Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Full-Length Pneumolysin (PLY) and Fragments
2.2. Cloning, Expression, and Production of Recombinant Full-Length PLY and Domain 4 of PLY (PLY4)
2.3. Synthesis of Peptides
2.4. Human Umbilical Vascular Endothelial Cell (HUVEC) Culture
2.5. Isolation of Mouse Polymorphonuclear Neutrophils (PMNs)
2.6. PMN Transendothelial Migration Assay
2.7. In Vitro Protein Binding Assay for MD2 and TLR4
2.8. In Vitro Protein Competition Binding Assay (C70PLY4 and MD2/TLR4)
2.9. Western Blot Analysis
2.10. Homology Modeling and Docking Simulation
2.11. Inflammatory Rats of High-Fat Diet (HFD) and Low-Dose Streptozotocin (STZ) Induction
2.12. Hematoxylin and Eosin (HE) Staining
2.13. ELISA Assays
2.14. Cell Viability Assay
2.15. Cell Apoptosis
2.16. Statistical Analysis
3. Results
3.1. C70PLY4 Targets TLR4 to Inhibit the LPS-Activated Transendothelial Migration of PMNs Isolated from TLR4-Wild-Type Mice
3.2. C70PLY4 Competes with MD2 for the Binding Site on TLR4 In Vitro and Inhibits LPS-Induced ERK1/2 and NF-κB Phosphorylation in HUVECs
3.3. C70PLY4 Attenuates Atherosclerosis in HFD/STZ-Induced Inflammatory Rats
3.4. C70PLY4 Inhibits the Secretion of Soluble ICAM-1, VCAM-1, and E-Selectin in HFD/STZ-Induced Inflammatory Rats
3.5. C70PLY4 Does Not Affect Viability, Apoptosis, or Caspase 3 Activity in HUVECs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, B.K.; Macdonald, C.A. Drug discovery from uncultivable microorganisms. Drug Discov. Today 2010, 15, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Lin, S. Microbial Natural Products: A Promising Source for Drug Discovery. J. Appl. Microbiol. Biochem. 2017, 1, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Hirst, R.A.; Kadioglu, A.; O’callaghan, C.; Andrew, P.W. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin. Exp. Immunol. 2004, 138, 195–201. [Google Scholar] [CrossRef]
- Rossjohn, J.; Gilbert, R.J.; Crane, D.; Morgan, P.J.; Mitchell, T.J.; Rowe, A.J.; Andrew, P.W.; Paton, J.C.; Tweten, R.K.; Parker, M.W. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J. Mol. Biol. 1998, 284, 449–461. [Google Scholar] [CrossRef]
- Rubins, J.B.; Janoff, E.N. Pneumolysin: A multifunctional pneumococcal virulence factor. J. Lab. Clin. Med. 1998, 131, 21–27. [Google Scholar] [CrossRef]
- Baba, H.; Kawamura, I.; Kohda, C.; Nomura, T.; Ito, Y.; Kimoto, T.; Watanabe, I.; Ichiyama, S.; Mitsuyama, M. Essential role of domain 4 of pneumolysin from Streptococcus pneumonia in cytolytic activity as determined by truncated proteins. Biochem. Biophys. Res. Commun. 2001, 281, 37–44. [Google Scholar] [CrossRef]
- Chiu, F.F.; Leng, C.H.; Ding, Y.J.; Chang, J.C.; Chang, L.S.; Lien, S.P.; Chen, H.W.; Siu, L.K.; Liu, S.J. Domain 4 of pneumolysin from Streptococcus pneumoniae is a multifunctional domain contributing TLR4 activating and hemolytic activity. Biochem. Biophys. Res. Commun. 2019, 517, 596–602. [Google Scholar] [CrossRef]
- Chin, Y.W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerwick, W.H.; Fenner, A.M. Drug discovery from marine microbes. Microb. Ecol. 2013, 65, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, E.J.; Parker, A.E.; O’Neill, L.A. Targeting Toll-like receptors: Emerging therapeutics? Nat. Rev. Drug Discov. 2010, 9, 293–307. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsan, M.F.; Gao, B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol. 2004, 76, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 2014, 14, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Roshan, M.H.; Tambo, A.; Pace, N.P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int. J. Inflam. 2016, 2016, 1532832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achek, A.; Yesudhas, D.; Choi, S. Toll-like receptors: Promising therapeutic targets for inflammatory diseases. Arch. Pharm. Res. 2016, 39, 1032–1049. [Google Scholar] [CrossRef] [PubMed]
- Bennett-Guerrero, E.; Grocott, H.P.; Levy, J.H.; Stierer, K.A.; Hogue, C.W.; Cheung, A.T.; Newman, M.F.; Carter, A.A.; Rossignol, D.P.; Collard, C.D. A phase II, double-blind, placebo-controlled, ascending-dose study of Eritoran (E5564), a lipid A antagonist, in patients undergoing cardiac surgery with cardiopulmonary bypass. Anesthesia Analg. 2007, 104, 378–383. [Google Scholar] [CrossRef]
- Wasan, K.M.; Risovic, V.; Sivak, O.; Lee, S.D.; Mason, D.X.; Chiklis, G.R.; McShane, J.; Lynn, M.; Wong, N.; Rossignol, D.P. Influence of plasma cholesterol and triglyceride concentrations and eritoran (E5564) micelle size on its plasma pharmacokinetics and ex vivo activity following single intravenous bolus dose into healthy female rabbits. Pharm. Res. 2008, 25, 176–182. [Google Scholar] [CrossRef]
