Dysregulation of TCTP in Biological Processes and Diseases
Abstract
:1. General Overview
2. Importance of TCTP in Core Cell Biological and Stress Reactions
2.1. Growth and Developmental Processes
2.2. Regulation of Protein Synthesis and Degradation
2.3. Biological Stress Reactions and Autophagy
2.4. Extracellular Functions of TCTP(HRF)
3. Mechanisms of Regulation of Cellular TCTP Protein Levels
3.1. Transcriptional Regulation
3.2. Translational Regulation
3.3. Regulation of Protein Degradation
4. Disease Processes Involving Dysregulation of TCTP
4.1. Mechanisms of Cancer Promotion by TCTP
4.2. TCTP in Cardiovascular and Metabolic Diseases
4.3. Allergic and Immune Disorders—TCTP as Histamine Releasing Factor
5. Synopsis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, G.; Thomas, G.; Luther, H. Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA 1981, 78, 5712–5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yenofsky, R.; Bergmann, I.; Brawerman, G. Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc. Natl. Acad. Sci. USA 1982, 79, 5876–5880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telerman, A.E.; Amson, R.E. (Eds.) TCTP/tpt1—Remodeling Signaling from Stem Cell to Disease; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 64, pp. 1–309. [Google Scholar]
- Assrir, N.; Malard, F.; Lescop, E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl. Cell Differ. 2017, 64, 9–46. [Google Scholar] [CrossRef]
- Bommer, U.A. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl. Cell Differ. 2017, 64, 69–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ge, F. Current Understanding of the TCTP Interactome. Results Probl. Cell Differ. 2017, 64, 127–136. [Google Scholar] [CrossRef]
- Kobayashi, D.; Tokuda, T.; Sato, K.; Okanishi, H.; Nagayama, M.; Hirayama-Kurogi, M.; Ohtsuki, S.; Araki, N. Identification of a Specific Translational Machinery via TCTP-EF1A2 Interaction Regulating NF1-associated Tumor Growth by Affinity Purification and Data-independent Mass Spectrometry Acquisition (AP-DIA). Mol. Cell Proteom. 2019, 18, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, J.Z.; Kloc, M. Elusive Role of TCTP Protein and mRNA in Cell Cycle and Cytoskeleton Regulation. Results Probl. Cell Differ. 2017, 64, 217–225. [Google Scholar] [CrossRef]
- Betsch, L.; Savarin, J.; Bendahmane, M.; Szecsi, J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl. Cell Differ. 2017, 64, 149–172. [Google Scholar] [CrossRef]
- Choi, K.W.; Hong, S.T.; Le, T.P. Function of Translationally Controlled Tumor Protein in Organ Growth: Lessons from Drosophila Studies. Results Probl. Cell Differ. 2017, 64, 173–191. [Google Scholar] [CrossRef]
- Roque, C.G.; Holt, C.E. Tctp in Neuronal Circuitry Assembly. Results Probl. Cell Differ. 2017, 64, 201–215. [Google Scholar] [CrossRef]
- Jeon, H.J.; Cui, X.S.; Guo, J.; Lee, J.M.; Kim, J.S.; Oh, J.S. TCTP regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. Biochim. Biophys. Acta 2017, 1864, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Betsch, L.; Boltz, V.; Brioudes, F.; Pontier, G.; Girard, V.; Savarin, J.; Wipperman, B.; Chambrier, P.; Tissot, N.; Benhamed, M.; et al. TCTP and CSN4 control cell cycle progression and development by regulating CULLIN1 neddylation in plants and animals. PLoS Genet. 2019, 15, e1007899. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.L.; Xu, J.; Ling, L.; Zhang, R.; Shang, P.; Huang, Y.P. CRISPR disruption of TCTP gene impaired normal development in the silkworm Bombyx mori. Insect Sci. 2019, 26, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.V.; Zhao, B.; Xu, C.; Lee, J.; Chen, C.L.; Vinayagam, A.; Edgar, B.A.; Perrimon, N. The role of translationally controlled tumor protein in proliferation of Drosophila intestinal stem cells. Proc. Natl. Acad. Sci. USA 2019, 116, 26591–26598. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhang, X.; Wang, J.; Liu, W.; Liu, Q.; Ye, Y.; Dai, B.; Guo, D.; Zhang, P.; Yang, P.; et al. Translationally controlled tumor protein promotes liver regeneration by activating mTORC2/AKT signaling. Cell Death Dis. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Roque, C.G.; Holt, C.E. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front. Mol. Neurosci. 2018, 11, 399. [Google Scholar] [CrossRef]
