine nucleotide exchange factor (GEF) 9 | Xq11.1-q11.2 | Rare Single Gene Mutation, Syndromic | Category 1 (High Confidence) | CDC42 |
TRIO | Trio Rho guanine nucleotide exchange factor | 5p15.2 | Rare Single Gene Mutation, Syndromic | Category 1 (High Confidence) | RHOA, RAC1 |
DOCK8 | Dedicator of cytokinesis 8 | 9p24.3 | Rare Single Gene Mutation | Category 2 (Strong Candidate) | CDC42 |
PREX1 | Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 | 20q13.13 | Genetic Association | Category 2 (Strong Candidate) | RAC1 |
ARHGEF10 | Rho guanine nucleotide exchange factor 10 | 8p23.3 | Rare Single Gene Mutation, Functional | Category 3 (Suggestive Evidence) | RHOA |
DOCK1 | Dedicator of cytokinesis 1 | 10q26.2 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | RAC1 |
DOCK4 | Dedicator of cytokinesis 4 | 7q31.1 | Rare Single Gene Mutation, Genetic Association, functional | Category 3 (Suggestive Evidence) | RAC1 |
Rho GTPase GAP | |||||
MYO9B | Myosin IXB | 19p13.11 | Rare Single Gene Mutation | Category 2 (Strong Candidate) | RHOA |
OPHN1 | Oligophrenin 1 | Xq12 | Rare Single Gene Mutation, Syndromic | Category 2 (Strong Candidate) | RHOA, RAC1, CDC42 |
ARHGAP5 | Rho GTPase activating protein 5 | 14q12 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | RHOA, RAC1, CDC42 |
ARHGAP11B | Rho GTPase activating protein 11B | 15q13.2 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | Unknown |
ARHGAP32 | Rho GTPase activating protein 32 | 11q24.3 | Rare Single Gene Mutation, Functional | Category 3 (Suggestive Evidence) | RHOA, RAC1, CDC42 |
SRGAP3 | SLIT-ROBO Rho GTPase activating protein 3 | 3p25.3 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | CDC42, RAC1 |
OCRL | Oculocerebrorenal syndrome of Lowe | Xq26.1 | Rare Single Gene Mutation, Syndromic | Syndromic | CDC42, RAC1 |
Rho GTPase Effector | |||||
NCKAP1 | NCK-associated protein 1 | 2q32.1 | Rare Single Gene Mutation | Category 1 (High Confidence) | RAC1 |
CYFIP1 | Cytoplasmic FMR1 interacting protein 1 | 15q11.2 | Rare Single Gene Mutation, Genetic Association, Functional | Category 2 (Strong Candidate) | RAC1 |
PAK2 | p21 (RAC1) activated kinase 2 | 3q29 | Rare Single Gene Mutation | Category 2 (Strong Candidate) | CDC42, RAC1 |
ITPR1 | Inositol 1,4,5-trisphosphate receptor type 1 | 3p26.1 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | RHOA |
PRKCA | Protein kinase C alpha | 17q24.2 | Rare Single Gene Mutation | Category 3 (Suggestive Evidence) | RHOA, RAC1, CDC42 |
WASF1 | WAS protein family member 1 | 6q21 | Syndromic | Syndromic | RAC1 |
Gene | Mouse Model | Core Symptoms | Comorbidities | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
Social Related Behavior | Language Communication | Repetitive Behavior | Anxiety and Depression | Learning and Memory | Basic locomotion and Motor Coordination | Schizophrenia and Epilepsy | |||
Summary of ASD-related behavior tests in Rho GEF mouse models | |||||||||
ARHGEF9 | Arhgef9 KO mice * | NT 1 | NT | NT | Anxiety ↑ | Spatial learning and memory ↓ | Activity ⎻ | NT | [63] |
TRIO | Emx1-Trio−/− mice # | NT | NT | NT | NT | Spatial learning and memory ↓ Fear memory ↓ | NT | NT | [66] |
NEX-Trio+/− mice & | Social preference ↓ | NT | Nestlet shredding (M2, ↑; F3, ⎻) | Anxiety ↑ Depression ⎻ | Object recognition memory ⎻ | Activity ↓ Motor coordination ↓ | Prepulse inhibition ⎻ | [67] | |
NEX-Trio−/− mice & | Social preference ↓ | NT | Nestlet shredding (M, ↑; F, ⎻) | Anxiety (M, ↑; F, ⎻) Depression ↑ | Object recognition memory ⎻ | Activity ↑ Motor coordination ↓ | Prepulse inhibition (M, ↓; F, ⎻) | ||
PREX1 | Prex1−/− mice * | Social preference ↓ Social learning and memory ↓ Olfactory function ⎻ | Ultrasonic vocalizations (pup) ↓ | Grooming ↑ | Anxiety ⎻ | Reversal learning ↓ Fear memory ↓ Object recognition memory ⎻ | Activity ⎻ Motor coordination ⎻ | Prepulse inhibition ⎻ | [68] |
