Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Oversight
2.2. Patient Population and Treatments
2.3. Data Collection
2.4. DNA-Genotyping
2.5. Study Groups and Endpoints
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bellomo, R.; Ronco, C.; Mehta, R.L.; Asfar, P.; Boisrame-Helms, J.; Darmon, M.; Diehl, J.L.; Duranteau, J.; Hoste, E.A.J.; Olivier, J.B.; et al. Acute kidney injury in the ICU: From injury to recovery: Reports from the 5th Paris International Conference. Ann. Intensive Care 2017, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar] [CrossRef] [Green Version]
- Yegenaga, I.; Hoste, E.; Van Biesen, W.; Vanholder, R.; Benoit, D.; Kantarci, G.; Dhondt, A.; Colardyn, F.; Lameire, N. Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: Results of a prospective study. Am. J. Kidney Dis. 2004, 43, 817–824. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef]
- Peters, E.; Antonelli, M.; Wittebole, X.; Nanchal, R.; Francois, B.; Sakr, Y.; Vincent, J.L.; Pickkers, P. A worldwide multicentre evaluation of the influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and without sepsis at ICU admission: Results from The Intensive Care Over Nations audit. Crit. Care 2018, 22, 188. [Google Scholar] [CrossRef] [Green Version]
- Poston, J.T.; Koyner, J.L. Sepsis associated acute kidney injury. BMJ 2019, 364, k4891. [Google Scholar] [CrossRef]
- Federspiel, C.K.; Itenov, T.S.; Mehta, K.; Hsu, R.K.; Bestle, M.H.; Liu, K.D. Duration of acute kidney injury in critically ill patients. Ann. Intensive Care 2018, 8, 30. [Google Scholar] [CrossRef]
- Morrell, E.D.; Kellum, J.A.; Pastor-Soler, N.M.; Hallows, K.R. Septic acute kidney injury: Molecular mechanisms and the importance of stratification and targeting therapy. Crit. Care 2014, 18, 501. [Google Scholar] [CrossRef] [Green Version]
- Larach, D.B.; Engoren, M.C.; Schmidt, E.M.; Heung, M. Genetic variants and acute kidney injury: A review of the literature. J. Crit. Care 2018, 44, 203–211. [Google Scholar] [CrossRef]
- Verkman, A.S. Role of aquaporins in lung liquid physiology. Respir. Physiol. Neurobiol. 2007, 159, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chen, Z.; Song, Y.; Zhang, P.; Hu, J.; Bai, C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J. Pathol. 2010, 221, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Rump, K.; Unterberg, M.; Bergmann, L.; Bankfalvi, A.; Menon, A.; Schafer, S.; Scherag, A.; Bazzi, Z.; Siffert, W.; Peters, J.; et al. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: A prospective laboratory and patient study. J. Transl. Med. 2016, 14, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and cell migration. Pflugers. Arch. 2008, 456, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Adamzik, M.; Frey, U.H.; Bitzer, K.; Jakob, H.; Baba, H.A.; Schmieder, R.E.; Schneider, M.P.; Heusch, G.; Peters, J.; Siffert, W. A novel-1364A/C aquaporin 5 gene promoter polymorphism influences the responses to salt loading of the renin-angiotensin-aldosterone system and of blood pressure in young healthy men. Basic Res. Cardiol. 2008, 103, 598–610. [Google Scholar] [CrossRef]
