High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer
Abstract
:1. Introduction
2. Materials and Methods.
2.1. Analysis of TCGA Database
2.2. Cell Lines
2.3. Soft Agar Growth Assay
2.4. Tridimensional (3D) Culture
2.5. Wound-Healing Assay
2.6. ALDEFLUOR Assay
2.7. Transcriptomic Analysis
3. Results
3.1. Survey of the TCGA Database
3.2. Phenotypic Impact of B4GALNT2 Expression on Colon Cancer Cells
3.3. B4GALNT2 Expression Reduces the Number of Cancer Stem Cells
3.4. Impact of B4GALNT2 Expression on the Transcriptome of Colon Cancer Cells
3.5. B4GALNT2 Expression Regulates the Transcriptional Response to 3D Culture
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dall’Olio, F.; Malagolini, N.; Trinchera, M.; Chiricolo, M. Mechanisms of cancer-associated glycosylation changes. Front Biosci. 2012, 17, 670–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Serafini-Cessi, F.; Dall’Olio, F. Guinea-pig kidney b-N-acetylgalactosaminyltransferase towards Tamm- Horsfall glycoprotein. Requirement of sialic acid in the acceptor for transferase activity. Biochem. J. 1983, 215, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.L.; Lowe, J.B. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J. Biol. Chem. 1994, 269, 15162–15171. [Google Scholar]
- Lo Presti, L.; Cabuy, E.; Chiricolo, M.; Dall’Olio, F. Molecular Cloning of the Human b1,4 N-Acetylgalactosaminyltransferase Responsible for the Biosynthesis of the Sda Histo-Blood Group Antigen: The Sequence Predicts a Very Long Cytoplasmic Domain. J. Biochem. (Tokyo) 2003, 134, 675–682. [Google Scholar] [CrossRef]
- Montiel, M.D.; Krzewinski-Recchi, M.A.; Delannoy, P.; Harduin-Lepers, A. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Aca2-3Galb-R b1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: Evidence for an unusual extended cytoplasmic domain. Biochem. J. 2003, 373, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Groux-Degroote, S.; Schulz, C.; Cogez, V.; Noel, M.; Portier, L.; Vicogne, D.; Solorzano, C.; Dall’Olio, F.; Steenackers, A.; Mortuaire, M.; et al. The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting. FEBS J. 2018, 285, 3442–3463. [Google Scholar] [CrossRef]
- Malagolini, N.; Santini, D.; Chiricolo, M.; Dall’Olio, F. Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 2007, 17, 688–697. [Google Scholar] [CrossRef]
- Dohi, T.; Yuyama, Y.; Natori, Y.; Smith, P.L.; Lowe, J.B.; Oshima, M. Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int. J. Cancer 1996, 67, 626–631. [Google Scholar] [CrossRef]
- Malagolini, N.; Dall’Olio, F.; Di Stefano, G.; Minni, F.; Marrano, D.; Serafini-Cessi, F. Expression of UDP-GalNAc:NeuAc a2,3Gal b-R beta 1,4(GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res. 1989, 49, 6466–6470. [Google Scholar]
- Trinchera, M.; Malagolini, N.; Chiricolo, M.; Santini, D.; Minni, F.; Caretti, A.; Dall’Olio, F. The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int. J. Biochem. Cell Biol. 2011, 43, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Trinchera, M.; Aronica, A.; Dall’Olio, F. Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. Biology 2017, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Groux-Degroote, S.; Wavelet, C.; Krzewinski-Recchi, M.A.; Portier, L.; Mortuaire, M.; Mihalache, A.; Trinchera, M.; Delannoy, P.; Malagolini, N.; Chiricolo, M.; et al. B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract. Int. J. Biochem. Cell Biol. 2014, 53, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.I.; Kawashima, R.; Fukunaga, R.; Hirai, K.; Toyama-Sorimachi, N.; Tokuhara, M.; Shimizu, T.; Dohi, T. Introduction of Sda carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res. 2005, 65, 6220–6227. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y.I.; Adachi, Y.; Curiel, D.T.; Kawashima, R.; Kannagi, R.; Nishimoto, N.; Dohi, T. Therapeutic adenoviral gene transfer of a glycosyltransferase for prevention of peritoneal dissemination and metastasis of gastric cancer. Cancer Gene Ther. 2014, 21, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Firebrowse. Available online: http://firebrowse.org (accessed on 13 October 2019).
