What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma?
Abstract
:1. Introduction
2. Co-Culture Models Used to Assess Epithelial-Mesenchymal Crosstalk
3. Asthma EMTU Models Assessing Airway Inflammation
4. Asthma EMTU Models Assessing Airway Remodeling
4.1. Cellular Proliferation
4.2. Extracellular Matrix Homeostasis
5. Asthma EMTU Models and Therapeutic Studies
6. The Future Outlook for In Vitro Co-Culture Models
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GINA. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention; 2016. Available online: www.ginasthma.org (accessed on 20 June 2020).
- Nelson, H.S.; Davies, D.E.; Wicks, J.; Powell, R.M.; Puddicombe, S.M.; Holgate, S.T. Airway remodeling in asthma: New insights. J. Allergy Clin. Immunol. 2003, 111, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Reber, L.; Da Silva, C.A.; Frossard, N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur. J. Pharmacol. 2006, 533, 327–340. [Google Scholar] [CrossRef]
- Bonsignore, M.; Profita, M.; Gagliardo, R.; Riccobono, L.; Chiappara, G.; Pace, E.; Gjomarkaj, M. Advances in asthma pathophysiology: Stepping forward from the Maurizio Vignola experience. Eur. Respir. Rev. 2015, 24, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008, 8, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Investig. 2008, 118, 3546–3556. [Google Scholar] [CrossRef] [Green Version]
- Green, R.H.; Brightling, C.; Woltmann, G.; Parker, D.; Wardlaw, A.; Pavord, I. Analysis of induced sputum in adults with asthma: Identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002, 57, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Green, R.H.; Brightling, C.; Bradding, P. The reclassification of asthma based on subphenotypes. Curr. Opin. Allergy Clin. Immunol. 2007, 7, 43–50. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Inman, M.D. Airway hyperresponsiveness. Chest 2003, 123, 411S–416S. [Google Scholar] [CrossRef]
- Saglani, S.; Malmström, K.; Pelkonen, A.; Malmberg, L.P.; Lindahl, H.; Kajosaari, M.; Turpeinen, M.; Rogers, A.; Payne, D.N.; Bush, A.; et al. Airway Remodeling and Inflammation in Symptomatic Infants with Reversible Airflow Obstruction. Am. J. Respir. Crit. Care Med. 2005, 171, 722–727. [Google Scholar] [CrossRef]
- Pohunek, P.; Warner, J.O.; Turzíková, J.; Kudrmann, J.; Roche, W.R. Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr. Allergy Immunol. 2005, 16, 43–51. [Google Scholar] [CrossRef]
- Holgate, S.T. Pathogenesis of Asthma. Clin. Exp. Allergy 2008, 38, 872–897. [Google Scholar] [CrossRef]
- Holgate, S.; Davies, D.E.; Lackie, P.M.; Wilson, S.J.; Puddicombe, S.M.; Lordan, J.L. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol. 2000, 105, 193–204. [Google Scholar] [CrossRef]
- Holgate, S.; Lackie, P.M.; Howarth, P.H.; Roche, W.R.; Puddicombe, S.M.; Richter, A.; Wilson, S.J.; Holloway, J.W.; Davies, D.E. Invited Lecture: Activation of the Epithelial Mesenchymal Trophic Unit in the Pathogenesis of Asthma. Int. Arch. Allergy Immunol. 2001, 124, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.J.; Van Winkle, L.S.; Fanucchi, M.V.; Plopper, C.G. The Attenuated Fibroblast Sheath of the Respiratory Tract Epithelial–Mesenchymal Trophic Unit. Am. J. Respir. Cell Mol. Biol. 1999, 21, 655–657. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.E. The Role of the Epithelium in Airway Remodeling in Asthma. In Proceedings of the American Thoracic Society; American Thoracic Society: New York, NY, USA, 2009; Volume 6, pp. 678–682. [Google Scholar]
- Murray, A.L.; Darryl, A.K.; Laurent, J. Fibroblast. In Asthma and COPD: Basic Mechanisms and Clinical Management, 2nd ed.; Barnes, P., Drazen, J., Rennard, S., Thomson, N., Eds.; Elsevier: Oxford, UK, 2009; pp. 193–200. [Google Scholar]
