Development of Mucosal PNAd+ and MAdCAM-1+ Venules during Disease Course in Ulcerative Colitis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Immunohistochemistry
2.3. Multiplex Immunoassay
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Baseline Characteristics Study Population
3.2. The Presence of PNAd+ and MAdCAM-1+ Venules in Colonic Biopsies at Baseline
3.3. Association of PNAd and MAdCAM-1 with Disease Phenotype at Diagnosis
3.4. Association of PNAd+ and MAdCAM-1+ Venules with Disease Course
3.5. CXCL-13 and CCL-19 in Serum and Stimulated Biopsies
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Manuscript
Abbreviations
Abbreviations | |
α4β7 | alpha4beta7 |
CD | Crohn’s disease |
DSS | Dextran Sulfate Sodium |
ERG | ETS related gene |
ETS | Erythroblast Transformation Specific |
HC | Healthy control |
HEV | High Endothelial Venule |
IBD | Inflammatory Bowel Disease |
IFNγ | Interferon gamma |
IHC | Immunohistochemistry |
IQR | Interquartile range |
LPS | Lipopolysaccharide |
MAdCAM-1 | Mucosal vascular Addressin Cell Adhesion Molecule-1 |
PNAd | Peripheral Node Addressin |
SLO | Secondary Lymphoid Organ |
Tn cells | Naïve T cells |
Tcm cells | Central memory T cells |
Tem cells | Effector memory T cells |
TLO | Tertiary Lymphoid Organ |
TNFα | Tumor Necrosis Factor alpha |
UC | Ulcerative Colitis |
UCDAI | Ulcerative Colitis Disease Activity Index |
References
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnini, C.; Pizarro, T.T.; Cominelli, F. Novel pharmacological therapy in inflammatory bowel disease: Beyond anti-tumor necrosis factor. Front. Pharmacol. 2019, 18, 671. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Narula, N.; Peyrin-Biroulet, L. Management strategies to improve outcomes of patients with inflammatory bowel diseases. Gastroenterology 2017, 152, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Habtezion, A.; Nguyen, L.P.; Hadeiba, H.; Butcher, E.C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 2016, 150, 340–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, C.R.; Marston, W.L.; Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 1990, 171, 801–817. [Google Scholar] [CrossRef] [Green Version]
- Rosen, S.D. Ligands for L-selectin: Homing, inflammation, and beyond. Annu. Rev. Immunol. 2004, 22, 129–156. [Google Scholar] [CrossRef]
- Briskin, M.; Winsor-Hines, D.; Shyjan, A.; Cochran, N.; Bloom, S.; Wilson, J.; McEvoy, L.M.; Butcher, E.C.; Kassam, N.; Mackay, C.R.; et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 1997, 151, 97–110. [Google Scholar] [PubMed]
- Berlin, C.; Berg, E.L.; Briskin, M.J.; Andrew, D.P.; Kilshaw, P.J.; Holzmann, B.; Weissman, I.L.; Hamann, A.; Butcher, E.C. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993, 74, 185–195. [Google Scholar] [CrossRef]
- Gui, X.; Li, J.; Ueno, A.; Iacucci, M.; Qian, J.; Ghosh, S. Histopathological features of inflammatory bowel disease are associated with different CD4+ T cell subsets in colonic mucosal lamina propria. J. Crohns Colitis 2018, 12, 1448–1458. [Google Scholar] [CrossRef]