- Roque, C.G.; Wong, H.H.; Lin, J.Q.; Holt, C.E. Tumor protein Tctp regulates axon development in the embryonic visual system. Development 2016, 143, 1134–1148. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.Y.; Sheverdin, V.; Maeng, J.; Lyoo, I.K.; Han, P.L.; Lee, K. Immunohistochemical Localization of Translationally Controlled Tumor Protein in Axon Terminals of Mouse Hippocampal Neurons. Exp. Neurobiol. 2017, 26, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Lu, C.H.; Tsai, M.J. TCTP is Essential for Cell Proliferation and Survival during CNS Development. Cells 2020, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Branco, R.; Masle, J. Systemic signalling through translationally controlled tumour protein controls lateral root formation in Arabidopsis. J. Exp. Bot 2019, 70, 3927–3940. [Google Scholar] [CrossRef]
- Brown, M.P.; Grundy, W.N.; Lin, D.; Cristianini, N.; Sugnet, C.W.; Furey, T.S.; Ares, M., Jr.; Haussler, D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 2000, 97, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischer, T.C.; Weaver, C.M.; McAfee, K.J.; Jennings, J.L.; Link, A.J. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 2006, 20, 1294–1307. [Google Scholar] [CrossRef] [PubMed]
- Cans, C.; Passer, B.J.; Shalak, V.; Nancy-Portebois, V.; Crible, V.; Amzallag, N.; Allanic, D.; Tufino, R.; Argentini, M.; Moras, D.; et al. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. USA 2003, 100, 13892–13897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langdon, J.M.; Vonakis, B.M.; MacDonald, S.M. Identification of the interaction between the human recombinant histamine releasing factor/translationally controlled tumor protein and elongation factor-1 delta (also known as eElongation factor-1B beta). Biochim. Biophys. Acta 2004, 1688, 232–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, R.; Suzuki, Y.; Takeuchi, N.; Wakaguri, H.; Ueda, T.; Sugano, S.; Nakai, K. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res. 2008, 36, 3707–3715. [Google Scholar] [CrossRef]
- Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 2000, 267, 6321–6330. [Google Scholar] [CrossRef]
- Wu, H.; Gong, W.; Yao, X.; Wang, J.; Perrett, S.; Feng, Y. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. J. Biol. Chem. 2015, 290, 8694–8710. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Liu, Y.J.; Cui, Q.; Feng, Y. Solution structure of a unicellular microalgae-derived translationally controlled tumor protein revealed both conserved features and structural diversity. Arch. Biochem. Biophys. 2019, 665, 23–29. [Google Scholar] [CrossRef]
- Xie, J.; Shen, K.; Lenchine, R.V.; Gethings, L.A.; Trim, P.J.; Snel, M.F.; Zhou, Y.; Kenney, J.W.; Kamei, M.; Kochetkova, M.; et al. Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. Int. J. Cancer 2018, 142, 1865–1877. [Google Scholar] [CrossRef] [Green Version]
- Villafuerte, B.C.; Barati, M.T.; Rane, M.J.; Isaacs, S.; Li, M.; Wilkey, D.W.; Merchant, M.L. Over-expression of insulin-response element binding protein-1 (IRE-BP1) in mouse pancreatic islets increases expression of RACK1 and TCTP: Beta cell markers of high glucose sensitivity. Biochim. Biophys. Acta 2017, 1865, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.E.; Humphreys, D.T.; Preiss, T.; Steinmetz, L.M.; et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012, 149, 1393–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.H.; Flygaard, R.K.; Jenner, L.B. Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal. 2017, 35, 272–281. [Google Scholar] [CrossRef]