- Johnson, P.R.A.; Burgess, J.K. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr. Allergy Asthma Rep. 2004, 4, 102–108. [Google Scholar] [CrossRef]
- Zhang, S.; Smartt, H.; Holgate, S.T.; Roche, W.R. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: An in vitro co-culture model of airway remodeling in asthma. Lab. Investig. 1999, 79, 395–405. [Google Scholar]
- Abs, V.; Bonicelli, J.; Kacza, J.; Zizzadoro, C.; Abraham, G. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface. PLoS ONE 2019, 14, e0225025. [Google Scholar] [CrossRef]
- Reeves, S.R.; Kolstad, T.; Lien, T.-Y.; Elliott, M.; Ziegler, S.F.; Wight, T.N.; Debley, J.S. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J. Allergy Clin. Immunol. 2014, 134, 663–670.e1. [Google Scholar] [CrossRef] [Green Version]
- Mertens, T.C.; Karmouty-Quintana, H.; Taube, C.; Hiemstra, P.S. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm. Pharmacol. Ther. 2017, 45, 101–113. [Google Scholar] [CrossRef]
- Hill, A.; Donaldson, J.E.; Blume, C.; Smithers, N.; Tezera, L.; Tariq, K.; Dennison, P.; Rupani, H.; Edwards, M.J.; Howarth, P.H.; et al. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit. Tissue Barriers 2016, 4, e1206378. [Google Scholar] [CrossRef] [Green Version]
- Bucchieri, F.; Pitruzzella, A.; Fucarino, A.; Gammazza, A.M.; Bavisotto, C.C.; Marcianò, V.; Cajozzo, M.; Iacono, G.L.; Marchese, R.; Zummo, G.; et al. Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit. Exp. Lung Res. 2017, 43, 82–92. [Google Scholar] [CrossRef]
- Xia, Y.C.; Redhu, N.S.; Moir, L.M.; Koziol-White, C.; Ammit, A.J.; Al-Alwan, L.; Camoretti-Mercado, B.; Clifford, R.L. Pro-inflammatory and immunomodulatory functions of airway smooth muscle: Emerging concepts. Pulm. Pharmacol. Ther. 2013, 26, 64–74. [Google Scholar] [CrossRef]
- Allard, B.; Levardon, H.; Esteves, P.; Celle, A.; Maurat, E.; Thumerel, M.; Girodet, P.O.; Trian, T.; Berger, P. Asthmatic Bronchial Smooth Muscle Increases CCL5-Dependent Monocyte Migration in Response to Rhinovirus-Infected Epithelium. Front. Immunol. 2020, 10, 2998. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.; Siddiqui, S.; Kaur, D.; Doe, C.; Sutcliffe, A.; Hollins, F.; Bradding, P.; Wardlaw, A.; Brightling, C. Fibrocyte localization to the airway smooth muscle is a feature of asthma. J. Allergy Clin. Immunol. 2008, 123, 376–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.-Y.; Venkatesan, N.; Nishioka, M.; Kyoh, S.; Al-Alwan, L.; Baglole, C.J.; Eidelman, D.H.; Ludwig, M.S.; Hamid, Q. Monocyte-derived fibrocytes induce an inflammatory phenotype in airway smooth muscle cells. Clin. Exp. Allergy 2014, 44, 1347–1360. [Google Scholar] [CrossRef]
- Osei, E.T.; Noordhoek, J.A.; Hackett, T.L.; Spanjer, A.; Postma, D.S.; Timens, W.; Brandsma, C.-A.; Heijink, I.H. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. Eur. Respir. J. 2016, 48, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Suwara, M.I.; Green, N.J.; Borthwick, L.A.; Mann, J.; Mayer-Barber, K.D.; Barron, L.; Corris, P.A.; Farrow, S.N.; Wynn, T.A.; Fisher, A.; et al. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 2013, 7, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Osei, E.T.; Mostaço-Guidolin, L.B.; Hsieh, A.; Warner, S.M.; Al-Fouadi, M.; Wang, M.; Cole, D.J.; Maksym, G.N.; Hallstrand, T.S.; Timens, W.; et al. Epithelial-interleukin-1 inhibits collagen formation by airway fibroblasts: Implications for asthma. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Willart, M.A.; Deswarte, K.; Pouliot, P.; Braun, H.; Beyaert, R.; Lambrecht, B.N.; Hammad, H. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 2012, 209, 1505–1517. [Google Scholar] [CrossRef] [Green Version]