- Ager, A. High endothelial venules and other blood vessels: Critical regulators of lymphoid organ development and function. Front. Immunol. 2017, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.W.; Hill, D.G.; Jones, S.A. Understanding immune cells in tertiary lymphoid organ development: It is all starting to come together. Front. Immunol. 2016, 7, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipman, W.D.; Dasoveanu, D.C.; Lu, T.T. Tertiary lymphoid organs in systemic autoimmune diseases: Pathogenic or protective? F1000Res. 2017, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Horjus Talabur Horje, C.S.; Smids, C.; Meijer, J.W.; Groenen, M.J.; Rijnders, M.K.; van Lochem, E.G.; Wahab, P.J. High endothelial venules associated with T cell subsets in the inflamed gut of newly diagnosed inflammatory bowel disease patients. Clin. Exp. Immunol. 2017, 188, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Suzawa, K.; Kobayashi, M.; Sakai, Y.; Hoshino, H.; Watanabe, M.; Harada, O.; Ohtani, H.; Fukuda, M.; Nakayama, J. Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am. J. Gastroenterol. 2007, 102, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Hoshino, H.; Masumoto, J.; Fukushima, M.; Suzawa, K.; Kageyama, S.; Suzuki, M.; Ohtani, H.; Fukuda, M.; Nakayama, J. GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitis. Inflamm. Bowel Dis. 2009, 15, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Arseneau, K.O.; Cominelli, F. Targeting leukocyte trafficking for the treatment of inflammatory bowel disease. Clin. Pharmacol. Ther. 2015, 97, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.J.; Danese, S.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Vermeire, S.; Sandborn, W.J.; Danese, S.; Hébuteme, X.; Salzberg, B.A.; Klopocka, M.; Tarabar, D.; Vanasek, T.; Gregus, M.; Hellstern, P.A.; et al. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 135–144. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Luo, C.; Yajnik, V.; Khalili, H.; Garber, J.J.; Stevens, B.W.; Cleland, T.; Xavier, R.J. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 2017, 21, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Burke, K.E.; Khalili, H.; Garber, J.J.; Haritunians, T.; McGovern, D.P.B.; Xavier, R.J.; Ananthakrishnan, A.N. Genetic markers predict primary nonresponse and durable response to anti-tumor necrosis factor therapy in ulcerative colitis. Inflamm. Bowel. Dis. 2018, 24, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xi, L.; Ziemek, D.; O’Neil, S.; Lee, J.; Stewart, Z.; Zhan, Y.; Zhao, S.; Zhang, Y.; Page, K.; et al. Molecular profiling of ulcerative colitis subjects from the TURANDOT trial reveals novel pharmacodynamic/efficacy biomarkers. J. Crohns Colitis 2019, 13, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Powrie, F.; Leach, M.W.; Mauze, S.; Caddle, L.B.; Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int. Immunol. 