ARHGEF10 | Arhgef10 KO mice * | Sociability and social novelty preference ↓ | NT | NT | Anxiety ↓ Depression ↓ | Spatial learning and memory ⎻ | Activity ↑ | Prepulse inhibition ⎻ | [69] |
DOCK4 | Dock4 KO mice & | Social novelty preference ↓ | Ultrasonic vocalizations (pup) ↓ | Stereotyped circling (~9% F; M, ⎻) Marble burying (M, ⎻; F, NT) Grooming (M, ⎻; F, NT) | Anxiety ↑ | Object recognition memory (F, ↓; M, ⎻) Spatial memory (M, ↓; F, ⎻) Working memory (M, ↓; F, ⎻) | Activity (~9% F, ↑; M, ⎻) | NT | [70] |
Dock4 HET mice & | Social novelty preference (F,↓; M, ⎻) | Ultrasonic vocalizations (pup) ⎻ | Stereotyped circling (~1.7% F; M, ⎻) Marble burying (M, ⎻; F, NT) Grooming (M, ⎻; F, NT) | Anxiety ⎻ | Object recognition memory ⎻ Spatial memory (F, ↓; M, ⎻) Working memory ⎻ | Activity (~1.7% F,↑; M, ⎻) | NT | ||
Summary of ASD-related behavior tests in Rho GAP mouse models | |||||||||
OPHN1 | Ophn1-/y mice * | Aggressivity ↓ Social memory ⎻ Olfactory function ↓ | NT | NT | Anxiety ⎻ | Working, object recognition, and spatial learning and memory ↓ Fear memory extinction ↓ Vicarious trial and error (VTE) behavior ↓ | Activity ↑ Motor coordination ⎻ Behavioral lateralization ↓ | NT | [71,72,73,74,75] |
ARHGAP32 | PX-RICS−/− mice (M were used in most behavior tests unless otherwise stated) | Social novelty preference ↓ social interaction ↓ | Ultrasonic vocalizations (M and F,↓) | Grooming ↑ Marble burying ↑ | NT | Reversal learning ↓ Fear memory ↓ | Motor coordination ↓ | Epilepsy (Severe progressive seizures) | [76,77] |
PX-RICS+/− mice (M were used in most behavior tests unless otherwise stated) | Social novelty preference ↓ social interaction ↓ | Ultrasonic vocalizations (M and F, ⎻) | Grooming ⎻ Marble burying ↑ | NT | Reversal learning ⎻ | Motor coordination ⎻ | NT | [76] | |
SRGAP3 | WRP−/− mice & | NT | NT | NT | Anxiety ⎻ | Object recognition and long-term memory ↓ Spatial and reversal learning ↓ Working memory ⎻ | Activity ⎻ Motor coordination ⎻ | NT | [78] |
WRP+/− mice & | NT | NT | NT | Anxiety ⎻ | Object recognition and long-term memory ↓ Spatial and reversal learning ↓ Working memory ⎻ | Activity ⎻ Motor coordination ⎻ | NT | ||
SrGAP3-/- mice & | Social interaction ↓ | NT | Marble burying (M, ⎻; F, NT) | Anxiety ⎻ | Working memory ↓ Spatial and object recognition memory ⎻ Fear memory ↑ | Activity (M,↓; F, ⎻) | Prepulse inhibition (F,↓; M, ⎻) | [79,80] | |
OCRL | Ocrl1−/y mice * | NT | NT | NT | NT | Passive avoidance preference ⎻ | Activity ⎻ Motor coordination ↓ | NT | [81] |
Ocrl1−/y mice * (Inpp5b deleted but human INPP5B overexpressed) | Social preference ⎻ Social novelty ⎻ | NT | NT | NT | Spatial learning and memory ⎻ | Activity ↓ | NT | [82] | |
Summary of ASD-related behavior tests in Rho effector mouse models | |||||||||
CYFIP1 | Cyfip1 HET mice * | Social interaction ⎻ | NT | NT | Anxiety ⎻ | Hippocampus-dependent memory ↓ Working, spatial, and fearing memory ⎻ | Activity ⎻ | Prepulse inhibition ⎻ | [83] |
Cyfip1HET mice # | Social interest ↓ | Ultrasonic vocalizations ⎻ | Marble burying ⎻ | NT | NT | Activity ⎻ Motor coordination ↓ | NT | [84] | |
Cyfip1 m+/p− (Paternal origin) and Cyfip1 m−/p+ (maternal origin) mice # | NT | NT | NT | Anxiety-like behavior | Fear memory (m+/p−, ↑; m−/p+, ⎻) | Activity (m+/p−, ⎻; m−/p+, ↓) | NT | [85] | |
Cyfip1+/− mice * | NT | NT | Self-grooming ⎻ Marble burying ⎻ | NT | Spatial memory and flexibility ⎻ Object recognition memory ↓ Working memory ⎻ | Activity ⎻ Motor coordination ↓ | Prepulse inhibition ↓ | [86] | |
Cyfip1+/− rat * | NT | NT | NT | NT | Behavioral flexibility ↓ | NT | NT | [87] | |
Human CYFIP1 overexpressing mice (Tg line 1 and Tg line 2) & | Social preference ⎻ | Ultrasonic vocalizations ⎻ | Grooming ⎻ Digging ⎻ | Anxiety ⎻ | Fear memory (Line 1 and line 2, ↑) Spatial learning memory (Line 2, ↓; line 1, ⎻) Working memory (M and F of both lines, ⎻) | Activity ⎻ | Prepulse inhibition ⎻ | [88] | |