- Osei, E.T.; Brandsma, C.-A.; Timens, W.; Heijink, I.H.; Hackett, T.-L. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur. Respir. J. 2019, 55, 1900563. [Google Scholar] [CrossRef]
- Calzetta, L.; Passeri, D.; Kanabar, V.; Rogliani, P.; Page, C.P.; Cazzola, M.; Matera, M.G.; Orlandi, A. Brain Natriuretic Peptide Protects against Hyperresponsiveness of Human Asthmatic Airway Smooth Muscle via an Epithelial Cell–Dependent Mechanism. Am. J. Respir. Cell Mol. Biol. 2014, 50, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.H.; Kwon, H.-S.; Lee, K.Y.; Ha, E.H.; Moon, K.-A.; Kim, S.W.; Oh, W.; Kim, T.-B.; Moon, H.-B.; Cho, Y.S. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp. Mol. Med. 2017, 49, e288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, Y.-C.; Li, Y.-S.J.; Zhou, J.; Shih, Y.-R.V.; Miller, M.; Broide, D.; Lee, O.K.-S.; Chien, S. Human Mesenchymal Stem Cells Suppress the Stretch–Induced Inflammatory miR-155 and Cytokines in Bronchial Epithelial Cells. PLoS ONE 2013, 8, e71342. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.A.; Roth, M.; Tamm, M.; Hughes, M.; Ge, Q.; King, G.; Burgess, J.K.; Black, J.L. Airway Smooth Muscle Cell Proliferation Is Increased in Asthma. Am. J. Respir. Crit. Care Med. 2001, 164, 474–477. [Google Scholar] [CrossRef]
- Cohen, L.; E, X.; Tarsi, J.; Ramkumar, T.; Horiuchi, T.K.; Cochran, R.; DeMartino, S.; Schechtman, K.B.; Hussain, I.; Holtzman, M.J.; et al. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma. Am. J. Respir. Crit. Care Med. 2007, 176, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Makker, H.; Springall, D.; Redington, A.; Ghatei, M.; Polak, J.; Holgate, S.; Bloom, S.; Howarth, P. Airway endothelin levels in asthma: Influence of endobronchial hypertonic saline challenge. Clin. Exp. Allergy 1999, 29, 241–247. [Google Scholar] [CrossRef]
- Redington, A.E.; Madden, J.; Frew, A.J.; Djukanovic, R.; Roche, W.R.; Holgate, S.; Howarth, P.H. Transforming Growth Factor- β 1 in Asthma. Am. J. Respir. Crit. Care Med. 1997, 156, 642–647. [Google Scholar] [CrossRef]
- Holgate, S.; Davies, D.E.; Puddicombe, S.; Richter, A.; Lackie, P.; Lordan, J.; Howarth, P. Mechanisms of airway epithelial damage: Epithelial-mesenchymal interactions in the pathogenesis of asthma. Eur. Respir. J. 2003, 22, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Jendzjowsky, N.G.; Kelly, M.M. The Role of Airway Myofibroblasts in Asthma. Chest 2019, 156, 1254–1267. [Google Scholar] [CrossRef]
- Malavia, N.K.; Raub, C.B.; Mahon, S.B.; Brenner, M.; Panettieri, R.A.; George, S. Airway Epithelium Stimulates Smooth Muscle Proliferation. Am. J. Respir. Cell Mol. Biol. 2009, 41, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.J.; Senior, R.M. Matrix Metalloproteinase-9 in Lung Remodeling. Am. J. Respir. Cell Mol. Biol. 2003, 28, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, K.J.; Werb, Z.; Kheradmand, F. Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted. Physiol. Rev. 2007, 87, 69–98. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Mitchel, J.A.; O’Sullivan, M.J.; Park, C.Y.; Kim, J.H.; Cole, W.C.; Butler, J.P.; Park, J.-A. Airway epithelial compression promotes airway smooth muscle proliferation and contraction. Am. J. Physiol. Cell. Mol. Physiol. 2018, 315, L645–L652. [Google Scholar] [CrossRef]
- Pepe, C.; Foley, S.; Shannon, J.; Lemiere, C.; Olivenstein, R.; Ernst, P.; Ludwig, M.S.; Martin, J.G.; Hamid, Q. Differences in airway remodeling between subjects with severe and moderate asthma. J. Allergy Clin. Immunol. 2005, 116, 544–549. [Google Scholar] [CrossRef]