1993, 5, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizonne, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Geboes, K.; Riddell, R.; Ost, A.; Jensfelt, B.; Persson, T.; Löfberg, R. A reproducible grading Scale for histological assessment of inflammation in ulcerative colitis. Gut 2000, 47, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.F.; Gasche, C.; Geboes, K.; et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a working party of the 2005 Montreal World congress of gastroenterology. Can. J. Gastroenterol. 2005, 19, 5A–36A. [Google Scholar] [CrossRef]
- Smids, C.; Horjus Talabur Horje, C.S.; Nierkens, S.; Drylewicz, J.; Groenen, M.J.M.; Wahab, P.J.; van Lochem, E.G. Candidate serum markers in early Crohn’s disease: Predictors of disease course. J. Crohns Colitis 2017, 11, 1090–1100. [Google Scholar] [CrossRef]
- Michie, S.A.; Streeter, P.R.; Bolt, P.A.; Butcher, E.C.; Picker, L.J. The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am. J. Pathol. 1993, 143, 1688–1698. [Google Scholar] [PubMed]
- Streeter, P.R.; Rouse, B.T.; Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 1988, 107, 1853–1862. [Google Scholar] [CrossRef] [Green Version]
- Arihiro, S.; Ohtani, H.; Suzuki, M.; Murata, M.; Ejima, C.; Oki, M.; Kinouchi, Y.; Fukushima, K.; Sasaki, I.; Nakamura, S.; et al. Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn’s disease. Pathol. Int. 2002, 52, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Souza, H.S.; Elia, C.C.; Spencer, J.; MacDonald, T.T. Expression of lymphocute-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 1999, 45, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawachi, S.; Morise, Z.; Jennings, S.R.; Conner, E.; Cockrell, A.; Laroux, F.S.; Chervenak, R.P.; Wolcott, M.; van der Heyde, H.; Gray, L.; et al. Cytokine and adhesion molecule expression in SCID mice reconstituted with CD4+ T cells. Inflamm. Bowel Dis. 2000, 6, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Binion, D.G.; Heidemann, J.; Theriot, M.; Fisher, P.J.; Johnson, N.A.; Otterson, M.F.; Rafiee, P. Mechanisms of MAdCAM-1 gene expression in human intestinal microvascular endothelial cells. Am. J. Physiol. Cell Physiol. 2005, 288, C272–C281. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, H.S.; Baekkevold, E.S.; Johansen, F.E.; Haraldsen, G.; Brandtzaeg, P. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut 2002, 51, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Buettner, M.; Lochner, M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front. Immunol. 2016, 7, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, S.; Braun, A.; Crowson, C.; Kurtin, P.J.; Cofield, R.H.; O’Fallon, W.M.; Goronzy, J.J.; Weyand, C.M. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 2001, 167, 1072–1080. [Google Scholar] [CrossRef] [Green Version]
- Canete, J.D.; Celis, R.; Moll, C.; Izquierdo, E.; Marsal, S.; Sanmarti, R.; Palacin, A.; Lora, D.; de la Cruz, J.; Pablos, J.L. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor alpha therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 751–756. [Google Scholar] [CrossRef]
