The Aquaporin 3 Promoter Polymorphism −1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cloning of the AQP3 Promoter Constructs
2.3. Luciferase Assay
2.4. Electrophoretic Mobility Shift Assay (EMSA) of Transcription Factor Binding
2.5. Patient Samples and DNA Isolation
2.6. Measurement of AQP3 Expression in Immune Cells
2.7. Migration Assay
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the AQP3 A(−1431)G Promoter Polymorphism
3.1.1. Molecular Characteristics: AQP3 Promoter Activity and Transcription Factor Binding Based on Genotype
3.1.2. Functional Characteristics: AQP3 Immune Cell Expression and Migration Based on Genotype
3.2. Patients’ Baseline Characteristics and Course of Transplantation
3.2.1. AQP3 −1431 A/G Dependent Rejection
3.2.2. AQP3 −1431 A/G Dependent CMV Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T.; et al. Acute kidney injury in sepsis. Intensive Care Med. 2017, 43, 816–828. [Google Scholar] [CrossRef] [Green Version]
- Yates, P.J.; Nicholson, M.L. The aetiology and pathogenesis of chronic allograft nephropathy. Transpl. Immunol. 2006, 16, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.; Held, P.J.; Port, F.K. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanova, J.; Pouché, L.; Picard, N. Genetic polymorphisms in the immune response: A focus on kidney transplantation. Clin. Biochem. 2016, 49, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Stewart, D.E.; Cherikh, W.S.; Wainright, J.L.; Kucheryavaya, A.; Woodbury, M.; Snyder, J.J.; et al. OPTN/SRTR 2015 Annual Data Report: Kidney. Am. J. Transplant. 2017, 17, 21–116. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; Corrales, I.; Arias, M.; Campistol, J.M.; Giménez, E.; Crespo, J.; López-Oliva, M.O.; Beneyto, I.; Martín-Moreno, P.L.; Llamas-Fuente, F.; et al. Association between individual and combined SNPs in genes related to innate immunity and incidence of CMV infection in seropositive kidney transplant recipients. Am. J. Transplant. 2015, 15, 1323–1335. [Google Scholar] [CrossRef]
- Fishman, J.A.; Rubin, R.H. Infection in organ-transplant recipients. N. Engl. J. Med. 1998, 338, 1741–1751. [Google Scholar] [CrossRef]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Huprikar, S.; Chou, S.; Danziger-Isakov, L.; Humar, A. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2018, 102, 900–931. [Google Scholar] [CrossRef] [Green Version]
- Higdon, L.E.; Trofe-Clark, J.; Liu, S.; Margulies, K.B.; Sahoo, M.K.; Blumberg, E.; Pinsky, B.A.; Maltzman, J.S. Cytomegalovirus-Responsive CD8+ T Cells Expand after Solid Organ Transplantation in the Absence of CMV Disease. Am. J. Transplant. 2017, 17, 2045–2054. [Google Scholar] [CrossRef] [Green Version]
- Bouatou, Y.; Viglietti, D.; Pievani, D.; Louis, K.; Duong Van Huyen, J.; Rabant, M.; Aubert, O.; Taupin, J.; Glotz, D.; Legendre, C.; et al. Response to treatment and long-term outcomes in kidney transplant recipients with acute T cell-mediated rejection. Am. J. Transplant. 2019, 19, 1972–1988. [Google Scholar] [CrossRef]