- Venturi, G.; Gomes, F.I.; Pucci, M.; Ferracin, M.; Malagolini, N.; Chiricolo, M.; Dall’Olio, F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2019, 29, 684–695. [Google Scholar] [CrossRef]
- ImageJ-macros. Available online: http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Wound_Healing_Tool (accessed on 6 January 2011).
- Ferracin, M.; Bassi, C.; Pedriali, M.; Pagotto, S.; D’Abundo, L.; Zagatti, B.; Corra, F.; Musa, G.; Callegari, E.; Lupini, L.; et al. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol. Cancer 2013, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Volonte, A.; Di, T.T.; Spinelli, M.; Todaro, M.; Sanvito, F.; Albarello, L.; Bissolati, M.; Ghirardelli, L.; Orsenigo, E.; Ferrone, S.; et al. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J. Immunol. 2014, 192, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yu, M.; Ma, Y.; Zhang, X.; Zhang, H.; Li, S.; Lan, R.; Lu, F. PHF20L1 antagonizes SOX2 proteolysis triggered by the MLL1/WDR5 complexes. Lab Invest 2018, 98, 1627–1641. [Google Scholar] [CrossRef]
- GeneCards: The Human Gene Database. Available online: https://www.genecards.org/ (accessed on 25 February 2020).
- Halder, G.; Dupont, S.; Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 2012, 13, 591–600. [Google Scholar] [CrossRef]
- Chong, Y.K.; Sandanaraj, E.; Koh, L.W.; Thangaveloo, M.; Tan, M.S.; Koh, G.R.; Toh, T.B.; Lim, G.G.; Holbrook, J.D.; Kon, O.L.; et al. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis. J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severino, P.F.; Silva, M.; Carrascal, M.; Malagolini, N.; Chiricolo, M.; Venturi, G.; Astolfi, A.; Catera, M.; Videira, P.A.; Dall’Olio, F. Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Guerin (BCG) and to oxidative damage. Oncotarget. 2017, 8, 54506–54517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severino, P.F.; Silva, M.; Carrascal, M.; Malagolini, N.; Chiricolo, M.; Venturi, G.; Barbaro, F.R.; Astolfi, A.; Catera, M.; Videira, P.A.; et al. Oxidative damage and response to Bacillus Calmette-Guerin in bladder cancer cells expressing sialyltransferase ST3GAL1. BMC. Cancer 2018, 18, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, K.; Mizushima, T.; Yokoyama, Y.; Hirose, H.; Wu, X.; Qian, Y.; Ikehata, K.; Miyoshi, N.; Takahashi, H.; Haraguchi, N.; et al. Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci. Rep. 2018, 8, 17639. [Google Scholar] [CrossRef]
- Riffle, S.; Hegde, R.S. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. J. Exp. Clin. Cancer Res. 2017, 36, 102. [Google Scholar] [CrossRef] [PubMed]
- Voronov, E.; Apte, R.N. IL-1 in Colon Inflammation, Colon Carcinogenesis and Invasiveness of Colon Cancer. Cancer Microenviron. 2015, 8, 187–200. [Google Scholar] [CrossRef]
Genes Up-Regulated in High B4GALNT2 Expressers | ||||
---|---|---|---|---|
Gene Name | Protein | Functional Class | Functions | p-Value |