- Bombardieri, M.; Lewis, M.; Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 2017, 13, 141–154. [Google Scholar] [CrossRef]
- Birtwistle, J. The role of cigarettes and nicotine in the onset and treatment of ulcerative colitis. Postgrad. Med. J. 1996, 72, 714–718. [Google Scholar] [CrossRef]
- Mahid, S.S.; Minor, K.S.; Soto, R.E.; Hornung, C.A.; Galandiuk, S. Smoking and inflammatory bowel disease: A meta-analysis. Mayo Clin. Proc. 2006, 81, 1462–1471. [Google Scholar] [CrossRef]
- Maruta, K.; Watanabe, C.; Hozumi, H.; Kurihara, C.; Furuhashi, H.; Takajo, T.; Okada, Y.; Shirakabe, K.; Higashiyama, M.; Komoto, S.; et al. Nicotine treatment ameliorates DSS-induced colitis by suppressing MAdCAM-1 expression and leukocyte recruitment. J. Leukoc. Biol. 2018, 104, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Macklin, K.D.; Maus, A.D.; Pereira, E.F.; Albuquerque, E.X.; Conti-Fine, B.M. Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 1998, 287, 435–439. [Google Scholar] [PubMed]
- Horjus Talabur Horje, C.S.; Middendorp, S.; van Koolwijk, E.; Roovers, L.; Groenen, M.J.; Wahab, P.J.; van Lochem, E.G. Naive T cells in the gut of newly diagnosed, untreated adult patients with inflammatry bowel disease. Inflamm. Bowel Dis. 2014, 20, 1902–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zundler, S.; Becker, E.; Schulze, L.L.; Neurath, M.F. Immune cell trafficking and retention in inflammatory bowel disease: Mechanistic insights and therapeutic advances. Gut 2019, 68, 1688–1700. [Google Scholar] [CrossRef]
- Boden, E.K.; Shows, D.M.; Chiorean, M.V.; Lord, J.D. Identification of candidate biomarkers associated with response to vedolizumab in inflammatory bowel disease. Dig. Dis. Sci. 2018, 63, 2419–2429. [Google Scholar] [CrossRef]
- Rosen, S.D.; Tsay, D.; Singer, M.S.; Hemmerich, S.; Abraham, W.M. Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am. J. Pathol. 2005, 166, 935–944. [Google Scholar] [CrossRef] [Green Version]
UC (n = 378) | HC (n = 10) | |
---|---|---|
Age at Diagnosis in Years | 43 (30–57) | 36 (26–43) |
Sex | ||
- Female | 190 (50.3%) | 6 (60%) |
- Male | 188 (49.7%) | 4 (40%) |
Extra-Intestinal Manifestations | ||
- Yes | 46 (12.2%) | - |
Family History of IBD | ||
- Yes | 42 (11.1%) | - |
Duration of Complaints before Diagnosis in Weeks | 10 (4–16) | - |
Smoking Status at Baseline Endoscopy | ||
- Ceased | 84 (21.5%) | 0 (0%) |
- Yes | 48 (12.3%) | 3 (30%) |
- No or unknown | 246 (66.2%) | 7 (70%) |
Calprotectin | 322 (167–1161) | - |
Mayo Endoscopic Score | ||
- Mayo 0 | - | 10 (100%) |
- Mayo 1 | 156 (41.3%) | 0 (0%) |
- Mayo 2 | 174 (46.0%) | 0 (0%) |
- Mayo 3 | 48 (12.7%) | 0 (0%) |
UC Localization | ||
- Extent | ||
○ E1: Ulcerative proctitis | 136 (36.0%) | - |
○ E2: Left-sided UC | 149 (39.4%) | |
○ E3: Extensive UC | 93 (24.6%) | |
Histological Inflammation Geboes Score | ||
- ≥ 0.1 and < 3.1 | 2 (0.5%) | 10 (100%) |