- Vidal, M. Role and Fate of TCTP in Protein Degradative Pathways. Results Probl. Cell Differ. 2017, 64, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Peng, H.W.; Cheng, Y.S.; Yuan, H.S.; Yang-Yen, H.F. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol. Cell Biol. 2005, 25, 3117–3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Liu, B.; Wang, Z.; Yu, X.J.; Ni, Q.X.; Yang, W.T.; Mukaida, N.; Li, Y.Y. A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol. Cancer Res. 2013, 11, 1508–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, A.; Pinkaew, D.; Doan, H.Q.; Jacob, R.B.; Verma, S.K.; Friedman, H.; Peterson, A.C.; Kuyumcu-Martinez, M.N.; McDougal, O.M.; Fujise, K. Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci. Rep. 2016, 6, 18701. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.J.; Cao, Y.R.; Chen, H.W.; Wei, W.; Li, Q.T.; Ma, B.; Zhang, W.K.; Chen, S.Y.; Zhang, J.S. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. Plant. Physiol. 2015, 169, 96–114. [Google Scholar] [CrossRef]
- Chen, K.; Chen, S.; Huang, C.; Cheng, H.; Zhou, R. TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol. Cell 2013, 105, 208–218. [Google Scholar] [CrossRef]
- Amson, R.; Pece, S.; Lespagnol, A.; Vyas, R.; Mazzarol, G.; Tosoni, D.; Colaluca, I.; Viale, G.; Rodrigues-Ferreira, S.; Wynendaele, J.; et al. Reciprocal repression between P53 and TCTP. Nat. Med. 2012, 18, 91–99. [Google Scholar] [CrossRef]
- Chan, T.H.; Chen, L.; Liu, M.; Hu, L.; Zheng, B.J.; Poon, V.K.; Huang, P.; Yuan, Y.F.; Huang, J.D.; Yang, J.; et al. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 2012, 55, 491–505. [Google Scholar] [CrossRef]
- Guerrero, C.; Milenkovic, T.; Przulj, N.; Kaiser, P.; Huang, L. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. USA 2008, 105, 13333–13338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinnerthaler, M.; Lejskova, R.; Grousl, T.; Stradalova, V.; Heeren, G.; Richter, K.; Breitenbach-Koller, L.; Malinsky, J.; Hasek, J.; Breitenbach, M. Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS ONE 2013, 8, e77791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Shim, G.; de Toledo, S.M.; Azzam, E.I. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl. Cell Differ. 2017, 64, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.J.; Fischer, N.; Efferth, T. Role of TCTP for Cellular Differentiation and Cancer Therapy. Results Probl. Cell Differ. 2017, 64, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Fujita, T.; Hidaka, Y.; Jin, H.; Suita, K.; Shigeta, M.; Kiyonari, H.; Umemura, M.; Yokoyama, U.; Sadoshima, J.; et al. Translationally controlled tumor protein (TCTP) plays a pivotal role in cardiomyocyte survival through a Bnip3-dependent mechanism. Cell Death Dis. 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinkaew, D.; Chattopadhyay, A.; King, M.D.; Chunhacha, P.; Liu, Z.; Stevenson, H.L.; Chen, Y.; Sinthujaroen, P.; McDougal, O.M.; Fujise, K. Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death. Nat. Commun. 2017, 8, 18. [Google Scholar] [CrossRef]
- De Carvalho, M.; Acencio, M.L.; Laitz, A.V.N.; de Araujo, L.M.; de Lara Campos Arcuri, M.; do Nascimento, L.C.; Maia, I.G. Impacts of the overexpression of a tomato translationally controlled tumor protein (TCTP) in tobacco revealed by phenotypic and transcriptomic analysis. Plant. Cell Rep. 2017, 36, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Jojic, B.; Amodeo, S.; Ochsenreiter, T. The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei. Microb. Cell 2018, 5, 460–468. [Google Scholar] [CrossRef]
- Ying, X.; Liu, Y.; Chen, L.; Bo, Q.; Xu, Q.; Li, F.; Zhou, C.; Cheng, L. Analysis of translation control tumor protein related to deltamethrin stress in Drosophila kc cells. Chemosphere 2019, 231, 450–456. [Google Scholar] [CrossRef]
- Lee, J.S.; Jang, E.H.; Woo, H.A.; Lee, K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Huang, C.; Yuan, J.; Cheng, H.; Zhou, R. Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol. Biol. Evol. 2014, 31, 2194–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.Y.; Byun, S.; Bae, S.H.; Min, D.S.; Woo, H.A.; Lee, K. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy 2017, 13, 820–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojtova, J.; Hasek, J. Mmi1, the Yeast Ortholog of Mammalian Translationally Controlled Tumor Protein (TCTP), Negatively Affects Rapamycin-Induced Autophagy in Post-Diauxic Growth Phase. Cells 2020, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, S.M.; Rafnar, T.; Langdon, J.; Lichtenstein, L.M. Molecular identification of an IgE-dependent histamine-releasing factor. Science 1995, 269, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Kasakura, K.; Kawakami, T. Histamine-Releasing Factor, a New Therapeutic Target in Allergic Diseases. Cells 2019, 8, 1515. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, S.M. History of Histamine-Releasing Factor (HRF)/Translationally Controlled Tumor Protein (TCTP) Including a Potential Therapeutic Target in Asthma and Allergy. Results Probl. Cell Differ. 2017, 64, 291–308. [Google Scholar] [CrossRef]