CLCA1 | Chloride Channel Accessory 1 | Mucin-related | Involved in chloride conductance and regulation of mucus production. Potential tumor suppressor. Induces MUC5AC. | **** |
FCGBP | Fc Fragment of IgG Binding Protein | May be involved in the maintenance of the mucosal structure as a gel-like component of the mucosa. | **** | |
MUC2 | Mucin 2, Oligomeric Mucus/Gel-Forming | Coats the epithelia of the intestines and other mucous membranes. Downreguled in inflammatory bowel diseases. | **** | |
AGR2 | Anterior Gradient 2, Protein Disulphide Isomerase Family Member | Required for MUC2 post-transcriptional synthesis and secretion. Proto-oncogene. | **** | |
MUC5B | Mucin 5B, Oligomeric Mucus/Gel-Forming | Coats the epithelia of the mucous membranes. | ** | |
LCN2 | Lipocalin 2 | Immune function | Limits bacterial growth by sequestering iron-containing siderophores. | * |
IGJ | Joining Chain Of Multimeric IgA And IgM | Joins IgM and IgA in multimeric complexeses. | **** | |
PIGR | Poly-immunoglobulin receptor | Allows the trans-epithelial transport of polymeric IgA to the gut lumen. | **** | |
REG1A | Regenerating family member 1α | Regeneration and repair | Regenerating proteins are acute phase reactants, lectins, antiapoptotic or growth factors. | **** |
REG4 | Regenerating family member 4 | **** | ||
TFF3 | Trefoil factor 3 | Involved in maintenance and repair of the intestinal mucosa. Promotes the mobility of epithelial cells in healing processes. | **** | |
SERPINA1 | Serpin family A member 1 | Protease inhibition | Serine protease inhibitor for elastase, plasmin, thrombin, trypsin, chymotrypsin, and plasminogen activator. | *** |
SPINK4 | Serine Peptidase Inhibitor Kazal Type 4 | Serine-type endopeptidase inhibitor activity. | * | |
ITM2C | Integral Membrane Protein 2C | Secretase inhibitor. | ** | |
LGALS4 | Galectin 4 | Binding of glycoconjugates | Expression restricted to small intestine, colon, and rectum, and it is down-regulated in colorectal cancer. | **** |
Genes Up-Regulated in Low B4GALNT2 Expressers | ||||
IGF2 | Insulin Like Growth Factor 2 | Growth factor | Growth-promoting activity. | **** |
Pathway Map | Network Objects |
---|---|
Stem cell pathways | SOX2, FGFR3, HEY2, IGF1, c-Kit, MEF2C, MLRC, MyHc |
Blood coagulation | MyHC, Coagulation factor V, PAR1 |
Main growth factor signaling cascades | FGFR3, IGF-1 |
Chemoresistance pathways | c-Kit, IGF-1 |
Cell adhesion | Nidogen, IGF-1, MyHC, MRLC |
Cytoskeleton remodeling | MyHC, MRLC |
G protein-coupled receptors signaling | Gα(i)-specific peptide GPCRs, Gα(q)-specific peptide GPCRs |
Gene Symbol | Expression | Fold Change S2/S11 Vs. Neo | p-Value S2/S11 Vs. Neo | Gene Name | Function in Cancer | PMID | ||
---|---|---|---|---|---|---|---|---|
Neo | S2/S11 | |||||||
CD200 | 2 | 27.0 | 16.8 | 0.0411 | CD200 molecule | Possible colon cancer stem cell marker | 27574016 | |
NGFRAP1 | 39 | 456.3 | 11.6 | 0.0383 | Nerve growth factor receptor (TNFRSF16) associated protein 1 | Overexpression inhibits growth of breast tumor xenografts. | 26408910 | |