- Adamzik, M.; Frey, U.H.; Mohlenkamp, S.; Scherag, A.; Waydhas, C.; Marggraf, G.; Dammann, M.; Steinmann, J.; Siffert, W.; Peters, J. Aquaporin 5 gene promoter--1364A/C polymorphism associated with 30-day survival in severe sepsis. Anesthesiology 2011, 114, 912–917. [Google Scholar] [CrossRef] [Green Version]
- Rahmel, T.; Rump, K.; Peters, J.; Adamzik, M. Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated with Pulmonary Inflammation and Survival in Acute Respiratory Distress Syndrome. Anesthesiology 2019, 130, 404–413. [Google Scholar] [CrossRef]
- Rahmel, T.; Nowak, H.; Rump, K.; Siffert, W.; Peters, J.; Adamzik, M. The aquaporin 5 -1364A/C promoter polymorphism impacts on resolution of acute kidney injury in pneumonia evoked ARDS. PLoS ONE 2018, 13, e0208582. [Google Scholar] [CrossRef] [Green Version]
- Billings, F.T.t.; Shaw, A.D. Clinical trial endpoints in acute kidney injury. Nephron. Clin. Pract. 2014, 127, 89–93. [Google Scholar] [CrossRef]
- Bone, R.C.; Sprung, C.L.; Sibbald, W.J. Definitions for sepsis and organ failure. Crit. Care Med. 1992, 20, 724–726. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron. Clin. Pract. 2012, 120, C179–C184. [Google Scholar] [CrossRef] [PubMed]
- Semler, M.W.; Rice, T.W.; Shaw, A.D.; Siew, E.D.; Self, W.H.; Kumar, A.B.; Byrne, D.W.; Ehrenfeld, J.M.; Wanderer, J.P. Identification of Major Adverse Kidney Events Within the Electronic Health Record. J. Med. Syst. 2016, 40, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavada, J.; Hoste, E.; Cartin-Ceba, R.; Calzavacca, P.; Gajic, O.; Clermont, G.; Bellomo, R.; Kellum, J.A.; AKI6 Investigators. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol. Dial. Transplant. 2010, 25, 3911–3918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fani, F.; Regolisti, G.; Delsante, M.; Cantaluppi, V.; Castellano, G.; Gesualdo, L.; Villa, G.; Fiaccadori, E. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J. Nephrol. 2018, 31, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Procino, G.; Mastrofrancesco, L.; Sallustio, F.; Costantino, V.; Barbieri, C.; Pisani, F.; Schena, F.P.; Svelto, M.; Valenti, G. AQP5 is expressed in type-B intercalated cells in the collecting duct system of the rat, mouse and human kidney. Cell. Physiol. Biochem. 2011, 28, 683–692. [Google Scholar] [CrossRef]
- Payen, D.; de Pont, A.C.; Sakr, Y.; Spies, C.; Reinhart, K.; Vincent, J.L.; Sepsis Occurrence in Acutely Ill Patients, I. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 2008, 12, R74. [Google Scholar] [CrossRef] [Green Version]
- Perner, A.; Prowle, J.; Joannidis, M.; Young, P.; Hjortrup, P.B.; Pettila, V. Fluid management in acute kidney injury. Intensive Care Med. 2017, 43, 807–815. [Google Scholar] [CrossRef]
- Song, Y.; Fukuda, N.; Bai, C.; Ma, T.; Matthay, M.A.; Verkman, A.S. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: Studies in transgenic aquaporin null mice. J. Physiol. 2000, 525 Pt 3, 771–779. [Google Scholar] [CrossRef]
- Wen, X.; Murugan, R.; Peng, Z.; Kellum, J.A. Pathophysiology of acute kidney injury: A new perspective. Contrib. Nephrol. 2010, 165, 39–45. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Ruperez, M.; Esteban, V.; Rodriguez-Vita, J.; Sanchez-Lopez, E.; Carvajal, G.; Egido, J. Angiotensin II: A key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 2006, 21, 16–20. [Google Scholar] [CrossRef]
