Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. General
2.1.2. Synthesis of S-(2-(5-hydroxy-4-oxo-4H-pyran-2-yl) methyl) Thioundecahydro-Closo- Dodecaborate (2-) Disodium Salt (KA-BSH, 1)
2.2. Boron Compounds
2.3. Cell Culture
2.4. F98 Rat Glioma Model.
2.5. In Vitro Uptake Experiments in F98 Cells
2.6. Immunostaining of F98 Cells
2.7. Cell Viability Assay in F98 Cells
2.8. Biodistribution of KA-BSH in F98 Glioma Bearing Rats
2.9. In Vivo Therapeutic Experiments
3. Results
3.1. Synthesis of KA-BSH
3.2. In Vitro Uptake Experiments in Cancer Cells.
3.3. Immunostaining of F98 Cells
3.4. Cell Viability Assay in F98 Cells
3.5. Biodistribution of KA-BSH in F98 Glioma Bearing Rats
3.6. In Vivo Therapeutic Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Agent a/Route | Dose (mg10B/kg) | Time (h) | n b | 10B Concentrations ± SD (µg 10B/g) c | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Liver | Spleen | Kidney | Skin | Muscle | Heart | Lung | ||||||||||||||||||
KA-BSH/iv | 10 | 1 | 5 | 5.15 | ± | 0.96 | 14.34 | ± | 4.78 | 13.86 | ± | 8.50 | 1.79 | ± | 0.15 | 0.63 | ± | 0.18 | 1.18 | ± | 0.13 | 4.31 | ± | 2.37 |
3 | 3 | 4.13 | ± | 0.37 | 16.07 | ± | 4.82 | 3.35 | ± | 0.88 | 0.45 | ± | 0.15 | 0.19 | ± | 0.07 | 0.29 | ± | 0.06 | 0.74 | ± | 0.07 | ||
20 | 1 | 5 | 10.25 | ± | 3.02 | 10.30 | ± | 7.44 | 15.56 | ± | 1.52 | 3.56 | ± | 1.22 | 2.35 | ± | 1.82 | 2.10 | ± | 0.30 | 6.11 | ± | 0.82 | |
3 | 4 | 5.40 | ± | 1.78 | 8.44 | ± | 5.06 | 3.22 | ± | 1.89 | 0.57 | ± | 0.12 | 0.24 | ± | 0.12 | 0.39 | ± | 0.19 | 1.37 | ± | 0.43 | ||
30 | 1 | 4 | 10.33 | ± | 2.61 | 3.77 | ± | 1.41 | 28.15 | ± | 7.96 | 7.25 | ± | 0.93 | 2.26 | ± | 0.34 | 3.45 | ± | 0.30 | 9.27 | ± | 2.85 | |
3 | 4 | 4.19 | ± | 1.79 | 5.68 | ± | 8.19 | 5.27 | ± | 0.63 | 1.06 | ± | 0.21 | 0.32 | ± | 0.11 | 0.56 | ± | 0.24 | 2.26 | ± | 0.94 | ||
BSH/iv | 30 | 1 | 4 | 20.81 | ± | 1.38 | 5.68 | ± | 1.49 | 20.84 | ± | 3.84 | 7.99 | ± | 1.24 | 5.25 | ± | 4.98 | 3.25 | ± | 0.35 | 12.70 | ± | 0.95 |
3 | 4 | 8.10 | ± | 1.07 | 2.74 | ± | 0.91 | 10.83 | ± | 3.14 | 4.00 | ± | 2.44 | 0.87 | ± | 0.34 | 1.15 | ± | 0.38 | 4.92 | ± | 1.89 | ||
BPA/iv | 10 | 1 | 6 | 5.40 | ± | 2.35 | 7.58 | ± | 2.71 | 27.57 | ± | 9.24 | 7.22 | ± | 3.21 | 5.25 | ± | 2.19 | 6.12 | ± | 1.44 | 5.74 | ± | 1.06 |
3 | 4 | 3.54 | ± | 0.73 | 6.02 | ± | 1.93 | 11.69 | ± | 4.01 | 4.80 | ± | 1.09 | 4.89 | ± | 1.14 | 3.92 | ± | 0.85 | 4.12 | ± | 1.67 |
References
- Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015, 17 (Suppl 4), iv1–iv62. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Arko, L.; Katsyv, I.; Park, G.E.; Luan, W.P.; Park, J.K. Experimental approaches for the treatment of malignant gliomas. Pharmacol. Ther. 2010, 128, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabalka, G.W.; Shaikh, A.L.; Barth, R.F.; Huo, T.; Yang, W.; Gordnier, P.M.; Chandra, S. Boronated unnatural cyclic amino acids as potential delivery agents for neutron capture therapy. Appl. Radiat. Isot. 2011, 69, 1778–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H. Boron lipid-based liposomal boron delivery system for neutron capture therapy: Recent development and future perspective. Future Med. Chem. 2013, 5, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Kawabata, S.; Hiramatsu, R.; Doi, A.; Ikeda, N.; Yamashita, T.; Kuroiwa, T.; Kasaoka, S.; Maruyama, K.; Miyatake, S. Computed tomography imaging of transferrin targeting liposomes encapsulating both boron and iodine contrast agents by convection-enhanced delivery to F98 rat glioma for boron neutron capture therapy. Neurosurgery 2011, 68, 1380–1387; discussion 1387. [Google Scholar] [CrossRef] [PubMed]