- Semlali, A.; Jacques, E.; Rouabhia, M.; Milot, J.; LaViolette, M.; Chakir, J. Regulation of epithelial cell proliferation by bronchial fibroblasts obtained from mild asthmatic subjects. Allergy 2010, 65, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Boxall, C.; Holgate, S.T.; Davies, D.E. The contribution of transforming growth factor- and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur. Respir. J. 2006, 27, 208–229. [Google Scholar] [CrossRef]
- Haj-Salem, I.; Plante, S.; Gounni, A.S.; Rouabhia, M.; Chakir, J. Fibroblast-derived exosomes promote epithelial cell proliferation through TGF-?2 signaling pathway in severe asthma. Allergy 2017, 73, 178–186. [Google Scholar] [CrossRef]
- Puchelle, E.; Zahm, J.-M.; Tournier, J.-M.; Coraux, C. Airway Epithelial Repair, Regeneration, and Remodeling after Injury in Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2006, 3, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatt, E.C.; Kumar, V. Tissue Renewal and Repair: Regeneration, Healing, and Fibrosis. In Robbins and Cotran Review of Pathology; Elsevier BV: Amsterdam, The Netherlands, 2010; pp. 22–26. [Google Scholar]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.G.R.; Mih, J.D.; Krasieva, T.B.; Tromberg, B.J.; George, S.C. Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis. Am. J. Physiol. Cell. Mol. Physiol. 2006, 291, L1277–L1285. [Google Scholar] [CrossRef] [Green Version]
- Morishima, Y.; Nomura, A.; Uchida, Y.; Noguchi, Y.; Sakamoto, T.; Ishii, Y.; Goto, Y.; Masuyama, K.; Zhang, M.J.; Hirano, K.; et al. Triggering the Induction of Myofibroblast and Fibrogenesis by Airway Epithelial Shedding. Am. J. Respir. Cell Mol. Biol. 2001, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Puddicombe, S.M.; Torres-Lozano, C.; Richter, A.; Bucchieri, F.; Lordan, J.; Howarth, P.H.; Vrugt, B.; Albers, R.; Djukanovic, R.; Holgate, S.; et al. Increased Expression of p21wafCyclin-Dependent Kinase Inhibitor in Asthmatic Bronchial Epithelium. Am. J. Respir. Cell Mol. Biol. 2003, 28, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Huang, E.-P.; Su, J.; Zhu, P.; Lin, J.; Luo, S.Q.; Yang, C.L. Therapeutic Role for TSP-2 Antibody in a Murine Asthma Model. Int. Arch. Allergy Immunol. 2018, 175, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.R.; Barrow, K.A.; Kolstad, T.K.; White, M.P.; Rich, L.M.; Wight, T.N.; Debley, J.S. Fibroblast gene expression following asthmatic bronchial epithelial cell conditioning correlates with epithelial donor lung function and exacerbation history. Sci. Rep. 2018, 8, 15768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, S.R.; Kang, I.; Chan, C.K.; Barrow, K.A.; Kolstad, T.K.; White, M.P.; Ziegler, S.F.; Wight, T.N.; Debley, J.S. Asthmatic bronchial epithelial cells promote the establishment of a Hyaluronan-enriched, leukocyte-adhesive extracellular matrix by lung fibroblasts. Respir. Res. 2018, 19, 146. [Google Scholar] [CrossRef]
- Hastie, A.T.; Kraft, W.K.; Nyce, K.B.; Zangrilli, J.G.; Musani, A.I.; Fish, J.E.; Peters, S.P. Asthmatic Epithelial Cell Proliferation and Stimulation of Collagen Production. Am. J. Respir. Crit. Care Med. 2002, 165, 266–272. [Google Scholar] [CrossRef]
- Krishnan, R.; Park, J.-A.; Seow, C.Y.; Lee, P.V.S.; Stewart, A.G. Cellular Biomechanics in Drug Screening and Evaluation: Mechanopharmacology. Trends Pharmacol. Sci. 2016, 37, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Swartz, M.A.; Tschumperlin, D.J.; Kamm, R.D.; Drazen, J.M. Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc. Natl. Acad. Sci. USA 2001, 98, 6180–6185. [Google Scholar] [CrossRef] [Green Version]