- Brunet, M.; Millán López, O.; López-Hoyos, M. T-Cell Cytokines as Predictive Markers of the Risk of Allograft Rejection. Ther. Drug Monit. 2016, 38, 21. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, H.; Fishman, J.A. The Cell Biology of Cytomegalovirus: Implications for Transplantation. Am. J. Transplant. 2016, 16, 2254–2269. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska-Zamojcin, E.; Czerewaty, M.; Malinowski, D.; Tarnowski, M.; Słuczanowska-Głabowska, S.; Domanski, L.; Safranow, K.; Pawlik, A. Ficolin-2 Gene rs7851696 Polymorphism is Associated with Delayed Graft Function and Acute Rejection in Kidney Allograft Recipients. Arch. Immunol. Ther. Exp. (Warsz) 2017, 66, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.-S.; Kim, S.K.; Park, H.J.; Seok, H.; Kang, S.W.; Lee, S.H.; Kim, Y.G.; Moon, J.Y.; Kim, T.H.; Kim, Y.H.; et al. Association Studies of Bone Morphogenetic Protein 2 Gene Polymorphisms with Acute Rejection in Kidney Transplantation Recipients. Transplant. Proc. 2017, 49, 1012–1017. [Google Scholar] [CrossRef]
- Rekers, N.V.; Flaig, T.M.; Mallat, M.J.K.; Spruyt-Gerritse, M.J.; Zandbergen, M.; Anholts, J.D.H.; Bajema, I.M.; Clahsen-van Groningen, M.C.; Yang, J.; de Fijter, J.W.; et al. Donor Genotype and Intragraft Expression of CYP3A5 Reflect the Response to Steroid Treatment during Acute Renal Allograft Rejection. Transplantation 2017, 101, 2017–2025. [Google Scholar] [CrossRef]
- Perovic, V.; Markovic, M.; Kravljaca, M.; Milosevic, E.; Djoric, M.; Pravica, V.; Naumovic, R. Cytokine Gene Polymorphism Profiles in Kidney Transplant Patients - Association of +1188A/C RS3212227 SNP in the IL12B Gene Prevents Delayed Graft Function. Arch. Med. Res. 2018, 49, 101–108. [Google Scholar] [CrossRef]
- Rump, K.; Adamzik, M. Function of aquaporins in sepsis: A systematic review. Cell Biosci. 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmel, T.; Nowak, H.; Rump, K.; Koos, B.; Schenker, P.; Viebahn, R.; Adamzik, M.; Bergmann, L. The Aquaporin 5 -1364A/C Promoter Polymorphism is Associated with Cytomegalovirus Infection Risk in Kidney Transplant Recipients. Front. Immunol. 2019, 10, 2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and cell migration. Pflug. Arch. 2008, 456, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkman, A.S.; Anderson, M.O.; Papadopoulos, M.C. Aquaporins: Important but elusive drug targets. Nat. Rev. Drug Discov. 2014, 13, 259–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkman, A.S. Aquaporins. Curr. Biol. 2013, 23, 52. [Google Scholar] [CrossRef] [Green Version]
- Michalek, K. Aquaglyceroporins in the kidney: Present state of knowledge and prospects. J. Physiol. Pharmacol. 2016, 67, 185–193. [Google Scholar] [PubMed]