- Andree, H.; Thiele, H.; Fahling, M.; Schmidt, I.; Thiele, B.J. Expression of the human TPT1 gene coding for translationally controlled tumor protein (TCTP) is regulated by CREB transcription factors. Gene 2006, 380, 95–103. [Google Scholar] [CrossRef]
- Schmidt, I.; Fahling, M.; Nafz, B.; Skalweit, A.; Thiele, B.J. Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms. FEBS J. 2007, 274, 5416–5424. [Google Scholar] [CrossRef]
- Bommer, U.A.; Iadevaia, V.; Chen, J.; Knoch, B.; Engel, M.; Proud, C.G. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal. 2015, 27, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Goodman, C.A.; Coenen, A.M.; Frey, J.W.; You, J.S.; Barker, R.G.; Frankish, B.P.; Murphy, R.M.; Hornberger, T.A. Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget 2017, 8, 18754–18772. [Google Scholar] [CrossRef] [Green Version]
- Bommer, U.A.; Borovjagin, A.V.; Greagg, M.A.; Jeffrey, I.W.; Russell, P.; Laing, K.G.; Lee, M.; Clemens, M.J. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 2002, 8, 478–496. [Google Scholar] [CrossRef] [Green Version]
- Bommer, U.A.; Heng, C.; Perrin, A.; Dash, P.; Lobov, S.; Elia, A.; Clemens, M.J. Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 2010, 29, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Lackey, L.; Coria, A.; Woods, C.; McArthur, E.; Laederach, A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA 2018, 24, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Berger, M.; Skalweit, A.; Thiele, B.J. Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur. J. Biochem. 2000, 267, 5473–5481. [Google Scholar] [CrossRef]
- Jojic, B.; Amodeo, S.; Bregy, I.; Ochsenreiter, T. Distinct 3′ UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J. Cell Sci. 2018, 131. [Google Scholar] [CrossRef] [Green Version]
- Gaken, J.; Mohamedali, A.M.; Jiang, J.; Malik, F.; Stangl, D.; Smith, A.E.; Chronis, C.; Kulasekararaj, A.G.; Thomas, N.S.; Farzaneh, F.; et al. A functional assay for microRNA target identification and validation. Nucleic Acids Res. 2012, 40, e75. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.Y.; Wang, H.J.; Chiu, C.W.; Chen, S.F. miR-27b-regulated TCTP as a novel plasma biomarker for oral cancer: From quantitative proteomics to post-transcriptional study. J. Proteom. 2012, 77, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Du, Q.; Zhu, D.; Mao, Z.; Wang, X.; Feng, Y.; Xiao, Z.; Wang, H.; Zhu, Y. Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1. J. Endocrinol. Investig. 2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Z.; Wang, M.; Xin, Q.; Wang, B.; Chen, G.G.; Li, M.Y. The permissive role of TCTP in PM2.5/NNK-induced epithelial-mesenchymal transition in lung cells. J. Transl. Med. 2020, 18, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Li, F.; Weidner, D.; Mnjoyan, Z.H.; Fujise, K. Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J. Biol. Chem. 2002, 277, 37430–37438. [Google Scholar] [CrossRef] [Green Version]
- Baylot, V.; Katsogiannou, M.; Andrieu, C.; Taieb, D.; Acunzo, J.; Giusiano, S.; Fazli, L.; Gleave, M.; Garrido, C.; Rocchi, P. Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol. Ther. 2012, 20, 2244–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylot, V.; Karaki, S.; Rocchi, P. TCTP Has a Crucial Role in the Different Stages of Prostate Cancer Malignant Progression. Results Probl. Cell Differ. 2017, 64, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Felix, K.; Pinkaew, D.; Hutadilok-Towatana, N.; Liu, Z.; Fujise, K. Human fortilin is a molecular target of dihydroartemisinin. FEBS Lett. 2008, 582, 1055–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubiak, J.Z.; Bazile, F.; Pascal, A.; Richard-Parpaillon, L.; Polanski, Z.; Ciemerych, M.A.; Chesnel, F. Temporal regulation of embryonic M-phases. Folia Histochem. Cytobiol. 