- Tschumperlin, D.J.; Shively, J.D.; Kikuchi, T.; Drazen, J.M. Mechanical Stress Triggers Selective Release of Fibrotic Mediators from Bronchial Epithelium. Am. J. Respir. Cell Mol. Biol. 2003, 28, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Tan, Q.; Ma, X.Y.; Liu, W.; Meridew, J.A.; Jones, D.L.; Haak, A.J.; Sicard, D.; Ligresti, G.; Tschumperlin, D.J. Nascent Lung Organoids Reveal Epithelium- and Bone Morphogenetic Protein–mediated Suppression of Fibroblast Activation. Am. J. Respir. Cell Mol. Biol. 2019, 61, 607–619. [Google Scholar] [CrossRef]
- Reeves, S.R.; Kolstad, T.; Lien, T.-Y.; Herrington-Shaner, S.; Debley, J.S. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir. Res. 2015, 16, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostaço-Guidolin, L.B.; Osei, E.T.; Ullah, J.; Hajimohammadi, S.; Fouadi, M.; Li, X.; Li, V.; Shaheen, F.; Yang, C.X.; Chu, F.; et al. Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.M.; Boersema, M.; Bank, R. Interleukin-1β Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor-β1. PLoS ONE 2014, 9, e91559. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-Y.; Phan, S.H. Inhibition of Myofibroblast Apoptosis by Transforming Growth Factor β1. Am. J. Respir. Cell Mol. Biol. 1999, 21, 658–665. [Google Scholar] [CrossRef]
- Rock, J.R.; Randell, S.H.; Hogan, B.L.M. Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 2010, 3, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Faber, S.C.; McCullough, S.D. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. Appl. Vitr. Toxicol. 2018, 4, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghi, M.; Hittinger, M.; Zeng, Q.; Oliver, B.G.G.; Traini, D.; Young, P.; Huwer, H.; Schneider-Daum, N.; Lehr, C.-M. Mono- and Cocultures of Bronchial and Alveolar Epithelial Cells Respond Differently to Proinflammatory Stimuli and Their Modulation by Salbutamol and Budesonide. Mol. Pharm. 2015, 12, 2625–2632. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Horie, M.; Nagase, T. TGF-β Signaling in Lung Health and Disease. Int. J. Mol. Sci. 2018, 19, 2460. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Tian, L.; Han, Y.; Vogelbaum, M.; Stark, G.R. Dose-dependent cross-talk between the transforming growth factor-β and interleukin-1 signaling pathways. Proc. Natl. Acad. Sci. USA 2007, 104, 4365–4370. [Google Scholar] [CrossRef] [Green Version]
- Benam, K.H.; Villenave, R.; Lucchesi, C.; Varone, A.; Hubeau, C.; Lee, H.-H.; Alves, S.E.; Salmon, M.; Ferrante, T.C.; Weaver, J.C.; et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 2015, 13, 151–157. [Google Scholar] [CrossRef]
- Benam, K.H.; Königshoff, M.; Eickelberg, O. Breaking the In Vitro Barrier in Respiratory Medicine. Engineered Microphysiological Systems for Chronic Obstructive Pulmonary Disease and Beyond. Am. J. Respir. Crit. Care Med. 2018, 197, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, B.; Paulsen, S.J.; Corbett, D.C.; Sazer, D.W.; Fortin, C.L.; Zaita, A.J.; Greenfield, P.T.; Calafat, N.J.; Gounley, J.; Ta, A.H.; et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019, 364, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Galliger, Z.; Vogt, C.D.; Panoskaltsis-Mortari, A. 3D bioprinting for lungs and hollow organs. Transl. Res. 2019, 211, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Koziol-White, C.J.; Johnstone, T.B.; Corpuz, M.L.; Cao, G.; Orfanos, S.; Parikh, V.; Deeney, B.T.; Tliba, O.; Ostrom, R.S.; Dainty, I.; et al. Budesonide enhances agonist-induced bronchodilation in human small airways by increasing cAMP production in airway smooth muscle. Am. J. Physiol. Cell. Mol. Physiol. 2019, 318, L345–L355. [Google Scholar] [CrossRef]
- Tan, Q.; Choi, K.M.; Sicard, D.; Tschumperlin, D.J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2016, 113, 118–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
In Vitro Model | Description | Mediator(s) Involved | Finding | Ref. |
---|---|---|---|---|