- ≥ 3.1 | 376 (99.5%) | 0 (0%) |
Location Biopsies Taken at Baseline Endoscopy | ||
- Rectum | 143 (37.8%) | - |
- Sigmoid | 152 (40.2%) | - |
- Right-sided | 2 (0.5%) | - |
- Left- and right-sided | 81 (21.4%) | 10 (100%) |
Effective Remission Induction Treatment at Diagnosis | ||
- No treatment | 9 (2.4%) | 10 (100%) |
- 5-ASA | 223 (59.0%) | - |
- Topical steroids | 42 (11.1%) | - |
- Oral steroids | 86 (22.8%) | - |
- Anti-TNF | 15 (4.0%) | - |
- Resective surgery | 3 (0.8%) | - |
UC (Inflamed) n = 378 | HC (Non-Inflamed) N = 10 | P-Value | |
---|---|---|---|
Total Surface of the Biopsy in mm2 | 2.3 (1.8–3.0) | 2.1 (1.6–3.1) | 0.62 |
Total Follicular Surface in mm2 | 0.15 (0.05–0.32) | 0.04 (0.0–0.09) | 0.004 |
Total Extra Follicular Surface in mm2 | 2.0 (1.5–2.7) | 2.0 (1.6–3.1) | 0.93 |
Follicles | |||
- Absolute number | 3.0 (1.0–5.0) | 1.0 (0.0–1.0) | 0.001 |
- Number per mm2 | 1.3 (0.7–2.1) | 0.04 (0.0–0.09) | 0.001 |
Extrafollicular ERG+ Venules | |||
- Absolute number | 366 (263–485) | 206 (162–244) | 0.001 |
- Number per mm2 (density) | 159 (130–193) | 108 (66–116) | 0.001 |
Extrafollicular PNAd+Venules | |||
- Absolute number | 17.5 (6.0–34.0) | 0.0 (0.0–0.0) | 0.001 |
- Number per mm2 (density) | 7.7 (2.6–14.0) | 0.0 (0.0–0.0) | 0.001 |
- As % of ERG+ venules (proportion) | 4.9 (2.0–8.3) | 0.0 (0.0–0.0) | 0.001 |
Absolute Number of Intrafollicular PNAd+ Venules | 1.0 (0.0–4.0) | 0.0 (0.0–0.0) | 0.008 |
Extrafollicular MAdCAM-1+Venules | |||
- Absolute number | 19.0 (8.0–36.0) | 1.5 (0.0–8.8) | 0.001 |
- Number per mm2 (density) | 9.1 (3.8–15.6) | 0.5 (0.0–3.9) | 0.001 |
- As % of ERG+ venules (proportion) | 5.8 (2.5–9.9) | 0.8 (0.0–3.8) | 0.001 |
Absolute Number of Intrafollicular MAdCAM-1+ Venules | 0.0 (0.0–3.0) | 0.0 (0.0–1.5) | 0.19 |
Extrafollicular MAdCAM-1+ PNAd+Venules | |||
- Absolute number | 6 (1.0–15.0) | 0 (0–0) | 0.001 |
- Number per mm2 (density) | 2.4 (0.6–6.0) | 0 (0–0) | 0.001 |
- As % of ERG+ venules (proportion) | 1.6 (0.4–3.7) | 0 (0–0) | 0.001 |
Percentage MAdCAM-1+ of PNAd+ Venules | 42.9 (18.1–70) | * | - |
UC Patients in Remission at Follow-Up n = 93 | UC Patients with Active Disease at Follow-Up n = 285 | ||||||
---|---|---|---|---|---|---|---|
Baseline | Follow-up | P-Value | Baseline | Follow-up | P-value | P-value | |
Inflamed | Non-Inflamed | Inflamed | Inflamed | Follow-Up Non-Inflamed vs Inflamed | |||
Total Surface of the Biopsy in mm2 | 2.4 (1.7–3.2) | 2.0 (1.5–2.7) | 0.1 | 2.3 (1.8–2.9) | 2.2 (1.7–2.8) | 0.21 | 0.39 |
Total Follicular Surface in mm2 | 0.12 (0.03–0.3) | 0.03 (0.0–0.1) | 0.001 | 0.16 (0.06–0.34) | 0.1 (0.04–0.3) | 0.001 | 0.001 |
Total Extra Follicular Surface in mm2 | 2.1 (1.5–3.0) | 2.0 (1.5–2.6) | 0.43 | 2.0 (1.6–2.6) | 2.0 (1.6–2.6) | 0.92 | 0.6 |
Follicles | |||||||
- Absolute number | 2 (1–4) | 1 (0–1) | 0.001 | 3 (1–5) | 2 (1–4) | 0.001 | 0.001 |
- Number per mm2 | 1.1 (0.5–1.9) | 0.4 (0.0–0.7) | 0.001 | 1.4 (0.7–2.2) | 1.1 (0.5–1.8) | 0.001 | 0.001 |
ERG+ Venules | |||||||