- Rabb, H.; Griffin, M.D.; McKay, D.B.; Swaminathan, S.; Pickkers, P.; Rosner, M.H.; Kellum, J.A.; Ronco, C.; Acute Dialysis Quality Initiative Consensus, X.W.G. Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps. J. Am. Soc. Nephrol. 2016, 27, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Tsukahara, Y.; Morisaki, T.; Kojima, M.; Uchiyama, A.; Tanaka, M. iNOS expression by activated neutrophils from patients with sepsis. ANZ J. Surg. 2001, 71, 15–20. [Google Scholar] [CrossRef] [PubMed]
- AD-HOC Working Group of ERBP; Fliser, D.; Laville, M.; Covic, A.; Fouque, D.; Vanholder, R.; Juillard, L.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol. Dial. Transplant. 2012, 27, 4263–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettila, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal recovery after acute kidney injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef] [PubMed]
Characteristic | AA | AC/CC | |||
---|---|---|---|---|---|
(n = 167) | (n = 115) | p-Value | |||
Age [years] | 56.4 | (±15.5) | 57.6 | (±16.4) | 0.521 |
Sex, male [n] | 103 | (56.8%) | 71 | (59.6%) | 0.958 |
Body mass index [kg/m2] | 27.2 | (±6.0) | 26.9 | (±5.2) | 0.616 |
Ethnicity [n] | 0.830 | ||||
- Caucasian | 157 | (94.0%) | 112 | (97.4%) | |
- Other | 10 | (6%) | 3 | (2.6%) | |
Medical history [n] | |||||
- Cardiovascular disease | 89 | (53.3%) | 67 | (58.3%) | 0.410 |
- Pulmonary disease | 46 | (27.5%) | 25 | (21.7%) | 0.269 |
- Diabetes mellitus | 31 | (18.6%) | 20 | (17.4%) | 0.936 |
- Gastrointestinal disease | 23 | (13.8%) | 18 | (15.7%) | 0.617 |
- History of malignant disease | 14 | (8.4%) | 11 | (9.6%) | 0.612 |
Renal conditions | |||||
- CKD of stage 3 or higher$ [n] | 22 | (13.2%) | 12 | (10.4%) | 0.487 |
SAPS II score | 41.1 | (±17.8) | 42.7 | (±18.7) | 0.471 |
SOFA score | 12.1 | (±4.4) | 12.0 | (±4.5) | 0.958 |
Septic Shock [n] | 32 | (19.2%) | 29 | (25.2%) | 0.225 |
AKI stage 1 or higher | 87 | (52.1%) | 57 | (49.6%) | 0.228 |
Vasopressor support [n] | 149 | (89.2%) | 97 | (84.3%) | 0.228 |
Mechanical ventilation [n] | 139 | (83.2%) | 89 | (77.4%) | 0.220 |
Net fluid balance§ [L] | 0.0 | (−1.5 to 1.5) | −0.3 | (−1.9 to 1.3) | 0.409 |
Procalcitonin concentration [pg/mL] | 4.4 | [1.7–12.7] | 3.1 | [1.2–17.1] | 0.491 |
C-reactive protein concentration [mg/dL] | 13.8 | [7.4–20.7] | 13.6 | [7.4–23.6] | 0.791 |
Leukocyte concentration [nL-1] | 13.3 | [9.0–20.2] | 13.4 | [8.7–19.6] | 0.888 |
Creatinine concentration [mg/mL] | 1.36 | [0.82–2.12] | 1.33 | [0.88–1.99] | 0.734 |
Blood urea nitrogen [mg/dL] | 19.6 | [11.7–28.5] | 18.7 | [12.6–25.2] | 0.796 |
Hemoglobin [g/dL] | 9.4 | [8.7–10.5] | 9.6 | [8.9–10.6] | 0.284 |
Total bilirubin concentration [mg/dL] | 1.1 | [0.4–2.5] | 1.0 | [0.4–2.2] | 0.715 |
Serum lactate concentration [mg/dL] | 1.3 | [0.8–1.8] | 1.4 | [0.6–2.0] | 0.577 |
Etiology of infection [n] | |||||
- Pneumonia | 63 | (37.7%) | 43 | (37.4%) | 0.999 |
- Urinary tract infection | 41 | (24.5%) | 30 | (26.1%) | |
- Abdominal infection | 26 | (15.6%) | 18 | (15.7%) | |
- Skin or muscle infection | 9 | (5.4%) | 5 | (4.3%) | |