- Hara-Chikuma, M.; Chikuma, S.; Sugiyama, Y.; Kabashima, K.; Verkman, A.S.; Inoue, S.; Miyachi, Y. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J. Exp. Med. 2012, 209, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Chae, Y.S.; Lee, S.J.; Kang, B.W.; Kim, J.G.; Kim, W.W.; Jung, J.H.; Park, H.Y.; Jeong, J.; Jeong, J.Y.; et al. Aquaporin 3 Expression Predicts Survival in Patients with HER2-positive Early Breast Cancer. Anticancer Res. 2015, 35, 2775–2782. [Google Scholar] [PubMed]
- Racusen, L.C.; Solez, K.; Colvin, R.B.; Bonsib, S.M.; Castro, M.C.; Cavallo, T.; Croker, B.P.; Demetris, A.J.; Drachenberg, C.B.; Fogo, A.B.; et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999, 55, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Perálvarez, M.; Rico-Juri, J.M.; Tsochatzis, E.; Burra, P.; De la Mata, M.; Lerut, J. Biopsy-proven acute cellular rejection as an efficacy endpoint of randomized trials in liver transplantation: A systematic review and critical appraisal. Transpl. Int. 2016, 29, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Ljungman, P.; Boeckh, M.; Hirsch, H.H.; Josephson, F.; Lundgren, J.; Nichols, G.; Pikis, A.; Razonable, R.R.; Miller, V.; Griffiths, P.D. Definitions of Cytomegalovirus Infection and Disease in Transplant Patients for Use in Clinical Trials. Clin. Infect. Dis. 2017, 64, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Rump, K.; Brendt, P.; Frey, U.H.; Schäfer, S.T.; Siffert, W.; Peters, J.; Adamzik, M. Aquaporin 1 and 5 expression evoked by the β2 adrenoreceptor agonist terbutaline and lipopolysaccharide in mice and in the human monocytic cell line THP-1 is differentially regulated. Shock 2013, 40, 430–436. [Google Scholar] [CrossRef]
- Cecka, J.M. Calculated PRA (CPRA): The new measure of sensitization for transplant candidates. Am. J. Transplant. 2010, 10, 26–29. [Google Scholar] [CrossRef]
- Williams, R.C.; Opelz, G.; McGarvey, C.J.; Weil, E.J.; Chakkera, H.A. The Risk of Transplant Failure with HLA Mismatch in First Adult Kidney Allografts from Deceased Donors. Transplantation 2016, 100, 1094–1102. [Google Scholar] [CrossRef]
- Süsal, C.; Fichtner, A.; Tönshoff, B.; Mehrabi, A.; Zeier, M.; Morath, C. Clinical Relevance of HLA Antibodies in Kidney Transplantation: Recent Data from the Heidelberg Transplant Center and the Collaborative Transplant Study. J. Immunol. Res. 2017, 2017, 5619402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.H.; Casey, M.J.; Womer, K.L. Analysis of Risk Factors for Kidney Retransplant Outcomes Associated with Common Induction Regimens: A Study of over Twelve-Thousand Cases in the United States. J. Transplant. 2017, 2017, 8132672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haasova, M.; Snowsill, T.; Jones-Hughes, T.; Crathorne, L.; Cooper, C.; Varley-Campbell, J.; Mujica-Mota, R.; Coelho, H.; Huxley, N.; Lowe, J.; et al. Immunosuppressive therapy for kidney transplantation in children and adolescents: Systematic review and economic evaluation. Health Technol. Assess. 2016, 20, 1–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezoe, K.; Oga, T.; Honda, T.; Hara-Chikuma, M.; Ma, X.; Tsuruyama, T.; Uno, K.; Fuchikami, J.; Tanizawa, K.; Handa, T.; et al. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Sci. Rep. 2016, 6, 25781. [Google Scholar] [CrossRef]
