Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Growth Conditions
2.2. Isolation of Extracellular Vesicles
2.3. EV Size and Concentration Measurements
2.4. Protein and Phospholipid Concentration Measurements
2.5. Visualization of EVs
2.6. Liquid Chromatography-Coupled Tandem Mass Spectrometry (LC-MS/MS) Identification of Proteins Localized Within and at the Surface of the EVs
2.7. Characterization of C. glabrata, C. tropicalis and C. parapsilosis EVs with High-Resolution Flow Cytometry Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quindós, G.; Marcos-Arias, C.; San-Millán, R.; Mateo, E.; Eraso, E. The continuous changes in the aetiology and epidemiology of invasive candidiasis: From familiar Candida albicans to multiresistant Candida auris. Int. Microbiol. 2018, 21, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Hsu, J.F.; Lai, M.Y.; Chiang, M.C.; Lin, H.C.; Huang, H.R.; Wu, I.H.; Chu, S.M.; Fu, R.H.; Tsai, M.H. Factors and outcomes associated with candidemia caused by non-albicans Candida spp versus Candida albicans in children. Am. J. Infect. Control. 2018, 46, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Eilertson, B.; Cadnum, J.L.; Whitlow, C.S.; Jencson, A.L.; Safdar, N.; Krein, S.L.; Tanner, W.D.; Mayer, J.; Samore, M.H.; et al. Environmental contamination with Candida species in multiple hospitals in a Tertiary Care Hospital with a Candida auris outbreak. Pathog. Immun. 2019, 4, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsetti, E.; Brescini, L.; Mazzanti, S.; Trave, F.; Morroni, G.; Masucci, A.; Barchiesi, F. Characterisation of candidemia in patients with recent surgery: A 7-year experience. Mycoses 2019, 62, 1056–1063. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [Green Version]
- Mohr, A.; Simon, M.; Joha, T.; Hanses, F.; Salzberger, B.; Hitzenbichler, F. Epidemiology of candidemia and impact of infectious disease consultation on survival and care. Infection 2020. [Google Scholar] [CrossRef]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar]
- Giacobbe, D.R.; Maraolo, A.E.; Simeon, V.; Magnè, F.; Pace, M.C.; Gentile, I.; Chiodini, P.; Viscoli, C.; Sanguinetti, M.; Mikulska, M.; et al. Changes in the relative prevalence of candidemia due to non-albicans Candida species in adult in-patients: A systematic review, meta-analysis, and meta-regression. Mycoses 2020. [Google Scholar] [CrossRef]
- Mesini, A.; Mikulska, M.; Giacobbe, D.R.; Del Puente, F.; Gandolfo, N.; Codda, G.; Orsi, A.; Tassinari, F.; Beltramini, S.; Marchese, A.; et al. Changing epidemiology of candidemia: Increase in fluconazole-resistant Candida parapsilosis. Mycoses 2020. [Google Scholar] [CrossRef]
- Eisenman, H.C.; Frases, S.; Nicola, A.M.; Rodrigues, M.L.; Casadevall, A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 2009, 155, 3860–3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo, M.C.; Nakayasu, E.S.; Matsuo, A.L.; Sobreira, T.J.; Longo, L.V.; Ganiko, L.; Almeida, I.C.; Puccia, R. Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: Comparative analysis with other pathogenic fungi. J. Proteome Res. 2012, 11, 1676–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.M.; Espadas-Moreno, J.; Luque-Garcia, J.L.; Casadevall, A. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Eukaryot Cell 2014, 13, 1484–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres da Silva, R.; Puccia, R.; Rodrigues, M.L.; Oliveira, D.L.; Joffe, L.S.; César, G.V.; Nimrichter, L.; Goldenberg, S.; Alves, L.R. Extracellular vesicle-mediated export of fungal RNA. Sci. Rep. 2015, 5, 7763. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Bleackley, M.; Chisanga, D.; Gangoda, L.; Fonseka, P.; Liem, M.; Kalra, H.; Al Saffar, H.; Keerthikumar, S.; Ang, C.S.; et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Commun. Biol. 2019, 2, 305. [Google Scholar] [CrossRef] [Green Version]
- Herkert, P.F.; Amatuzzi, R.F.; Alves, L.R.; Rodrigues, M.L. Extracellular Vesicles as Vehicles for the Delivery of Biologically Active Fungal Molecules. Curr. Protein Pept. Sci. 2019, 20, 1027–1036. [Google Scholar] [CrossRef]
- Alves, L.R.; Peres da Silva, R.; Sanchez, D.A.; Zamith-Miranda, D.; Rodrigues, M.L.; Goldenberg, S.; Puccia, R.; Nosanchuk, J.D. Extracellular Vesicle-Mediated RNA Release in Histoplasma capsulatum. mSphere 2019, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.L.; Franzen, A.J.; Nimrichter, L.; Miranda, K. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr. Opin. Microbiol. 2013, 16, 414–420. [Google Scholar] [CrossRef]