- El-Zaria, M.E.; Ban, H.S.; Nakamura, H. Boron-containing protoporphyrin IX derivatives and their modification for boron neutron capture therapy: Synthesis, characterization, and comparative in vitro toxicity evaluation. Chemistry 2010, 16, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Yang, W.; Barth, R.F.; Wu, G.; Huo, T.; Binns, P.J.; Riley, K.J.; Ongayi, O.; Gottumukkala, V.; Vicente, M.G. Convection enhanced delivery of carboranylporphyrins for neutron capture therapy of brain tumors. J. Neurooncol. 2011, 103, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Hiramatsu, R.; Kawabata, S.; Miyatake, S.; Kuroiwa, T.; Easson, M.W.; Vicente, M.G. Application of a novel boronated porphyrin (H(2)OCP) as a dual sensitizer for both PDT and BNCT. Lasers Surg. Med. 2011, 43, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Futamura, G.; Kawabata, S.; Nonoguchi, N.; Hiramatsu, R.; Toho, T.; Tanaka, H.; Masunaga, S.I.; Hattori, Y.; Kirihata, M.; Ono, K.; et al. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat. Oncol. 2017, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, S.; Kawabata, S.; Yokoyama, K.; Kuroiwa, T.; Michiue, H.; Sakurai, Y.; Kumada, H.; Suzuki, M.; Maruhashi, A.; Kirihata, M.; et al. Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. J. Neurooncol. 2009, 91, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Miyatake, S.; Kuroiwa, T.; Yokoyama, K.; Doi, A.; Iida, K.; Miyata, S.; Nonoguchi, N.; Michiue, H.; Takahashi, M.; et al. Boron neutron capture therapy for newly diagnosed glioblastoma. J. Radiat. Res. 2009, 50, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, S.; Miyatake, S.; Hiramatsu, R.; Hirota, Y.; Miyata, S.; Takekita, Y.; Kuroiwa, T.; Kirihata, M.; Sakurai, Y.; Maruhashi, A.; et al. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme--study design and current status report. Appl. Radiat. Isot. 2011, 69, 1796–1799. [Google Scholar] [CrossRef] [PubMed]
- Slepukhina, I.; Gabel, D. Synthesis and in vitro toxicity of new dodecaborate-containing amino acids. In Proceedings of the 12th International Congress on Neutron Capture Therapy, Kagawa, Japan, 9–13 October 2006; pp. 247–250. [Google Scholar]
- Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Appl. Radiat. Isot. 2011, 69, 1823–1825. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, S.; Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT. Appl. Radiat. Isot. 2011, 69, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusaka, S.; Mukumoto, M.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Biological evaluation of dodecaborate-containing L-amino acids for boron neutron capture therapy. J. Med. Chem. 2012, 55, 6980–6984. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusaka, S.; Mukumoto, M.; Ishimura, M.; Ohta, Y.; Takenaka, H.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; et al. Synthesis and in vitro evaluation of thiododecaborated alpha, alpha- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy. Amino Acids 2014, 46, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.J.; Noda, M.; Maruyama, M.; Matoba, Y.; Kumagai, T.; Sugiyama, M. Identification and kinetic study of tyrosinase inhibitors found in sake lees. J. Agric. Food. Chem. 2006, 54, 9827–9833. [Google Scholar] [CrossRef]