- Vulcano, M.; Albanesi, C.; Stoppacciaro, A.; Bagnati, R.; D’Amico, G.; Struyf, S.; Transidico, P.; Bonecchi, R.; Del Prete, A.; Allavena, P.; et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur. J. Immunol. 2001, 31, 812–822. [Google Scholar] [CrossRef]
- Rump, K.; Unterberg, M.; Bergmann, L.; Bankfalvi, A.; Menon, A.; Schäfer, S.; Scherag, A.; Bazzi, Z.; Siffert, W.; Peters, J.; et al. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: A prospective laboratory and patient study. J. Transl. Med. 2016, 14, 321. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Chae, Y.S.; Kim, J.G.; Kim, W.W.; Jung, J.H.; Park, H.Y.; Jeong, J.Y.; Park, J.Y.; Jung, H.J.; Kwon, T.H. AQP5 Expression Predicts Survival in Patients with Early Breast Cancer. Ann. Surg. Oncol. 2013, 21, 375–383. [Google Scholar] [CrossRef]
- Loitto, V.M.; Forslund, T.; Sundqvist, T.; Magnusson, K.E.; Gustafsson, M. Neutrophil leukocyte motility requires directed water influx. J. Leukoc. Biol. 2002, 71, 212–222. [Google Scholar]
- Adamzik, M.; Broll, J.; Steinmann, J.; Westendorf, A.M.; Rehfeld, I.; Kreissig, C.; Peters, J. An increased alveolar CD4 + CD25 + Foxp3 + T-regulatory cell ratio in acute respiratory distress syndrome is associated with increased 30-day mortality. Intensive Care Med. 2013, 39, 1743–1751. [Google Scholar] [CrossRef]
- Li, X.C.; Turka, L.A. An update on regulatory T cells in transplant tolerance and rejection. Nat. Rev. Nephrol. 2010, 6, 577–583. [Google Scholar] [CrossRef]
- Selin, L.K.; Cornberg, M.; Brehm, M.A.; Kim, S.; Calcagno, C.; Ghersi, D.; Puzone, R.; Celada, F.; Welsh, R.M. CD8 memory T cells: Cross-reactivity and heterologous immunity. Semin. Immunol. 2004, 16, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhang, H.; Nie, W.; Deng, R.; Li, J.; Xiong, Y.; Dai, Y.; Liu, L.; Yuan, X.; He, X.; et al. Risk Factors for Acute Rejection after Deceased Donor Kidney Transplantation in China. Transplant. Proc. 2018, 50, 2465–2468. [Google Scholar] [CrossRef] [PubMed]
- Weston, M.W.; Rinde-Hoffman, D.; Lopez-Cepero, M. Monitoring cell-mediated immunity during immunosuppression reduction in heart transplant recipients with severe systemic infections. Clin. Transplant. 2020, e13809. [Google Scholar] [CrossRef] [PubMed]
- Imko-Walczuk, B.; Roskosz-Stożkowska, M.; Szymańska, K.; Kadylak, D.; Dębska-Ślizień, A. Skin cancer in children after organ transplantation. Postepy Dermatol. Alergol. 2019, 36, 649–654. [Google Scholar] [CrossRef]
- Pardieck, I.N.; Beyrend, G.; Redeker, A.; Arens, R. Cytomegalovirus infection and progressive differentiation of effector-memory T cells. F1000Research 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.V.; Nombela-Arrieta, C. Chemokine control of lymphocyte trafficking: A general overview. Immunology 2005, 116, 1–12. [Google Scholar] [CrossRef]