2008, 46, 5–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonhoure, A.; Vallentin, A.; Martin, M.; Senff-Ribeiro, A.; Amson, R.; Telerman, A.; Vidal, M. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur. J. Cell Biol. 2017, 96, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Tuynder, M.; Susini, L.; Prieur, S.; Besse, S.; Fiucci, G.; Amson, R.; Telerman, A. Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. USA 2002, 99, 14976–14981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amson, R.; Pece, S.; Marine, J.C.; Di Fiore, P.P.; Telerman, A. TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol. 2013, 23, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Tuynder, M.; Fiucci, G.; Prieur, S.; Lespagnol, A.; Geant, A.; Beaucourt, S.; Duflaut, D.; Besse, S.; Susini, L.; Cavarelli, J.; et al. Translationally controlled tumor protein is a target of tumor reversion. Proc. Natl. Acad. Sci. USA 2004, 101, 15364–15369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Chen, M.; Xiong, Q.; Zhang, J.; Cui, Z.; Ge, F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J. Proteome Res. 2016, 15, 3741–3751. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chern, J.J.; Cai, Y.; Liu, M.; Choi, K.W. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007, 445, 785–788. [Google Scholar] [CrossRef]
- Le, T.P.; Vuong, L.T.; Kim, A.R.; Hsu, Y.C.; Choi, K.W. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat. Commun. 2016, 7, 11501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.T.; Choi, K.W. TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat. Commun. 2013, 4, 2986. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.T.; Choi, K.W. Antagonistic roles of Drosophila Tctp and Brahma in chromatin remodelling and stabilizing repeated sequences. Nat. Commun. 2016, 7, 12988. [Google Scholar] [CrossRef] [Green Version]
- Kadoch, C.; Crabtree, G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015, 1, e1500447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; de Toledo, S.M.; Pandey, B.N.; Guo, G.; Pain, D.; Li, H.; Azzam, E.I. Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc. Natl. Acad. Sci. USA 2012, 109, E926–E933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. Emt: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.Y.; Kim, H.J.; Lee, K.J.; Lee, K. Translationally controlled tumor protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Sci. Rep. 2015, 5, 8061. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.K.; Srivastava, P.; Sharma, A.; Prasad, R.; Bhuyan, S.K.; Malage, R.; Kumar, P.; Yadava, P.K. Translationally controlled tumor protein (TCTP) is required for TGF-beta1 induced epithelial to mesenchymal transition and influences cytoskeletal reorganization. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 67–75. [Google Scholar] [CrossRef]
- Sun, R.; Lu, X.; Gong, L.; Jin, F. TCTP promotes epithelial-mesenchymal transition in lung adenocarcinoma. Onco Targets Ther. 2019, 12, 1641–1653. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tang, Y.; Zhao, M.; Mao, S.; Wu, L.; Liu, S.; Liu, D.; Zhao, G.; Wang, X. Knockdown of translationally controlled tumor protein inhibits growth, migration and invasion of lung cancer cells. Life Sci. 2018, 193, 292–299. [Google Scholar] [CrossRef]
- Koziol, M.J.; Garrett, N.; Gurdon, J.B. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr. Biol. 2007, 17, 801–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thebault, S.; Agez, M.; Chi, X.; Stojko, J.; Cura, V.; Telerman, S.B.; Maillet, L.; Gautier, F.; Billas-Massobrio, I.; Birck, C.; et al. TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci. Rep. 2016, 6, 19725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.J.; You, S.Y.; Park, Y.S.; Chang, J.W.; Kim, J.S.; Oh, J.S. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. Biochim. Biophys. Acta 2016, 1863, 630–637. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, D.; Luo, S.; Hao, W.; Jing, F.; Liu, T.; Wang, S.; Geng, Y.; Li, L.; Xu, W.; et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget 2016, 7, 50057–50073. [Google Scholar] [CrossRef]