Co-culture | HRV-stimulated nonasthma-derived PAEC-ALIs cocultured with Asthma or nonasthma ASM cells | PAEC-release of CCL2, CCL5, CCL17, CXCL1, CXCL2, CXCL5, CXCL6, CXCL9, IL-1α, IL-6 and TNF-α | Specific release of CCL5 caused increased monocyte migration | [26] |
Co-culture | Fibrocytes were cocultured with ASM cells | Increased activation of NF-κB-p65 and ERK1/2 in ASM cells | Increased release of IL-8 and IL-6 from ASM cells | [28] |
Air-liquid interface PAEC-culture. Airway fibroblast culture on collagen-coated plates | Mediator-release assessed upon PAEC-differentiation. Cytokine stimulation of fibroblasts on collagen-coated plates | Increased release of IL-1α in asthma-derived PAECs when PAECs are in a monolayer before differentiation. | IL-1 stimulation cause IL-6, IL-8, TSLP and GM-CSF in airway fibroblasts | [31] |
Conditioned medium (CM) | CM from BNP-treated BEAS-2B cells used to stimulate nonasthma and asthma ASM cells | Increased acetylcholine release from BNP-stimulated asthmatic ASM cells increase the expression of iNOS and MYPT1 | Increased acetylcholine, iNOS and MYPT1 expression in ASM cells decrease histamine-induced hypercontractility of asthma-derived ASM cells | [34] |
Co-culture | BEAS-2B cells pretreated with polyI:C or PBMCs stimulated with T-cell activator CD28 cocultured with hMSCs | PolyI:C treatment of BEAS-2B cells led to increased IL-8 release. CD28 caused IFN-γ and IL-4 released from PBMCs. | Increased IL-8 release from BEAS-2B cells as well as IFN-γ and IL-4 from PBMCs were inhibited upon co-culture with hMSCs | [35] |
Co-culture | Hyperstretched PAECs co-cultured with hMSCs | Increased PAEC-release of IL-1α and IL-8 due to increased miR-155 expression that suppresses SHIP1 and cause JNK signaling | hMSC coculture with hyper-stretched PAECs causes IL-8 downregulation due to increased anti-inflammatory cytokine, IL-10 release. | [36] |
In Vitro Model | Description | Mediator(s) Involved | Finding | Ref. |
---|---|---|---|---|
3D-ECM Co-culture | 16HBE14o cells treated with poly-L-arginine to mimic eosinophil granule cationic protein release in allergic asthmatics co-cultured on myofibroblasts embedded collagen 1 gels | Increased release of ET-1, PDGF, IGF-1, TGF-β2 from 16HBE cells | There was an increased myofibroblast proliferation in the 3D ECM co-culture | [19] |
Co-culture | PAEC-ALIs subjected to repeated scrape wounds co-cultured with ASM cells | Increased PAEC release of MMP9, IL-8 and IL-6 after scrape wound. | MMP9 was the main mediator that caused ASM proliferation through ERK1 and MAPK activation | [42] |
Conditioned medium (CM) | CM collected from compressed PAECs was used to stimulate ASM cells | PAEC compression caused increased ET-1 release | ET-1 release in PAEC-CM increased ASM proliferation and hypercontractility | [46] |
3D-ECM Co-culture | PAEC-ALIs were co-cultured on collagen gels embedded with asthma and nonasthma-derived airway fibroblasts | Increased TGF-β1 release from asthma-derived airway fibroblasts led to an abnormal EGFR phosphorylation | Decreased PAEC proliferation rates in co-culture with mild asthma -fibroblast compared to nonasthmatics | [48] |
Conditioned medium (CM) | CM from severe asthma/ nonasthma-derived airway fibroblasts was used to stimulate PAECs | Exosomes released from severe asthma-derived airway fibroblasts had a low expression of TGF-β2 and high expression of cytokines (IL-6, IL-8, CCL-1 and GRO-α). | Increased PAEC proliferation rates after stimulation with CM from severe asthma-derived airway fibroblasts due to low expression of TGF-β2 in exosomes | [50] |
In Vitro Model | Description | Mediator(s) Involved | Finding | Ref. |
---|---|---|---|---|