- Sylwester, A.W.; Mitchell, B.L.; Edgar, J.B.; Taormina, C.; Pelte, C.; Ruchti, F.; Sleath, P.R.; Grabstein, K.H.; Hosken, N.A.; Kern, F.; et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005, 202, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Ding, S.; Zhang, W.; Zhou, Q.; Ye, W.; Chen, M.; Zhu, X. Expression of AQP3 protein in hAECs is regulated by Camp-PKA-CREB signalling pathway. Front. Biosci. (Landmark Ed.) 2015, 20, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Novak, T.J.; Rothenberg, E.V. cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells. Proc. Natl. Acad. Sci. USA 1990, 87, 9353–9357. [Google Scholar] [CrossRef] [Green Version]
- Lemaigre, F.P.; Ace, C.I.; Green, M.R. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucleic Acids Res. 1993, 21, 2907–2911. [Google Scholar] [CrossRef] [Green Version]
AA/AG (n = 152) | GG (n = 85) | p-Value | |
---|---|---|---|
Age (years), median (IQR) | 54 (43:63) | 52 (43:64) | 0.257 |
Gender (m/w) | 97/55 | 53/32 | 0.823 |
Height (m) | 1.73 ± 0.09 | 1.73 ± 0.09 | 0.796 |
Weight (kg), mean ± SD | 77.23 ± 14.48 | 77.48 ± 14.54 | 0.902 |
BMI (kg/m2), mean ± SD | 25.48 ± 4.41 | 25.88 ± 4.14 | 0.502 |
Ethnicity, n (%) | 0.232 | ||
Caucasian | 137 (90.1%) | 73 (85.9%) | |
Other | 15 (9.9%) | 12 (14.1%) | |
Pretransplant PRA | 0.543 | ||
PRA 0–20% | 144 (94.7%) | 82 (96.5%) | |
PRA > 20% | 8 (5.3%) | 3 (3.65%) | |
Donor age (years), median (IQR) | 52 (42.25:62) | 51 (43:62.5) | 0.497 |
Donor Gender (m/w) | 79/73 | 47/38 | 0.623 |
Living donor, n (%) | 15 (9.9%) | 14 (16.5%) | 0.137 |
Cadaveric donor, n (%) | 137 (90.1%) | 71 (85.5%) | |
Sum of HLA-mismatches median (IQR) | 3 (2:5) | 3.5 (2:5) | 0.522 |
Cold ischemia time (min), mean ± SD | 705.77 ± 306.95 | 652.33 ± 302.26 | 0.201 |
Immunosuppressive Induction Therapy | 0.672 | ||
Prednisone and ATG | 126 (82.9%) | 71 (82.7%) | |
Prednisone and Basiliximab | 11 (7.2%) | 9 (10.6%) | |
Prednisone | 8 (5.3%) | 4 (4.7%) | |
Prednisone and ATG and Basiliximab | 4 (2.6%) | 0 (0.0%) | |
Prednisone and Daclizumab | 2 (1.3%) | 1 (1.2%) | |
Other | 1 (0.7%) | 1 (1.2%) | |
Immunosuppressive Maintenance Therapy | 0.681 | ||
Prednisone, MPA, and Calcineurin-Inhibitor | 88 (57.9%) | 52 (61.2%) | |
Prednisone and Calcineurin-Inhibitor | 23 (15.1%) | 13 (15.3%) | |
Prednisone, MPA and mTOR-Inhibitor | 15 (9.9%) | 9 (10.6%) | |
Prednisone and mTOR-Inhibitor | 19 (12.5%) | 5 (5.9%) | |
None, unknown or other | 7 (4.6%) | 6 (7.1%) | |
Underlying diseases | |||
Diabetes mellitus | 56 | 34 | 0.631 |
Coronary artery disease | 34 | 15 | 0.389 |
Arterial Hypertension | 107 | 66 | 0.228 |
Heart disease | 3 | 5 | 0.110 |
Polycystic kidney disease | 25 | 7 | 0.076 |
Glomerular nephritis | 19 | 17 | 0.123 |
IgA-nephritis | 9 | 8 | 0.318 |
Diabetic nephropathy | 45 | 27 | 0.729 |
Interstitial nephritis | 8 | 4 | 0.851 |
Transplantation, n (%) Kidney Combined pancreas + kidney | 106 (69.7%) 46 (30.3%) | 60 (70.4%) 25 (29.4%) | 0.891 |
First kidney transplantation | 136 | 70 | 0.086 |