- Lucibello, M.; Adanti, S.; Antelmi, E.; Dezi, D.; Ciafre, S.; Carcangiu, M.L.; Zonfrillo, M.; Nicotera, G.; Sica, L.; De Braud, F.; et al. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget 2015, 6, 5275–5291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Ma, Q.; Xu, Z.; Liang, H.; Li, H.; Ye, Y.; Xiang, S.; Zhang, Y.; Jiang, L.; Hu, Y.; et al. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer. J. Exp. Clin. Cancer Res. 2017, 36, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Lee, J.S.; Lee, Y.S.; Lee, K. Radiosensitivity of Cancer Cells Is Regulated by Translationally Controlled Tumor Protein. Cancers 2019, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yang, P.; Kong, F.; Liu, H. Aberrant expression of translationally controlled tumor protein (TCTP) can lead to radioactive susceptibility and chemosensitivity in lung cancer cells. Oncotarget 2017, 8, 101922–101935. [Google Scholar] [CrossRef]
- Bommer, U.A.; Vine, K.L.; Puri, P.; Engel, M.; Belfiore, L.; Fildes, K.; Batterham, M.; Lochhead, A.; Aghmesheh, M. Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun. Signal. 2017, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Amson, R.; Auclair, C.; Andre, F.; Karp, J.; Telerman, A. Targeting TCTP with Sertraline and Thioridazine in Cancer Treatment. Results Probl. Cell Differ. 2017, 64, 283–290. [Google Scholar] [CrossRef]
- Boia-Ferreira, M.; Basilio, A.B.; Hamasaki, A.E.; Matsubara, F.H.; Appel, M.H.; Da Costa, C.R.V.; Amson, R.; Telerman, A.; Chaim, O.M.; Veiga, S.S.; et al. TCTP as a therapeutic target in melanoma treatment. Br. J. Cancer 2017, 117, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.J.; Efferth, T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 2016, 7, 16818–16839. [Google Scholar] [CrossRef] [Green Version]
- Efferth, T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr. Drug Targets 2006, 7, 407–421. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, S.; Krasnowska, E.K.; Manni, I.; Toietta, G.; Baldari, S.; Piaggio, G.; Ranalli, M.; Gambacurta, A.; Vernieri, C.; Di Giacinto, F.; et al. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020, 9, 1260. [Google Scholar] [CrossRef]
- Karaki, S.; Benizri, S.; Mejias, R.; Baylot, V.; Branger, N.; Nguyen, T.; Vialet, B.; Oumzil, K.; Barthelemy, P.; Rocchi, P. Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer. J. Control. Release 2017, 258, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pinkaew, D.; Fujise, K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv. Clin. Chem. 2017, 82, 265–300. [Google Scholar] [CrossRef]
- Pinkaew, D.; Le, R.J.; Chen, Y.; Eltorky, M.; Teng, B.B.; Fujise, K. Fortilin reduces apoptosis in macrophages and promotes atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1519–H1529. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Kwon, J.S.; Suh, S.H.; Suh, J.K.; Jung, J.; Lee, S.N.; Kim, Y.H.; Cho, M.C.; Oh, G.T.; Lee, K. Transgenic overexpression of translationally controlled tumor protein induces systemic hypertension via repression of Na+,K+-ATPase. J. Mol. Cell Cardiol. 2008, 44, 151–159. [Google Scholar] [CrossRef]
- Cho, Y.; Maeng, J.; Ryu, J.; Shin, H.; Kim, M.; Oh, G.T.; Lee, M.Y.; Lee, K. Hypertension resulting from overexpression of translationally controlled tumor protein increases the severity of atherosclerosis in apolipoprotein E knock-out mice. Transgenic Res. 2012, 21, 1245–1254. [Google Scholar] [CrossRef]