3D-ECM Co-culture | Scrape-wounded PAECs co-cultured on lung fibroblasts embedded collagen 1 gels | Increased release of TGF-β2 from PAECs | Increased α-SMA, tenascin-C and fibrillar-collagen expression in lung fibroblasts | [54] |
Co-culture | Scrape -wounded PAECs on human amnion chamber co-cultured on airway fibroblasts on plastic sheets | Scrape wound caused TGF-β1 and TSP release from PAECs | Myofibroblast induction and increased collagen I expression in airway fibroblasts | [55] |
Co-culture | Nonasthmatic and asthmatic PAEC-ALIs co-cultured with normal lung fibroblasts | Increased PAEC- PGE2 production in asthmatic PAEC-ALIs | Increased collagen 1 and α-SMA expression in lung fibroblasts and fibroblast-to-myofibroblast transition | [58] |
Co-culture | Nonasthmatic and asthmatic PAEC-ALIs co-cultured with normal lung fibroblasts | Increased hyaluronan synthase (HSA) 2 and 3 expressions in asthmatic PAEC-ALIs | Increased hyaluronan expression in lung fibroblasts | [59] |
Co-culture & Conditioned Medium (CM) | PAECs isolated from ragweed-challenged asthmatics and nonasthmatics co-cultured with corresponding BAL fluid. Lung fibroblasts stimulated with CM from co-cultures | Increase TGF-β1 release from asthmatic-derived PAECs | Increased Collagen III expression in lung fibroblasts. | [60] |
Co-culture | PAEC-ALIs subjected to varying degrees of mechanical strain co-cultured with lung fibroblasts | Increased MMP9 production and decreased TIMP1 expression in lung fibroblasts | Increased expression of fibronectin and collagen III in lung fibroblasts | [61] |
Conditioned medium (CM) | Mechanical stress the same as bronchoconstriction applied to PAECs. CM from stressed PAECs used to stimulate lung fibroblasts | Increase in the PAEC release of ET-1, ET-2 and TGF-β2 | Lung fibroblast activation and increased collagen synthesis | [63] |
Co-culture | Nonasthmatic and asthmatic PAEC-ALIs co-cultured with normal lung fibroblasts | Decreased expression of PGE2 synthase, increased TGF-β2 release in the asthmatic-derived-PAECs | Asthmatic PAECs less able to suppress the expression of collagen Iα1, collagen 3α1 and HSA2 by lung fibroblasts | [21] |
Co-culture | PAEC-ALIs from asthmatic children and normal individuals co-cultured with lung fibroblasts | Increased TGF-β2 production in asthmatic-derived PAECs | Asthmatic children PAECs less able to suppress the expression of FMT markers, α-SMA and tropomysin-I in lung fibroblasts | [65] |
3D ECM free-floating collagen gel model. Airway fibroblast culture on collagen-coated plates | Cytokine stimulation of free-floating collagen 1-embedded asthmatic and nonasthmatic fibroblasts as well as fibroblasts cultured on collagen-coated plates | IL-1α, IL-1β and IL-33 stimulation of collagen 1 gel model and fibroblasts on collagen-coated plates | IL-1 inhibited airway fibroblast ability to contract collagen gels leading to collagen fiber disorganization and decreased expression of collagen 1, fibronectin and periostin | [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osei, E.T.; Booth, S.; Hackett, T.-L. What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells 2020, 9, 1694. https://doi.org/10.3390/cells9071694
Osei ET, Booth S, Hackett T-L. What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells. 2020; 9(7):1694. https://doi.org/10.3390/cells9071694
Chicago/Turabian StyleOsei, Emmanuel Twumasi, Steven Booth, and Tillie-Louise Hackett. 2020. "What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma?" Cells 9, no. 7: 1694. https://doi.org/10.3390/cells9071694
APA StyleOsei, E. T., Booth, S., & Hackett, T.-L. (2020). What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells, 9(7), 1694. https://doi.org/10.3390/cells9071694