- Ii, M.; Matsunaga, N.; Hazeki, K.; Nakamura, K.; Takashima, K.; Seya, T.; Hazeki, O.; Kitazaki, T.; Iizawa, Y. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol. Pharmacol. 2006, 69, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Ungaro, R.; Fukata, M.; Hsu, D.; Hernandez, Y.; Breglio, K.; Chen, A.; Xu, R.; Sotolongo, J.; Espana, C.; Zaias, J.; et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest Liver Physiol. 2009, 296, G1167–G1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Peng, Y.; Wu, J.; Wang, Y.; Yao, L. Toll-like receptor 2/4 links to free fatty acid-induced inflammation and β-cell dysfunction. J. Leukoc Biol. 2014, 95, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Dasu, M.R.; Devaraj, S.; Zhao, L.; Hwang, D.H.; Jialal, I. High glucose induces Toll-like receptor expression in human monocytes: Mechanism of activation. Diabetes 2008, 57, 3090–3098. [Google Scholar] [CrossRef] [Green Version]
- Rabes, A.; Suttorp, N.; Opitz, B. Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies. Curr. Top Microbiol. Immunol. 2016, 397, 215–227. [Google Scholar] [PubMed]
- Kobayashi, M.; Saitoh, S.; Tanimura, N.; Takahashi, K.; Kawasaki, K.; Nishijima, M.; Fujimoto, Y.; Fukase, K.; Akashi-Takamura, S.; Miyake, K. Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering. J. Immunol. 2006, 176, 6211–6218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, P.; Jacobsen, P.; Rossing, K.; Jensen, J.S.; Parving, H.H.; Feldt-Rasmussen, B. Plasma concentrations of VCAM-1 and ICAM-1 are elevated in patients with Type 1 diabetes mellitus with microalbuminuria and overt nephropathy. Diabet Med. 2000, 17, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Kinugasa, M.; Satomi-Kobayashi, S.; Hatakeyama, K.; Knox, A.J.; Asada, Y.; Wierman, M.E.; Hirata, K.; Rikitake, Y. Family with sequence similarity 5, member C (FAM5C) increases leukocyte adhesion molecules in vascular endothelial cells: Implication in vascular inflammation. PLoS ONE 2014, 9, e107236. [Google Scholar] [CrossRef] [Green Version]
- Herder, C.; Baumert, J.; Zierer, A.; Roden, M.; Meisinger, C.; Karakas, M.; Chambless, L.; Rathmann, W.; Peters, A.; Koenig, W.; et al. Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS ONE 2011, 6, e19852. [Google Scholar] [CrossRef] [Green Version]
- Kalofoutis, C.; Piperi, C.; Kalofoutis, A.; Harris, F.; Phoenix, D.; Singh, J. Type II diabetes mellitus and cardiovascular risk factors: Current therapeutic approaches. Exp. Clin. Cardiol. 2007, 12, 17–28. [Google Scholar]
- Soehnlein, O.; Steffens, S.; Hidalgo, A.; Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 2017, 17, 248–261. [Google Scholar] [CrossRef]
- Mayadas, T.N.; Cullere, X.; Lowell, C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014, 9, 181–218. [Google Scholar] [CrossRef] [Green Version]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Hoenderdos, K.; Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2014, 48, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.L.; Moots, R.J.; Edwards, S.W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 2014, 10, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Guo, Y.; Ha, B.; Zen, K.; Liu, Y. Regulation of the inflammatory response: Enhancing neutrophil infiltration under chronic inflammatory conditions. J. Immunol. 2012, 188, 844–853. [Google Scholar] [CrossRef] [Green Version]
- Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 2010, 49, 1618–1631. [Google Scholar] [CrossRef] [Green Version]
- Friedman, G.D.; Klatsky, A.L.; Siegelaub, A.B. The leukocyte count as a predictor of myocardial infarction. N. Engl. J. Med. 1974, 290, 1275–1278. [Google Scholar] [CrossRef]
- O’Neill, L.A. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 2006, 5, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, J.; Jiang, S.; Ma, Z.; Wang, D.; Hu, W.; Deng, C.; Fan, C.; Di, S.; Sun, Y.; et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016, 7, e2234. [Google Scholar] [CrossRef] [PubMed]
- Falck-Hansen, M.; Kassiteridi, C.; Monaco, C. Toll-like receptors in atherosclerosis. Int. J. Mol. Sci. 2013, 14, 14008–14023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-F.; Chen, C.-N.; Lin, J.-C.; Wang, H.-E.; Mori, S.; Li, J.-J.; Yen, C.-K.; Hsu, C.-Y.; Fung, C.-P.; Chong, P.C.-S.; et al. Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells 2020, 9, 1183. https://doi.org/10.3390/cells9051183
Chang S-F, Chen C-N, Lin J-C, Wang H-E, Mori S, Li J-J, Yen C-K, Hsu C-Y, Fung C-P, Chong PC-S, et al. Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells. 2020; 9(5):1183. https://doi.org/10.3390/cells9051183
Chicago/Turabian StyleChang, Shun-Fu, Cheng-Nan Chen, Jung-Chung Lin, Hsin-Ell Wang, Shigetarou Mori, Jia-Je Li, Chia-Kuang Yen, Ching-Yun Hsu, Chang-Phone Fung, Pele Choi-Sing Chong, and et al. 2020. "Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions" Cells 9, no. 5: 1183. https://doi.org/10.3390/cells9051183
APA StyleChang, S. -F., Chen, C. -N., Lin, J. -C., Wang, H. -E., Mori, S., Li, J. -J., Yen, C. -K., Hsu, C. -Y., Fung, C. -P., Chong, P. C. -S., Leng, C. -H., Ding, Y. -J., Chang, F. -Y., & Siu, L. K. (2020). Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells, 9(5), 1183. https://doi.org/10.3390/cells9051183