- Absolute number | 336 (232–468) | 235 (164–339) | 0.001 | 371 (274–490) | 394 (292–546) | 0.12 | 0.001 |
- Number per mm2 (density) | 146 (123–173) | 123 (93–155) | 0.001 | 163 (131–194) | 184 (150–224) | 0.001 | 0.001 |
Extrafollicular PNAd+ Venules | |||||||
- Absolute number | 14 (3–34) | 0.0 (0.0–0.8) | 0.001 | 19 (7–35) | 17 (5–32) | 0.39 | 0.001 |
- Number per mm2 (density) | 6.0 (1.4–11.8) | 0.0 (0.0–0.17) | 0.001 | 8.3 (3.4–14.0) | 7.7 (2.8–14.3) | 0.85 | 0.001 |
- As % of ERG+ venules (proportion) | 4.3 (1.0–8.6) | 0.0 (0.0–0.08) | 0.001 | 5.3 (2.2–8.3) | 4.0 (1.3–7.8) | 0.04 | 0.001 |
Absolute number of intrafollicular PNAd+ Venules | 1 (0–3) | 0.0 (0.0–0.0) | 0.001 | 2 (0–5) | 0 (0–3) | 0.003 | 0.001 |
Extrafollicular MAdCAM-1+ Venules | |||||||
- Absolute number | 20 (8.5–42.0) | 18 (9.0–32.0) | 0.38 | 18 (8–35) | 32.0 (16.0–52.0) | 0.001 | 0.001 |
- Number per mm2 (density) | 10.7 (3.6–16.3) | 10.0 (5.1–15.1) | 0.71 | 9.0 (3.8–15.5) | 14.2 (8.4–22.2) | 0.001 | 0.001 |
- As % of ERG+ venules (proportion) | 6.9 (2.6–11.0) | 7.8 (4.5–11.8) | 0.15 | 5.5 (2.5–9.5) | 7.8 (4.5–12.0) | 0.001 | 0.8 |
Absolute number of intrafollicular MAdCAM-1+ Venules | 0.0 (0.0–2.0) | 0.0 (0.0–1.0) | 0.02 | 0 (0–3) | 0.0 (0.0–3.0) | 0.37 | 0.002 |
Extrafollicular MAdCAM-1+ PNAd+ Venules | |||||||
- Absolute number | 5 (0–11) | 0 (0–0) | 0.001 | 6 (1–15) | 8 (2–17) | 0.04 | 0.001 |
- Number per mm2 (density) | 2.03 (0.0–4.52) | 0 (0–0) | 0.001 | 2.5 (0.7–6.4) | 3.6 (0.8–7.8) | 0.002 | 0.001 |
- As % of ERG+ venules (proportion) | 1.4 (0.0–2.7) | 0 (0–0) | 0.001 | 1.8 (0.4–3.8) | 2.0 (0.5–3.9) | 0.21 | 0.001 |
Percentage MAdCAM-1+ of PNAd+ venules | 48.0 (13.9–69.4) | * | - | 42.9 (19.1–70.5) | 57.9 (35.7–83.3) | 0.001 | - |
A. Baseline PNAd | Univariable | Multivariable | |||
R2 (%) | β (SE) | p-Value | β (SE) | p-Value | |
Age at diagnosis | 0.7 | −0.08 (0.001) | 0.11 | NS | |
Sex* | 2.6 | −0.16 (0.006) | 0.002 | NS | |
Smoking behavior** | 1.8 | −0.13 (0.004) | 0.01 | NS | |
Symptom duration prior to initial diagnosis in weeks | 6.1 | 0.25 (0.001) | 0.001 | 0.22 (0.001) | 0.01 |
Disease location º | 12.4 | −0.35 (0.004) | 0.001 | −0.40 (0.005) | 0.001 |
Histologic disease activity | |||||
- Geboes 0 | 3.9 | 0.20 (0.004) | 0.002 | 0.21 (0.005) | 0.01 |
- Geboes 1 | 4.7 | 0.22 (0.006) | 0.001 | NS | |
- Geboes 2A | 1 | 0.10 (0.005) | 0.11 | NS | |
- Geboes 2B | 0.2 | 0.05 (0.004) | 0.44 | - | |
- Geboes 3 | 0 | 0.02 (0.005) | 0.73 | - | |
- Geboes 4 | 1.1 | 0.11 (0.008) | 0.1 | NS | |
- Geboes 5 | 1.6 | 0.13 (0.002) | 0.05 | NS | |
First effective remission induction treatmentºº | 1.4 | -0.12 (0.002) | 0.02 | NS | |
Number exacerbations per year clinical follow-up | 0.8 | 0.09 (0.015) | 0.08 | NS | |
*Female = 0 , male = 1 **Never = 0, ceased = 1, yes = 2 ºProctitis = 1, left-sided = 2, extensive = 3, ººNo treatment = 0, 5ASA = 1, topical steroids = 2, oral steroids = 3, anti-TNF = 4, anti-integrins = 5, surgery = 6; β = Regression coefficient, SE = Standard Error. | |||||