Previous kidney transplantation | 16 | 15 |
AA/AG (n = 152) | GG (n = 85) | p-Value | |
---|---|---|---|
Number of patients with rejection | 72 (47.3%) | 27 (31.7%) | 0.019 |
Rejection within 1 year | 69 (45.4%) | 23 (27.1%) | 0.005 |
Banff Classification of Rejection within 1 Year | 0.256 | ||
Borderline | 41 (59.4%) | 13 (56.5%) | |
Ia | 14 (20.3%) | 2 (8.7%) | |
Ib | 3 (4.3%) | 1 (4.3%) | |
IIa | 11 (15.9%) | 6 (26.1%) | |
IIb | 0 (0%) | 1 (4.3%) | |
Days until rejection, mean ± SD | 68.18 ± 172.79 | 177.11 ± 356.92 | 0.044 |
CMV infection within 1 year | 32 (21%) | 30 (35.3%) | 0.013 |
CMV disease within 1 year | 7 (4.6%) | 10 (11.8%) | 0.041 |
CMV Prophylaxe n (%) | 0.762 | ||
Valganciclovir | 135 (88.8%) | 74 (87.1%) | |
Ganciclovir | 14 (9.2%) | 8 (9.4%) | |
None/unknown | 3 (2.0%) | 3 (3.5%) | |
CMV Serology at Transplantation, n (%) | 0.565 | ||
D+/R− | 35 (23.5%) | 20 (23.5%) | |
D+/−/R+ | 92 (61.7%) | 48 (56.5%) | |
D−/R− | 22 (14.8%) | 17 (20.0%) | |
Indication of Anti-CMV Therapy, n (%) | 0.909 | ||
Prophylactic–perioperative | 14 (9.2%) | 8 (9.4%) | |
Prophylactic−3 months | 100 (65.8%) | 55 (64.7%) | |
Prophylactic−6 months | 35 (23.0%) | 19 (22.4%) | |
None/unknown | 3 (2.0%) | 3 (3.5%) |
Co-Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
AQP3 −1431 Genotype | p-Value | HR | 95% CI | p-Value | HR | 95% CI |
GG | - | 1 | - | - | 1 | - |
AA/AG | 0.006 | 1.95 | 1.216–3.127 | 0.018 | 1.86 | 1.111–3.14 |
Age (years) | 0.857 | 0.99 | 0.983–1.015 | 0.522 | 0.99 | 0.97–1.016 |
Diabetes mellitus | 0.24 | 1.281 | 0.848–1.934 | 0.865 | 1.05 | 0.567–1.964 |
BMI | 0.37 | 1.023 | 0.973–1.075 | 0.223 | 1.03 | 0.978–1.099 |
Gender | ||||||
male | - | 1 | - | - | 1 | - |
female | 0.733 | 0.929 | 0.61–1.416 | 0.806 | 0.94 | 0.581–1.525 |
Ethnicity | ||||||
caucasian | - | 1 | - | - | 1 | - |
other | 0.593 | 1.187 | 0.632–2.229 | 0.615 | 1.21 | 0.57–2.587 |
HLA-mismatch | 0.025 | 1.163 | 1.019–1.327 | 0.01 | 1.25 | 1.053–1.473 |
Cold ischemia time | 0.706 | 1 | 0.999–1.001 | 0.724 | 1 | 0.999–1.001 |
CMV serology | ||||||
D−/R− | - | 1 | - | - | 1 | - |
D+/−/R+ | 0.509 | 0.798 | 0.408–1.559 | 0.585 | 0.81 | 0.38–1.726 |
D+/R− | 0.697 | 0.89 | 0.494–1.602 | 0.538 | 0.80 | 0.39–1.634 |
immunosuppressive regimen | ||||||
MPA + prednisone + tacrolimus | - | 1 | - | - | 1 | - |
MPA + prednisone + cyclosporin | 0.586 | 1.144 | 0.705–1.855 | 0.997 | 1.00 | 0.563–1.781 |
other | 0.897 | 0.967 | 0.582–1.608 | 0.489 | 0.81 | 0.441–1.48 |
CMV infection | 0.842 | 0.954 | 0.599–1.519 | 0.756 | 1.09 | 0.641–1.843 |
PRA > 20% | 0.01 | 2.598 | 1.256–5.375 | 0.002 | 0.25 | 0.104–0.603 |
Co-Variable | Multivariate Restricted | ||
---|---|---|---|
AQP3 −1431 Genotype | p-Value | HR | 95% CI |
GG | - | 1 | - |
AA/AG | 0.013 | 1.875 | 1.144–3.076 |
HLA-mismatch | 0.006 | 1.212 | 1.057–1.389 |
PRA > 20% | 0.001 | 3.465 | 1.635–7.346 |
Co-Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
AQP3 −1431 Genotype | p-Value | HR | 95% CI | p-Value | HR | 95% CI |