PAK2 | PAK2+/− mice * | Social preference ↓ Social memory ↓ | Ultrasonic vocalizations ⎻ | Marble burying ↑ Grooming ↑ | Anxiety ⎻ | Spatial learning and memory ⎻ | Activity ⎻ | Prepulse inhibition ⎻ Acoustic startle response ⎻ | [89] |
ITPR1 | IP3R1+/− mice& | NT | NT | NT | NT | NT | Activity ⎻ Motor coordination ↓ | NT | [90] |
L7-Cre; Itpr1flox/flox mice # | NT | NT | NT | NT | NT | Motor coordination ↓ | NT | [91] | |
Wnt1-Cre; Itpr1flox/flox mice # | NT | NT | NT | NT | NT | Motor coordination ↓ | NT | [92] | |
WASF1 | WAVE-1 KO mice # | NT | NT | NT | Anxiety ↓ | Spatial learning and memory ↓ Object recognition memory ↓ Passive avoidance ⎻ | Activity ↓ Motor coordination ↓ | NT | [93] |
WAVE-1 HET mice # | NT | NT | NT | Anxiety ⎻ | Learning and memory ⎻ | Activity ↓ Motor coordination ↓ | NT |
Gene | Mouse/Cellular Model | Therapeutic Type | Therapeutic Strategy | Result | Reference |
---|---|---|---|---|---|
TRIO | Trio deficient neurons | Pharmacological | Rp-cAMPS treatment (100 μM) | Increased dendritic spine density reversed | [67] |
Non-pharmacological | PDE4A5 overexpression | ||||
P-REX1 | Prex1-/- mice | Pharmacological | D-serine (for electrophysiology: 20 μM; for mouse: 0.8 g/kg i.p.(intraperitoneal)) | NMDAR-LTD restored; disruptive social novelty corrected | [68] |
Non-pharmacological | WT P-Rex1 or WT Rac1 overexpression (in CA1 pyramidal neurons) | NMDAR-LTD restored; disruptive social novelty and reversal learning corrected | |||
DOCK4 | Dock4 KO mice | Pharmacological | D-cycloserine (DCS, 20 mg/kg i.p.) | Social novelty restored | [70] |
Non-pharmacological | WT Rac1 overexpression (in CA1 region) | Social novelty and synapatic transmission (mEPSC and LTP) restored | |||
Dock4 knockdown neurons | Non-pharmacological | WT Rac1 overexpression | Decreased dendritic spine density reversed | [109] | |
OPHN1 | Ophn1-/y mice | Pharmacological | Rp-cAMPS (bilaterally infused into PFC; 10 μg/μL; 300–400 nl) | Cognitive dysfunction in Y-maze ameliorated | [75] |
Fasudil (dissolved in daily drinking water at 0.65 mg/mL for 3 weeks) | Spine morphology in olfactory bulbs, frequency and amplitude of mIPSC in olfactory neurons, and olfactory behaviors rescued | [73] | |||
Fear memory extinction restored | [74] | ||||
Fasudil (orally a daily dose of 3 mg for 3 months) | Locomotor activity and object recognition memory restored; abnormal brain morphology ameliorated | [72] | |||
ARHGAP32 | PX-RICS-/- mice | Pharmacological | Clonazepam (CZP, 0.03 mg/kg i.p.) | Deficits of social preference, reversal learning, and cued fear learning memory reversed | [76,77] |
CYFIP1 | Cyfip1 HET mice hippocampal slices | Pharmacological | LY367385 (100 μM) and MPEP (2-Methyl-6-phenylethynyl pyridine), (10 μM) (Incubated in slices) | mGluR-LTD normalized to control levels | [83] |
Cyfip1HET mice | Non-pharmacological | Motor training (at postnatal days 40, 50, and 51) | Motor deficits alleviated | [84] | |
PAK2 | Pak2+/- mice | Non-pharmacological | p-cofilin peptide (15 pmol/g i.v. (intravenous)) | Social behaviors moderately improved | [89] |
ITPR1 | Wnt1-Cre;Itpr1flox/flox mice | Pharmacological | CNQX (5 mM; infused into the cerebellum; 0.5 μL/min for 20 min) | Dyskinesia ameliorated | [92] |
Non-pharmacological | Mating with Lurcher mice (GluD2LC/+) | Dystonic movements eliminated |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Yang, X.; Shi, L. Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020, 9, 835. https://doi.org/10.3390/cells9040835
Guo D, Yang X, Shi L. Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells. 2020; 9(4):835. https://doi.org/10.3390/cells9040835
Chicago/Turabian StyleGuo, Daji, Xiaoman Yang, and Lei Shi. 2020. "Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics" Cells 9, no. 4: 835. https://doi.org/10.3390/cells9040835
APA StyleGuo, D., Yang, X., & Shi, L. (2020). Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells, 9(4), 835. https://doi.org/10.3390/cells9040835