- Parvez, S.; Kang, M.; Chung, H.S.; Cho, C.; Hong, M.C.; Shin, M.K.; Bae, H. Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 2006, 20, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.S.; Lee, J.; Choi, S.S.; Rho, H.S.; Cho, D.H.; Shin, W.C.; Cho, J.Y. A modulatory effect of novel kojic acid derivatives on cancer cell proliferation and macrophage activation. Pharmazie 2010, 65, 261–266. [Google Scholar] [PubMed]
- Wan, H.M.; Chen, C.C.; Chang, T.S.; Giridhar, R.N.; Wu, W.T. Combining induced mutation and protoplasting for strain improvement of Aspergillus oryzae for kojic acid production. Biotechnol. Lett. 2004, 26, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Higa, Y.; Kawabe, M.; Nabae, K.; Toda, Y.; Kitamoto, S.; Hara, T.; Tanaka, N.; Kariya, K.; Takahashi, M. Kojic acid -absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin. J. Toxicol. Sci. 2007, 32, 143–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, L.; Silvere, P.; Virginie, P.; Thierry, T.; Fabien, S. Compounds and Methods of Treating Cell Proliferative Diseases, Retinopathies and Arthritis. WO 2004076445 A2, 10 September 2004. [Google Scholar]
- Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of new derivatives by Hetero-Michael addition in water. In Proceedings of the 14th International Congress on Neutron Capture Therapy, Buenos Aires, Argentina, 25–29 October 2010; pp. 343–344. [Google Scholar]
- Barth, R.F.; Kaur, B. Rat brain tumor models in experimental neuro-oncology: The C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 2009, 94, 299–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamatomo, N.; Iwagami, T.; Kato, I.; Masunaga, S.; Sakurai, Y.; Iwai, S.; Nakazawa, M.; Ono, K.; Yura, Y. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas. Radiat. Oncol. 2013, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Hughes, H.G.; Brown, F.B.; Bull, J.S.; Goorley, J.T.; Little, R.C.; Liu, L.C.; Mashnik, S.G.; Prael, R.E.; Selcow, E.C.; Sierk, A.J.; et al. MCNP5 for proton radiography. Radiat. Prot. Dosim. 2005, 116(Pt. 2), 109–112. [Google Scholar] [CrossRef]
- Coderre, J.A.; Makar, M.S.; Micca, P.L.; Nawrocky, M.M.; Liu, H.B.; Joel, D.D.; Slatkin, D.N.; Amols, H.I. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1993, 27, 1121–1129. [Google Scholar] [CrossRef]
- Ono, K. An analysis of the structure of the compound biological effectiveness factor. J. Radiat. Res. 2016, 57, i83–i89. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Kato, I.; Aihara, T.; Hiratsuka, J.; Yoshimura, K.; Niimi, M.; Kimura, Y.; Ariyoshi, Y.; Haginomori, S.; Sakurai, Y.; et al. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. J. Radiat. Res. 2014, 55, 146–153. [Google Scholar] [CrossRef]
- Gabel, D.; Moller, D.; Harfst, S.; Rosler, J.; Ketz, H. Synthesis of S-alkyl and S-acyl derivatives of mercaptoundeca-hydrododeca-borate, a possible boron carrier for neutron capture therapy. Inorg. Chem. 1993, 32, 2276–2278. [Google Scholar] [CrossRef]
- Chandra, S.; Kabalka, G.W.; Lorey, D.R., 2nd; Smith, D.R.; Coderre, J.A. Imaging of fluorine and boron from fluorinated boronophenylalanine in the same cell at organelle resolution by correlative ion microscopy and confocal laser scanning microscopy. Clin. Cancer Res. 2002, 8, 2675–2683. [Google Scholar] [PubMed]