- Jung, J.; Ryu, S.; Ki, I.A.; Woo, H.A.; Lee, K. Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). Int. J. Mol. Sci. 2018, 19, 1657. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, J.R.; Ormiston, M.L.; Perez-Iratxeta, C.; Courtman, D.W.; Jiang, B.; Ferrer, E.; Caruso, P.; Southwood, M.; Foster, W.S.; Morrell, N.W.; et al. Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation 2014, 129, 2125–2135. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.; Dunmore, B.J.; Hassan, D.; Ormiston, M.L.; Moore, S.; Deighton, J.; Long, L.; Yang, X.D.; Stewart, D.J.; Morrell, N.W. A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. Am. J. Respir. Cell Mol. Biol. 2018, 59, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Diraison, F.; Hayward, K.; Sanders, K.L.; Brozzi, F.; Lajus, S.; Hancock, J.; Francis, J.E.; Ainscow, E.; Bommer, U.A.; Molnar, E.; et al. Translationally controlled tumour protein (TCTP) is a novel glucose-regulated protein that is important for survival of pancreatic beta cells. Diabetologia 2011, 54, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.J.; Yang-Yen, H.F.; Chiang, M.K.; Wang, M.J.; Wu, S.S.; Chen, S.H. TCTP is essential for beta-cell proliferation and mass expansion during development and beta-cell adaptation in response to insulin resistance. Endocrinology 2014, 155, 392–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.K.; Nam, B.Y.; Li, J.J.; Park, J.T.; Lee, S.H.; Kim, D.H.; Kim, J.Y.; Kang, H.Y.; Han, S.H.; Yoo, T.H.; et al. Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 2012, 55, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, T.; Kashiwakura, J.; Kawakami, Y. Histamine-releasing factor and immunoglobulins in asthma and allergy. Allergy Asthma Immunol. Res. 2014, 6, 6–12. [Google Scholar] [CrossRef]
- Kim, M.; Maeng, J.; Lee, K. Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013, 95, 659–666. [Google Scholar] [CrossRef]
- Dore, K.A.; Kashiwakura, J.I.; McDonnell, J.M.; Gould, H.J.; Kawakami, T.; Sutton, B.J.; Davies, A.M. Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Mol. Immunol. 2018, 93, 216–222. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.S.; Lee, J.S.; Cho, H.; Park, J.; Hae Shin, D.; Lee, K. Flexible loop and helix 2 domains of TCTP are the functional domains of dimerized TCTP. Sci. Rep. 2020, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.H.; Lim, J.; Shin, D.H.; Maeng, J.; Lee, K. Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. Int. J. Mol. Sci. 2017, 18, 256. [Google Scholar] [CrossRef] [Green Version]
- Ando, T.; Kashiwakura, J.I.; Itoh-Nagato, N.; Yamashita, H.; Baba, M.; Kawakami, Y.; Tsai, S.H.; Inagaki, N.; Takeda, K.; Iwata, T.; et al. Histamine-releasing factor enhances food allergy. J. Clin. Investig. 2017, 127, 4541–4553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashiwakura, J.I.; Ando, T.; Karasuyama, H.; Kubo, M.; Matsumoto, K.; Matsuda, T.; Kawakami, T. The basophil-IL-4-mast cell axis is required for food allergy. Allergy 2019, 74, 1992–1996. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Z.; Sun, R. Synergistic Actions of Histamine-Releasing Factor and Histamine Releasing Factor-Reactive IgE in Chronic Urticaria. Int. Arch. Allergy Immunol. 2017, 172, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ulambayar, B.; Lee, H.; Yang, E.M.; Park, H.S.; Lee, K.; Ye, Y.M. Dimerized, Not Monomeric, Translationally Controlled Tumor Protein Induces Basophil Activation and Mast Cell Degranulation in Chronic Urticaria. Immune Netw. 2019, 19, e20. [Google Scholar] [CrossRef]
- Boia-Ferreira, M.; Moreno, K.G.; Basilio, A.B.C.; da Silva, L.P.; Vuitika, L.; Soley, B.; Wille, A.C.M.; Donatti, L.; Barbaro, K.C.; Chaim, O.M.; et al. TCTP from Loxosceles Intermedia (Brown Spider) Venom Contributes to the Allergic and Inflammatory Response of Cutaneous Loxoscelism. Cells 2019, 8, 1489. [Google Scholar] [CrossRef] [Green Version]
Process | Examples | Potential Mechanism | References |
---|---|---|---|
Cell growth | Prevention of oocyte aging | Regulates spindle assembly | [12] |
and organ | Cell cycle progression | Signalosome interaction | [13] |
development | Insect development | Proliferation of epithelial cells | [14] |
Tissue regeneration | Stem cells; protein synthesis | [15,16] | |
Brain development | (Axon guidance) | [18,19,20] | |
Branching of plant roots | Initiation of lateral roots | [21] | |
Regulation | Association with proteins | (in yeast) | [22,23] |
of protein | of the translational apparatus | (in human cells and Drosophila) | [7,15] |
synthesis | - TCTP binding to EF1B | Regulation of the GEF activity | [24,25,28] |
- TCTP binding to EF1A2 | of EF1B on EF1A | [7] | |