GG | - | 1 | - | - | 1 | - |
AA/AG | 0.012 | 0.526 | 0.32–0.866 | 0.013 | 0.495 | 0.284–0.864 |
Age (years) | 0.852 | 0.998 | 0.978–1.018 | 0.76 | 1.004 | 0.977–1.033 |
gender | ||||||
male | - | 1 | - | - | 1 | - |
female | 0.762 | 0.924 | 0.554–1.54 | 0.969 | 0.989 | 0.564–1.734 |
donor age (years) | 0.69 | 1.003 | 0.988–1.018 | 0.992 | 0.999 | 0.978–1.02 |
donor gender | ||||||
male | - | 1 | - | - | 1 | - |
female | 0.139 | 0.686 | 0.416–1.131 | 0.303 | 0.751 | 0.435–1.295 |
cold ischemia time | 0.872 | 1.000 | 0.999–1.001 | 0.654 | 1.000 | 0.999–1.001 |
living donor | 0.277 | 0.603 | 0.242–1.503 | 0.323 | 1.788 | 0.565–5.652 |
BPAR (yes) | 0.975 | 0.992 | 0.599–1.643 | 0.614 | 0.864 | 0.49–1.524 |
HLA-mismatch | 0.058 | 1.166 | 0.995–1.366 | 0.273 | 1.102 | 0.926–1.312 |
Immunosuppressive regimen | ||||||
MPA + prednisone + tacrolimus | - | 1 | - | - | 1 | - |
MPA + prednisone + cyclosporin | 0.243 | 1.397 | 0.797–2.451 | 0.867 | 0.946 | 0.497–1.804 |
other | 0.347 | 0.724 | 0.369–1.419 | 0.085 | 0.519 | 0.246–1.095 |
CMV serology | ||||||
D−/R− | - | 1 | - | - | 1 | - |
D+/−/R+ | 0.189 | 2.003 | 0.711–5.645 | 0.867 | 0.946 | 0.497–1.804 |
D+/R− | 0.011 | 3.923 | 1.361–11.31 | 0.007 | 4.541 | 1.515–13.612 |
Anti-CMV prophylaxis | ||||||
Ganciclovir | - | 1 | - | - | 1 | - |
Valganciclovir | 0.193 | 2.163 | 0.678–6.904 | 0.33 | 2.192 | 0.452–10.616 |
PRA > 20% | 0.936 | 0.954 | 0.299–3.042 | 0.684 | 0.771 | 0.221–2.697 |
Co-Variable | Multivariate Restricted | ||
---|---|---|---|
AQP3 −1431 Genotype | p-Value | HR | 95% CI |
GG | - | 1 | - |
AA/AG | 0.012 | 0.527 | 0.32–0.868 |
CMV serology | |||
D−/R− | - | 1 | - |
D+/−/R+ | 0.152 | 2.134 | 0.756–6.022 |
D+/R− | 0.009 | 4.089 | 1.418–11.795 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rump, K.; Rahmel, T.; Rustige, A.-M.; Unterberg, M.; Nowak, H.; Koos, B.; Schenker, P.; Viebahn, R.; Adamzik, M.; Bergmann, L. The Aquaporin 3 Promoter Polymorphism −1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration. Cells 2020, 9, 1421. https://doi.org/10.3390/cells9061421
Rump K, Rahmel T, Rustige A-M, Unterberg M, Nowak H, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin 3 Promoter Polymorphism −1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration. Cells. 2020; 9(6):1421. https://doi.org/10.3390/cells9061421
Chicago/Turabian StyleRump, Katharina, Tim Rahmel, Anna-Maria Rustige, Matthias Unterberg, Hartmuth Nowak, Björn Koos, Peter Schenker, Richard Viebahn, Michael Adamzik, and Lars Bergmann. 2020. "The Aquaporin 3 Promoter Polymorphism −1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration" Cells 9, no. 6: 1421. https://doi.org/10.3390/cells9061421
APA StyleRump, K., Rahmel, T., Rustige, A. -M., Unterberg, M., Nowak, H., Koos, B., Schenker, P., Viebahn, R., Adamzik, M., & Bergmann, L. (2020). The Aquaporin 3 Promoter Polymorphism −1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration. Cells, 9(6), 1421. https://doi.org/10.3390/cells9061421