- Wittig, A.; Arlinghaus, H.F.; Kriegeskotte, C.; Moss, R.L.; Appelman, K.; Schmid, K.W.; Sauerwein, W.A. Laser postionization secondary neutral mass spectrometry in tissue: A powerful tool for elemental and molecular imaging in the development of targeted drugs. Mol. Cancer Ther. 2008, 7, 1763–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, R.F.; Vicente, M.G.; Harling, O.K.; Kiger, W.S., 3rd; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Ono, K.; Miyatake, S. Boron neutron capture therapy for recurrent high-grade meningiomas. J. Neurosurg. 2013, 119, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdock, G.A.; Soni, M.G.; Carabin, I.G. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 2001, 33, 80–101. [Google Scholar] [CrossRef] [PubMed]
- Parrish, F.W.; Wiley, B.J.; Simmons, E.G.; Long, L., Jr. Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium. Appl. Microbiol. 1966, 14, 139. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.F.; Yang, W.; Coderre, J.A. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: A critical evaluation. J. Neurooncol. 2003, 62, 61–74. [Google Scholar] [CrossRef]
- Barth, R.F.; Yang, W.; Huo, T.; Riley, K.J.; Binns, P.J.; Grecula, J.C.; Gupta, N.; Rousseau, J.; Elleaume, H. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma. Appl. Radiat. Isot. 2011, 69, 1813–1816. [Google Scholar] [CrossRef]
- Yokoyama, K.; Miyatake, S.; Kajimoto, Y.; Kawabata, S.; Doi, A.; Yoshida, T.; Asano, T.; Kirihata, M.; Ono, K.; Kuroiwa, T. Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J. Neurooncol. 2006, 78, 227–232. [Google Scholar] [CrossRef]
- Ishiwata, K.K.; Ido, T.; Mejia, A.A.; Ichihashi, M.; Mishima, Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-D,L-phenylalanine: A target compound for PET and boron neutron capture therapy. Int. J. Rad. Appl. Instrum. A 1991, 42, 325–328. [Google Scholar] [CrossRef]
- Imahori, Y.; Ueda, S.; Ohmori, Y.; Kusuki, T.; Ono, K.; Fujii, R.; Ido, T. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J. Nucl. Med. 1998, 39, 325–333. [Google Scholar] [PubMed]
- Miyatake, S.; Kawabata, S.; Nonoguchi, N.; Yokoyama, K.; Kuroiwa, T.; Matsui, H.; Ono, K. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro Oncol. 2009, 11, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Agent | Route | Time a (h) | 10B Concentrations ± SD (μg 10B/g) | Physical Radiation Dose b (Gy) | Equivalent Dose c (Gy-eq) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Brain | Tumor | Brain | Tumor | Brain | Tumor | |||||||
KA-BSH | iv | 1 | 0.3 | ± | 0.1 | 1.4 | ± | 0.3 | 1.0 | 1.1 | - | - |
BPA | iv | 1 | 3.0 | ± | 0.8 | 16.0 | ± | 4.0 | 1.3 | 3.0 | 2.2 | 9.4 |
Irradiated | - | - | 0 | ± | 0 | 0 | ± | 0 | 1.0 | 1.0 | - | - |
Untreated | - | - | 0 | ± | 0 | 0 | ± | 0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, K.; Hattori, Y.; Kawabata, S.; Futamura, G.; Hiramatsu, R.; Wanibuchi, M.; Tanaka, H.; Masunaga, S.-i.; Ono, K.; Miyatake, S.-I.; et al. Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells 2020, 9, 1551. https://doi.org/10.3390/cells9061551
Takeuchi K, Hattori Y, Kawabata S, Futamura G, Hiramatsu R, Wanibuchi M, Tanaka H, Masunaga S-i, Ono K, Miyatake S-I, et al. Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells. 2020; 9(6):1551. https://doi.org/10.3390/cells9061551
Chicago/Turabian StyleTakeuchi, Koji, Yoshihide Hattori, Shinji Kawabata, Gen Futamura, Ryo Hiramatsu, Masahiko Wanibuchi, Hiroki Tanaka, Shin-ichiro Masunaga, Koji Ono, Shin-Ichi Miyatake, and et al. 2020. "Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy" Cells 9, no. 6: 1551. https://doi.org/10.3390/cells9061551
APA StyleTakeuchi, K., Hattori, Y., Kawabata, S., Futamura, G., Hiramatsu, R., Wanibuchi, M., Tanaka, H., Masunaga, S. -i., Ono, K., Miyatake, S. -I., & Kirihata, M. (2020). Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells, 9(6), 1551. https://doi.org/10.3390/cells9061551