- Bloodstream infection | 7 | (4.2%) | 5 | (4.3%) | |
- Other / unknown origin | 21 | (12.6%) | 14 | (12.2%) | |
Blood cultures [n] | 0.919 | ||||
- Gram-positive isolates | 46 | (27.5%) | 33 | (28.7%) | |
- Gram-negative isolates | 48 | (28.7%) | 28 | (24.3%) | |
- Fungal isolates | 6 | (3.6%) | 5 | (4.3%) | |
- Mixed isolates | 34 | (20.4%) | 27 | (23.5%) | |
- Negative blood cultures | 33 | (19.8%) | 22 | (19.2%) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Initial | Restricted | |||||
Covariate | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Aquaporin 5 –1364A/C genotype | ||||||
- AA | 1 | - | 1 | - | 1 | - |
- AC/CC | 0.60 (0.42 to 0.86) | 0.005 | 0.61 (0.42 to 0.88) | 0.008 | 0.60 (0.42 to 0.86) | 0.006 |
Sex | ||||||
- Women | 1 | - | 1 | - | ||
- Men | 1.09 (0.77 to 1.53) | 0.628 | 1.40 (0.98 to 2.00) | 0.067 | ||
Age [years] | ||||||
- <60 | 1 | - | 1 | - | ||
- ≥60 | 1.09 (0.78 to 1.52) | 0.610 | 1.21 (0.82 to 1.81) | 0.335 | ||
CKD of stage 3 or higher§ | ||||||
- No | 1 | - | 1 | - | ||
- Yes | 1.47 (0.93 to 2.32) | 0.260 | 1.01 (0.58 to 1.76) | 0.971 | ||
Vasopressor support* | ||||||
- No | 1 | - | 1 | - | 1 | - |
- Yes | 4.64 (2.05 to 9.9) | <0.001 | 2.57 (1.09 to 6.07) | 0.031 | 3.01 (1.30 to 7.00) | 0.010 |
Mechanical Ventilation* | ||||||
- No | 1 | - | 1 | - | 1 | - |
- Yes | 3.75 (2.02 to 6.94) | <0.001 | 2.50 (1.32 to 4.71) | 0.005 | 2.57 (1.37 to 4.83) | 0.003 |
Net fluid balance$ | ||||||
- +1.0L to −1.0L | 1 | - | 1 | - | 1 | - |
- < −1.0L | 0.41 (0.26 to 0.66) | <0.001 | 0.45 (0.28 to 0.73) | 0.001 | 0.42 (0.26 to 0.68) | <0.001 |
- > +1.0L | 1.64 (1.13 to 2.38) | 0.009 | 1.81 (1.24 to 2.65) | 0.002 | 1.74 (1.20 to 2.53) | 0.004 |
Serum lactate concentration [mg/dL]* | ||||||
- <2.0 | 1 | - | 1 | - | 1 | - |
- ≥2.0 | 2.40 (1.68 to 3.44) | <0.001 | 2.13 (1.45 to 3.13) | <0.001 | 2.29 (1.59 to 3.31) | <0.001 |
Total bilirubin concentration [mg/dL]* | ||||||
- <2.0 | 1 | - | 1 | - | ||
- ≥2.0 | 1.64 (1.16 to 2.31) | 0.005 | 1.30 (0.89 to 1.90) | 0.170 | ||
Acute Kidney Injury$ | ||||||
- No AKI | 1 | - | 1 | - | ||
- AKI 1+2 | 1.99 (1.05 to 3.79) | 0.036 | 1.26 (0.64 to 2.48) | 0.496 | ||
- AKI 3 | 3.13 (1.71 to 5.73) | <0.001 | 1.69 (0.87 to 3.28) | 0.122 | ||
Procalcitonin con. [pg/mL]* | 1,00 (0.99 to 1.00) | 0.763 | 1.00 (0.99 to 1.00) | 0.875 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, L.; Nowak, H.; Siffert, W.; Peters, J.; Adamzik, M.; Koos, B.; Rahmel, T. Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells 2020, 9, 904. https://doi.org/10.3390/cells9040904
Bergmann L, Nowak H, Siffert W, Peters J, Adamzik M, Koos B, Rahmel T. Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells. 2020; 9(4):904. https://doi.org/10.3390/cells9040904
Chicago/Turabian StyleBergmann, Lars, Hartmuth Nowak, Winfried Siffert, Jürgen Peters, Michael Adamzik, Björn Koos, and Tim Rahmel. 2020. "Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study" Cells 9, no. 4: 904. https://doi.org/10.3390/cells9040904
APA StyleBergmann, L., Nowak, H., Siffert, W., Peters, J., Adamzik, M., Koos, B., & Rahmel, T. (2020). Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells, 9(4), 904. https://doi.org/10.3390/cells9040904