SKAP1 | 138 | 912.3 | 6.6 | 0.0231 | Src kinase associated phosphoprotein 1 | Modulates TCR signaling. | 18320039 | |
SLC14A1 | 2 | 10.8 | 5.2 | 0.0360 | Solute carrier family 14 (urea transporter), member 1 (Kidd blood group) | Potential tumor suppressor in lung cancer | 22223368 | |
FAM26F | 8 | 2.0 | −4.1 | 0.0195 | Family with sequence similarity 26, member F | Little or no information | ||
FAM110B | 9 | 2.1 | −4.5 | 0.0142 | Family with sequence similarity 110, member B | Promotes growth of prostate cancer cells | 21919029 | |
ALX1 | 12 | 2.6 | −4.6 | 0.0167 | ALX homeobox 1 | Promotes EMT and invasion in ovarian and lung cancer. | 26722397 23288509 | |
F5 | 12 | 2.6 | −4.7 | 0.0331 | Coagulation factor V (proaccelerin, labile factor) | Little or no information | ||
INMT | 9 | 1.8 | −4.7 | 0.0142 | Indolethylamine N-methyltransferase | Negatively associated with prostate cancer progression | 22075945 | |
MYH3 | 1198 | 238.9 | −5.0 | 0.0167 | Myosin, heavy chain 3, skeletal muscle, embryonic | Little or no information | ||
MBOAT2 | 14 | 2.5 | −5.4 | 0.0383 | Membrane bound O-acyltransferase domain containing 2 | Little or no information | ||
ROR1 | 12 | 1.8 | −6.4 | 0.0163 | Receptor tyrosine kinase-like orphan receptor 1 | Associated with ovarian cancer stem cells | 25411317 | |
RAI14 | 51 | 7.7 | −6.6 | 0.0190 | Retinoic acid induced 14 | Overexpressed in gastric cancer, associated with worse prognosis. | 29654694 | |
FMO3 | 14 | 1.8 | −7.7 | 0.0253 | Flavin containing monooxygenase 3 | Involved in de-toxification of drugs. | 16800822 | |
PEG10 | 44 | 5.3 | −8.4 | 0.0233 | Paternally expressed 10 | Enhances cell invasion by upregulating β-catenin, MMP-2 and MMP-9 | 25199998 | |
NINL | 244 | 28.4 | −8.6 | 0.0339 | Ninein-like | High expression associates with poor prognosis in prostate cancer | 30637711 | |
ARMC4 | 15 | 1.7 | −8.7 | 0.0196 | Armadillo repeat containing 4 | Can be mutated in gastric cancer. | 26330360 | |
MID2 | 32 | 2.1 | −15.0 | 0.0152 | Midline 2 | In breast cancer associates with BRCA1 and promotes growth. | 26791755 | |
SOX2 | 28 | 1.7 | −16.5 | 0.0163 | SRY (sex determining region Y)-box 2 | Associated with motility and a cancer stem cell phenotype in CRC | 29228716 30518951 | |
LGALS2 | 362 | 21.5 | −16.8 | 0.0142 | Lectin, galactoside-binding, soluble, 2 | Elevated in plasma of CRC patients. Promotes adhesion to endothelia. | 21933892 | |
NPTX1 | 42 | 2.4 | −17.3 | 0.0123 | Neuronal pentraxin I | Anti proliferative in colon cancer | 29345391 | |
GALC | 49 | 2.0 | −24.9 | 0.0077 | Galactosylceramidase | Unclear | ||
STARD3NL | 98 | 3.6 | −27.4 | 0.0346 | STARD3 N-terminal like | Little or no information | ||
ZNF22 | 83 | 1.9 | −44.6 | 0.0077 | Zinc finger protein 22 | Little or no information | ||
NID1 | 459 | 5.1 | −89.4 | 0.0306 | nidogen 1 | Promotes EMT and metastasis in ovarian, breast and lung cancer. | 28416770 28827399 |