B. Baseline MAdCAM-1 | Univariable | Multivariable | |||
R2 (%) | β (SE) | p-value | β (SE) | p-value | |
Age at Diagnosis | 0.2 | 0.04 (0.001) | 0.46 | ||
Sex* | 0.3 | −0.05 (0.006) | 0.34 | - | - |
Smoking Behavior** | 0.3 | 0.05 (0.004) | 0.35 | - | - |
Symptom Duration Prior to Initial Diagnosis in Weeks | 0.3 | 0.06 (0.001) | 0.44 | - | - |
Disease Location º | 0 | −0.01 (0.004) | 0.84 | - | - |
Histologic Disease Activity | |||||
- Geboes 0 | 1.3 | −0.11 (0.004) | 0.07 | NS | |
- Geboes 1 | 1.3 | −0.11 (0.006) | 0.08 | NS | |
- Geboes 2A | 3.1 | −0.18 (0.005) | 0.01 | NS | |
- Geboes 2B | 2.4 | −0.15 (0.004) | 0.02 | NS | |
- Geboes 3 | 3.4 | −0.19 (0.005) | 0.003 | NS | |
- Geboes 4 | 1.2 | −0.11 (0.005) | 0.08 | NS | |
- Geboes 5 | 1.3 | −0.11 (0.002) | 0.08 | NS | |
First Effective Remission Induction Treatment ºº | 0.3 | −0.06 (0.002) | 0.29 | - | - |
Number Exacerbations Per Year Clinical Follow-Up | 0.6 | 0.08 (0.187) | 0.14 | NS | |
*Female = 0, male = 1 **Never = 0, ceased = 1, yes = 2, ºProctitis = 1, left-sided = 2, extensive = 3, ººNo treatment = 0, 5ASA = 1, topical steroids = 2, oral steroids = 3, anti-TNF = 4, anti-integrins = 5, surgery = 6; β = Regressioncoefficient, SE = Standard Error. |
Inflamed UC n = 22 | Healthy Controls n = 10 | p-Value | |
---|---|---|---|
Serum in pg/mL | |||
CXCL-13 | 86.2 (58.3–109.4) | 36.9 (31.3–48.8) | 0.001 |
CCL-19 | 167.7 (133.8–204.3) | 100.3 (37.4–158.1) | 0.02 |
Supernatant Biopsy in pg/mL | |||
CXCL-13 | 4.3 (0.6–42.72) | 0.6 (0.6–20.8) | 0.363 |
CCL-19 | 16.4 (13.4–17.2) | 10.5 (9.4–12.9) | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roosenboom, B.; van Lochem, E.G.; Meijer, J.; Smids, C.; Nierkens, S.; Brand, E.C.; van Erp, L.W.; Kemperman, L.G.J.M.; Groenen, M.J.M.; Horjus Talabur Horje, C.S.; et al. Development of Mucosal PNAd+ and MAdCAM-1+ Venules during Disease Course in Ulcerative Colitis. Cells 2020, 9, 891. https://doi.org/10.3390/cells9040891
Roosenboom B, van Lochem EG, Meijer J, Smids C, Nierkens S, Brand EC, van Erp LW, Kemperman LGJM, Groenen MJM, Horjus Talabur Horje CS, et al. Development of Mucosal PNAd+ and MAdCAM-1+ Venules during Disease Course in Ulcerative Colitis. Cells. 2020; 9(4):891. https://doi.org/10.3390/cells9040891
Chicago/Turabian StyleRoosenboom, Britt, Ellen G. van Lochem, Jos Meijer, Carolijn Smids, Stefan Nierkens, Eelco C. Brand, Liselot W. van Erp, Larissa G.J.M. Kemperman, Marcel J.M. Groenen, Carmen S. Horjus Talabur Horje, and et al. 2020. "Development of Mucosal PNAd+ and MAdCAM-1+ Venules during Disease Course in Ulcerative Colitis" Cells 9, no. 4: 891. https://doi.org/10.3390/cells9040891
APA StyleRoosenboom, B., van Lochem, E. G., Meijer, J., Smids, C., Nierkens, S., Brand, E. C., van Erp, L. W., Kemperman, L. G. J. M., Groenen, M. J. M., Horjus Talabur Horje, C. S., & Wahab, P. J. (2020). Development of Mucosal PNAd+ and MAdCAM-1+ Venules during Disease Course in Ulcerative Colitis. Cells, 9(4), 891. https://doi.org/10.3390/cells9040891