- Interaction with RACK1 | [31] | ||
- Binding to mRNAs | (Part of the mRNA interactome) | [32] | |
Regulation | Stabilisation of: HIF1α, | Prevention of | [34,39] |
of protein | Mcl-1, PIM-3, PRX1, NTHK1 | ubiquitination | [35,36,37,38] |
degradation | Destabilisation of p53, Cdc25 | Induction of ubiquitination | [40,41] |
Binding to proteasomes | Inhibition of proteasomes | [42,43] | |
Biological | Cardiomyocyte protection | Blocking apoptosis by Bnip3 | [46] |
stress | ER stress; (binding to IRE1α) | Blocking apoptosis by JNK | [47] |
responses | Osmotic stress in plants | Increases photosynthesis | [48] |
Heat stress in Trypanosomes | [49] | ||
Autophagy | Stimulation of autophagy | AMPK/mTORC1 pathway | [52] |
Reduction of autophagy | AMPK pathway; Beclin1 | [53] | |
Reduction of autophagy | Rapamycin-induced autophagy | [54] |
Type of Regulation | Example | Mechanism Involved | References |
---|---|---|---|
Transcriptional | Induction by PMA | Transcription factor CREB | [58] |
regulation | Copper stress reaction | Transcription and Translation | [59] |
Tumor suppressor p53 | Inhibition of tpt1 transcription | [40] | |
Insulin response | Transcription factor IRE-BP1 | [31] | |
Translational | Induction of TCTP synthesis | via mTORC1-eIF4E signalling | [60] |
regulation | - by growth stimuli | - in muscle | [61] |
- during axon guidance | - in retinal ganglion cells | [17] | |
Negative regulation | Activation of PKR and | [62,63,64] | |
in cell stress responses | phosphorylation of eIF2α | ||
Developmental regulation | mRNA stability regulation | [66] | |
in Trypanosomes | via the 3′-UTR | ||
Regulation by micro-RNAs | miR-130a | [67] | |
- in various cancers | miR-27b; miR-145-5p; miR-125-3p | [68,69,70] | |
Regulation | Stabilisation of TCTP | - by Mcl-1 | [71] |
of protein | - by Hsp27 (in prostate cancer) | [72,73] | |
degradation | DHA destabilises TCTP | Ubiquitin/proteasome pathway | [74] |
Partial degradation in mitosis | Ubiquitin/proteasome pathway | [75] | |
Chaperone-mediated autophagy | Lysosomal degradation | [76] |
Type of Disease | Examples | Function of TCTP | References |
---|---|---|---|
Cancer | Drosophila; HCC | TOR pathway; cell cycle progr. | [41,81,82] |
Drosophila; human cells | DNA repair/genome stability | [83,84,86] | |
Breast cancer | Antagonism to p53 | [40,78] | |
Various cancer cells | Anti-apoptotic activity | [40,78,93] | |
Breast cancer | Maintaining cancer stem cells | [40,78] | |
Lung cancer, melanoma | Promoting EMT | [70,88,89,90,91] | |
Melanoma, gallbladder, CRC | Involvement in metastasis | [88,95,97] | |
Breast, lung, CRC cells | Radio- and chemoresistance | [98,99,100] | |
Cardiovascular | Heart failure | Protection of cardiomyocytes | [46] |
and metabolic | Atherosclerosis | - apoptosis in macrophages | [108] |
diseases | - causing hypertension | [110] | |
Hypertension, cataracts | Inhibition of Na,K-ATPase | [109,111] | |
Pulmonary arterial | Proliferation, anti-apoptosis | ||
hypertension (PAH) | in epithelial/endothelial cells | [112,113] | |
Hyperglycemia, diabetes | Protects pancreatic β-cells | [114,115] | |
Diabetic nephropathy | Promotes podocyte growth | [116] | |
Muscle hypertrophy | Increase of TCTP and mTORC1 | [61] | |
Allergic | Asthma | Dimeric HRF/TCTP binds to | [56,117,118] |
and immune | Atopic dermatitis | IgE+ on mast cells/basophils | [121] |
disorders | Food allergy | and triggers histamine | [122,123] |
Chronic urticaria | and cytokine release | [124,125] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bommer, U.-A.; Telerman, A. Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020, 9, 1632. https://doi.org/10.3390/cells9071632
Bommer U-A, Telerman A. Dysregulation of TCTP in Biological Processes and Diseases. Cells. 2020; 9(7):1632. https://doi.org/10.3390/cells9071632
Chicago/Turabian StyleBommer, Ulrich-Axel, and Adam Telerman. 2020. "Dysregulation of TCTP in Biological Processes and Diseases" Cells 9, no. 7: 1632. https://doi.org/10.3390/cells9071632
APA StyleBommer, U. -A., & Telerman, A. (2020). Dysregulation of TCTP in Biological Processes and Diseases. Cells, 9(7), 1632. https://doi.org/10.3390/cells9071632