Gene Name | Non-B4GALNT2 Expressers | High B4GALNT2 Expressers | Consistency | p-Value | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Genes Down Up-Regulated in LS174T S2/S11 | CD200 | 171 ± 144 | 250 ± 236 | Yes | ≤0.01 |
NGFRAP1 | 850 ± 641 | 843 ± 5655 | Yes | N.S. | |
SKAP1 | 220 ± 176 | 205 ± 192 | No | ||
SLC4A1 | Not expressed | Not expressed | |||
Genes Down-Regulated in LS174T S2/S11 | FAM110B | 37 ± 33 | 35 ± 42 | Yes | N.S. |
ALX1 | 3 ± 13 | 4 ± 8 | No | ||
F5 | 325 ± 968 | 180 ± 627 | Yes | N.S. | |
INMT | 132 ± 153 | 118 ± 120 | Yes | N.S. | |
MYH3 | 41 ± 125 | 16 ± 16 | Yes | ≤0.05 | |
MBOAT2 | 498 ± 282 | 660 ± 405 | No | ||
ROR1 | 27 ± 39 | 25 ± 31 | No | ||
RAI14 | 765 ± 420 | 661 ± 586 | Yes | N.S. | |
FMO3 | 86 ± 620 | 26 ± 25 | Yes | N.S. | |
PEG10 | 136 ± 401 | 245 ± 685 | No | ||
NINL | 168 ± 203 | 119 ± 123 | Yes | ≤0.05 | |
ARMC4 | 4 ± 13 | 6 ± 8 | No | ||
MID2 | 146 ± 122 | 150 ± 104 | No | ||
SOX2 | 107 ± 281 | 32 ± 117 | Yes | ≤0.01 | |
LGALS2 | 77 ± 141 | 128 ± 210 | No | ||
NPTX1 | 39 ± 95 | 15 ± 29 | Yes | ≤0.01 | |
GALC | 644 ± 525 | 663 ± 503 | No | ||
STARD3NL | 697 ± 255 | 646 ± 253 | Yes | ≤0.1 | |
ZNF22 | 625 ± 239 | 638 ± 267 | No | ||
NID1 | 1558 ± 993 | 1544 ± 1496 | Yes | N.S. |
Gene Symbol | Expression Neo | Expression S2/S11 | Fold Change 3D/2D Neo | Fold Change 3D/2D S2/S11 | Corrected p-Value | Gene Name | Role | Broad Functional Category | ||
---|---|---|---|---|---|---|---|---|---|---|
2D | 3D | 2D | 3D | |||||||
KIZ | 16.2 | 13.4 | 19.0 | 3.8 | −1.2 | −4.9 | 0.0086 | Kizuna centrosomal protein | Centrosomal protein necessary to endure the forces converging on the centrosomes during spindle formation. | Cytoskeleton and mitosis |
CEP120 | 7.3 | 7.5 | 15.8 | 3.1 | 1.0 | −5.2 | 0.0086 | Centrosomal protein 120kDa | Functions in the microtubule-dependent coupling of the nucleus and the centrosome. | |
DNAH6 | 6.3 | 5.3 | 13.1 | 2.3 | −1.2 | −5.7 | 0.0163 | Dynein, axonemal, heavy chain 6 | Member of the dynein family, which are constituents of the microtubule-associated motor protein complex. | |
SGOL2 | 8.6 | 7.7 | 18.4 | 2.2 | −1.1 | −8.3 | 0.0086 | Shugoshin-like 2 (S. pombe) | Targets PPP2CA to centromeres, leading to cohesin dephosphorylation. | |
STARD13 | 13.5 | 16.3 | 19.8 | 4.2 | 1.2 | −4.7 | 0.0156 | StAR-related lipid transfer (START) domain containing 13 | Involved in regulation of cytoskeletal reorganization, cell proliferation and motility. | |
UPK1A | 4.0 | 3.7 | 1.9 | 12.0 | −1.1 | 6.3 | 0.0086 | Uroplakin 1A | Member of the tetraspanin family, mediates signaling. Decreased expression is associated with CRC progression and poor prognosis. (PMID: 25197375) | Cell signaling |
OR52R1 | 11.2 | 10.3 | 3.3 | 15.5 | −1.1 | 4.8 | 0.0131 | Olfactory receptor, family 52, subfamily R, member 1 (gene/pseudogene) | Olfactory receptors are G-protein-coupled receptors involved in perception of smell and other functions. | |
TAS2R45 | 42.6 | 35.9 | 68.8 | 17.2 | −1.2 | −4.0 | 0.0247 | Taste receptor, type 2, member 45 | Taste receptors play a role in the perception of bitterness and in sensing the chemical composition of the gastrointestinal content. Some taste receptors inhibit cancer growth and stemness. (PMID: 28467517) | |
TAS2R19 | 41.9 | 31.8 | 70.3 | 17.1 | −1.3 | −4.1 | 0.0116 | Taste receptor, type 2, member 19 | ||
TAS2R30 | 254.5 | 215.3 | 402.3 | 81.8 | −1.2 | −4.9 | 0.0168 | Taste receptor, type 2, member 30 | ||
TNFAIP8L2 | 4.7 | 6.0 | 2.0 | 14.5 | 1.3 | 7.3 | 0.0319 | Tumor necrosis factor, alpha-induced protein 8-like 2 | Promotes Fas-induced apoptosis. (PMID: 28186089) | Apoptosis |
MYOD1 | 3.4 | 5.7 | 2.3 | 10.4 | 1.7 | 4.4 | 0.0239 | Myogenic differentiation 1 | Mediates apoptosis through caspase 3. (PMID: 28131747) | |
PPM1K | 16.3 | 11.7 | 25.7 | 4.0 | −1.4 | −6.5 | 0.0086 | Protein phosphatase, Mg2+/Mn2+ dependent, 1K | Regulates the mitochondrial permeability transition pore and is essential for cellular survival. | |
SDPR (CAVIN2) | 4.3 | 1.8 | 18.3 | 2.3 | −2.4 | −8.1 | 0.0106 | Serum deprivation response | Role in caveolar biogenesis and morphology. Metastasis suppressor and activator of apoptosis. (PMID: 26739564). | |
PHF20L1 | 7.4 | 7.1 | 24.2 | 2.7 | 1.0 | −8.9 | 0.0089 | PHD finger protein 20-like 1 | Predicted to be involved in regulation of transcription. Stabilizes SOX2 postranslationally. (PMID: 30089852) | Transcription regulation |
KLF12 | 5.2 | 3.9 | 12.3 | 2.2 | −1.3 | −5.7 | 0.0235 | Kruppel-like factor 12 | Inhibitor of the AP-2 alpha transcription factor. Inhibits growth and anoikis resistance of ovarian cancer cells. (PMID: 28095864) | |
PCF11 | 3.6 | 5.0 | 6.7 | 1.7 | 1.4 | −4.0 | 0.0086 | PCF11 cleavage and polyadenylation factor subunit | It is necessary for efficient Pol II transcription termination | |
CTLA4 | 2.1 | 3.7 | 2.4 | 14.2 | 1.7 | 5.8 | 0.0136 | Cytotoxic T-lymphocyte-associated protein 4 | Inhibitor of T cell activation. | Immunity and inflammation |
IL1A | 1.7 | 2.8 | 2.1 | 11.7 | 1.7 | 5.6 | 0.0259 | Interleukin 1α | Involved in immune responses and inflammatory processes. | |
TDO2 | 3.1 | 6.5 | 7.3 | 29.0 | 2.1 | 4.0 | 0.0086 | Tryptophan 2,3-dioxygenase | In tryptophan metabolism catalyzes the first step of the kynurenine pathway. Increased kynurenine may suppress antitumor immune responses. | |
FSIP2 | 8.3 | 5.8 | 17.0 | 2.9 | −1.4 | −5.9 | 0.0365 | Fibrous sheath interacting protein 2 | Protein associated with the sperm fibrous sheath. | Fertilization |
SPACA1 | 5.5 | 6.4 | 4.1 | 18.2 | 1.2 | 4.5 | 0.0293 | Sperm acrosome associated 1 | Localizes to the acrosomal membrane of spermatozoa, playing a role in acrosomal morphogenesis and in sperm-egg fusion. | |
USP11 | 6.1 | 7.0 | 3.3 | 13.3 | 1.1 | 4.0 | 0.0352 | Ubiquitin specific peptidase 11 | Encodes a cysteine protease that cleaves ubiquitin from ubiquitin-conjugated protein substrates. | Ubiquitination |
ST13 | 6.9 | 12.8 | 2.7 | 11.0 | 1.9 | 4.1 | 0.0090 | Suppression of tumorigenicity 13 (colon carcinoma) (Hsp70 interacting protein) | Mediates the association of the heat shock proteins HSP70 and HSP90. | Protein folding |
HIST4H4 | 81.2 | 193.8 | 101.6 | 406.8 | 2.4 | 4.0 | 0.0365 | Histone cluster 4, H4 | Component of the nucleosome. | Chromatin structure |
TRAPPC2 | 10.3 | 7.1 | 8.4 | 1.9 | −1.5 | −4.4 | 0.0086 | Trafficking protein particle complex 2 | May play a role in vesicular transport from endoplasmic reticulum to Golgi | Intracellular transport |
C8orf74 | 6.3 | 5.3 | 10.1 | 2.3 | −1.2 | −4.4 | 0.0135 | Chromosome 8 open reading frame 74 | Little or no information | |
NAALADL2 | 15.5 | 10.4 | 17.9 | 4.1 | −1.5 | −4.3 | 0.0196 | N-acetylated alpha-linked acidic dipeptidase-like 2 | ||
SAMD12 | 21.1 | 17.1 | 25.8 | 6.3 | −1.2 | −4.1 | 0.0323 | Sterile alpha motif domain containing 12 | ||
FRG2 | 40.8 | 49.1 | 40.2 | 173.8 | 1.2 | 4.3 | 0.0138 | FSHD region gene 2 | ||
FRG2C | 3.5 | 8.4 | 7.2 | 35.0 | 2.4 | 4.9 | 0.0124 | FSHD region gene 2 family, member C |
Gene Name | Non-B4GALNT2 Expressers | High B4GALNT2 Expressers | Consistency | p-Value | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Cytoskeleton and mitosis | KIZ (PLK1S1) | 346 ± 302 | 250 ± 154 | Yes | ≤0.01 |
CEP120 | 404 ± 116 | 340 ± 135 | Yes | ≤0.01 | |
DNAH6 | 33 ± 28 | 27 ± 15 | Yes | ≤0.05 | |
SGOL2 | 316 ± 124 | 273 ± 138 | Yes | ≤0.01 | |
STARD13 | 529 ± 271 | 355 ± 211 | Yes | ≤0.01 | |
Cell signaling | UPK1A | 16 ± 112 | 5 ± 21 | Yes | N.S. |
Apoptosis | TNFAIP8L2 | 46 ± 38 | 58 ± 42 | Yes | ≤0.05 |
PPM1K | 97 ± 133 | 10 ± 45 | No | ||
SDPR | 186 ± 271 | 153 ± 162 | Yes | N.S | |
Transcription regulation | PHF20L1 | 941 ± 296 | 794 ± 349 | Yes | ≤0.01 |
KLF12 | 239 ± 199 | 179 ± 128 | Yes | ≤0.01 | |
PCF11 | 1025 ± 302 | 856 ± 227 | Yes | ≤0.01 | |
Immunity and inflammation | CTLA4 | 47 ± 85 | 42 ± 34 | No | |
IL1A | 34 ± 86 | 69 ± 215 | Yes | ≤0.05 | |
TDO2 | 232 ± 885 | 115 ± 156 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucci, M.; Gomes Ferreira, I.; Orlandani, M.; Malagolini, N.; Ferracin, M.; Dall’Olio, F. High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells 2020, 9, 948. https://doi.org/10.3390/cells9040948
Pucci M, Gomes Ferreira I, Orlandani M, Malagolini N, Ferracin M, Dall’Olio F. High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells. 2020; 9(4):948. https://doi.org/10.3390/cells9040948
Chicago/Turabian StylePucci, Michela, Inês Gomes Ferreira, Martina Orlandani, Nadia Malagolini, Manuela Ferracin, and Fabio Dall’Olio. 2020. "High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer" Cells 9, no. 4: 948. https://doi.org/10.3390/cells9040948
APA StylePucci, M., Gomes Ferreira, I., Orlandani, M., Malagolini, N., Ferracin, M., & Dall’Olio, F. (2020). High Expression of the Sda Synthase B4GALNT2 Associates with Good Prognosis and Attenuates Stemness in Colon Cancer. Cells, 9(4), 948. https://doi.org/10.3390/cells9040948