- Matos Baltazar, L.; Nakayasu, E.S.; Sobreira, T.J.; Choi, H.; Casadevall, A.; Nimrichter, L.; Nosanchuk, J.D. Antibody binding alters the characteristics and contents of extracellular vesicles released by Histoplasma capsulatum. mSphere 2016, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Baltazar, L.M.; Zamith-Miranda, D.; Burnet, M.C.; Choi, H.; Nimrichter, L.; Nakayasu, E.S.; Nosanchuk, J.D. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci. Rep. 2018, 8, 8065. [Google Scholar] [CrossRef]
- de Toledo Martins, S.; Szwarc, P.; Goldenberg, S.; Alves, L.R. Extracellular Vesicles in Fungi: Composition and Functions. Curr. Top. Microbiol. Immunol. 2019, 422, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.C.; Nakayasu, E.S.; Rodrigues, M.L.; Frases, S.; Casadevall, A.; Zancope-Oliveira, R.M.; Almeida, I.C.; Nosanchuk, J.D. Vesicular transport in Histoplasma capsulatum: An effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008, 10, 1695–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.L.; Nakayasu, E.S.; Oliveira, D.L.; Nimrichter, L.; Nosanchuk, J.D.; Almeida, I.C.; Casadevall, A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008, 7, 58–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo, M.C.; Matsuo, A.L.; Ganiko, L.; Medeiros, L.C.; Miranda, K.; Silva, L.S.; Freymüller-Haapalainen, E.; Sinigaglia-Coimbra, R.; Almeida, I.C.; Puccia, R. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-Galactosyl epitopes. Eukaryot Cell 2011, 10, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.M.; Prados-Rosales, R.; Espadas-Moreno, J.; Wolf, J.M.; Luque-Garcia, J.L.; Gonçalves, T.; Casadevall, A. Characterization of Alternaria infectoria extracellular vesicles. Med. Mycol. 2014, 52, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Gil-Bona, A.; Llama-Palacios, A.; Parra, C.M.; Vivanco, F.; Nombela, C.; Monteoliva, L.; Gil, C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J. Proteome Res. 2015, 14, 142–153. [Google Scholar] [CrossRef]
- Vargas, G.; Rocha, J.D.; Oliveira, D.L.; Albuquerque, P.C.; Frases, S.; Santos, S.S.; Nosanchuk, J.D.; Gomes, A.M.; Medeiros, L.C.; Miranda, K.; et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 2015, 17, 389–407. [Google Scholar] [CrossRef]
- Johansson, H.J.; Vallhov, H.; Holm, T.; Gehrmann, U.; Andersson, A.; Johansson, C.; Blom, H.; Carroni, M.; Lehtiö, J.; Scheynius, A. Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci. Rep. 2018, 8, 9182. [Google Scholar] [CrossRef] [Green Version]
- Zamith-Miranda, D.; Nimrichter, L.; Rodrigues, M.L.; Nosanchuk, J.D. Fungal extracellular vesicles: Modulating host-pathogen interactions by both the fungus and the host. Microbes Infect. 2018, 20, 501–504. [Google Scholar] [CrossRef]
- Konečná, K.; Klimentová, J.; Benada, O.; Němečková, I.; Janďourek, O.; Jílek, P.; Vejsová, M. A comparative analysis of protein virulence factors released via extracellular vesicles in two Candida albicans strains cultivated in a nutrient-limited medium. Microb. Pathog. 2019, 136, 103666. [Google Scholar] [CrossRef]
- Oliveira, D.L.; Freire-de-Lima, C.G.; Nosanchuk, J.D.; Casadevall, A.; Rodrigues, M.L.; Nimrichter, L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect. Immun. 2010, 78, 1601–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrmann, U.; Qazi, K.R.; Johansson, C.; Hultenby, K.; Karlsson, M.; Lundeberg, L.; Gabrielsson, S.; Scheynius, A. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses – novel mechanisms for host-microbe interactions in atopic eczema. PLoS ONE 2011, 6, e21480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, T.A.; Roque-Barreira, M.C.; Casadevall, A.; Almeida, F. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci. Rep. 2016, 6, 35867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, J.M.; Espadas, J.; Luque-Garcia, J.; Reynolds, T.; Casadevall, A. Lipid biosynthetic genes affect Candida albicans extracellular vesicle morphology, cargo, and immunostimulatory properties. Eukaryot Cell 2015, 14, 745–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, J.R.; Hare, P.E. O-phthalaldehyde: Fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc. Natl. Acad. Sci. USA 1975, 72, 619–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dair. Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Satala, D.; Bochenska, O.; Rapala-Kozik, M.; Kozik, A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol. 2019, 19, 149. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Zajac, D.; Bochenska, O.; Kozik, A. Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach. Acta Biochim. Pol. 2015, 62, 807–819. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Zajac, D.; Bras, G.; Bochenska, O.; Rapala-Kozik, M.; Kozik, A. Binding of human plasminogen and high-molecular-mass kininogen by cell surface-exposed proteins of Candida parapsilosis. Acta Biochim. Pol. 2017, 64, 391–400. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Hildonen, S.; Skarpen, E.; Halvorsen, T.G.; Reubsaet, L. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci. Rep. 2016, 6, 36331. [Google Scholar] [CrossRef]
- Saari, H.; Lázaro-Ibáñez, E.; Viitala, T.; Vuorimaa-Laukkanen, E.; Siljander, P.; Yliperttula, M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control. Release 2015, 220, 727–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, M.B.; Costanzo, M.C.; Skrzypek, M.S.; Binkley, G.; Lane, C.; Miyasato, S.R.; Sherlock, G. The Candida genome database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res. 2005, 33, D358–D363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; et al. Saccharomyces genome database: The genomics resource of budding yeast. Nucleic Acids Res. 2012, 40, D700–D705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef] [PubMed] [Green Version]
- Woith, E.; Fuhrmann, G.; Melzig, M.F. Extracellular Vesicles-Connecting Kingdoms. Int. J. Mol. Sci. 2019, 20, E5695. [Google Scholar] [CrossRef] [Green Version]
- Bielska, E.; May, R.C. Extracellular vesicles of human pathogenic fungi. Curr. Opin. Microbiol. 2019, 52, 90–99. [Google Scholar] [CrossRef]
- Zarnowski, R.; Sanchez, H.; Covelli, A.S.; Dominguez, E.; Jaromin, A.; Bernhardt, J.; Mitchell, K.F.; Heiss, C.; Azadi, P.; Mitchell, A.; et al. Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 2018, 16, e2006872. [Google Scholar] [CrossRef]
- Nimrichter, L.; de Souza, M.M.; Del Poeta, M.; Nosanchuk, J.D.; Joffe, L.; Tavares, P.; Rodrigues, M.L. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front. Microbiol. 2016, 7, 1034. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.A.; Gow, N.A. Mannosylation in Candida albicans: Role in cell wall function and immune recognition. Mol. Microbiol. 2013, 90, 1147–1161. [Google Scholar] [CrossRef] [Green Version]
- Granger, B.L.; Flenniken, M.L.; Davis, D.A.; Mitchell, A.P.; Cutler, J.E. Yeast wall protein 1 of Candida albicans. Microbiology 2005, 151, 1631–1644. [Google Scholar] [CrossRef]
- Granger, B.L. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS ONE 2018, 13, e0191194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrella, D.; Bistoni, G.; Corbucci, C.; Perito, S.; Vecchiarelli, A. Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol. 2006, 8, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Sandini, S.; La Valle, R.; De Bernardis, F.; Macrì, C.; Cassone, A. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol. 2007, 9, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, D.M.; Castillo, L.; Nather, K.; Munro, C.A.; Brown, A.J.; Gow, N.A.; Odds, F.C. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 2009, 8, 373–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaugg, C.; Borg-Von Zepelin, M.; Reichard, U.; Sanglard, D.; Monod, M. Secreted aspartic proteinase family of Candida tropicalis. Infect. Immun. 2001, 69, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Ma, B.; Cormack, B.P. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl. Acad. Sci. USA 2007, 104, 7628–7633. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Li, W.; Liu, X.; Che, J.; Wu, Y.; Lu, J. Distinct Expression Levels of ALS, LIP, and SAP Genes in Candida tropicalis with Diverse Virulent Activities. Front. Microbiol. 2016, 7, 1175. [Google Scholar] [CrossRef]
- Sarthy, A.V.; McGonigal, T.; Coen, M.; Frost, D.J.; Meulbroek, J.A.; Goldman, R.C. Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology 1997, 143 Pt 2, 367–376. [Google Scholar] [CrossRef] [Green Version]
- De Bernardis, F.; Mühlschlegel, F.A.; Cassone, A.; Fonzi, W.A. The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect. Immun 1998, 66, 3317–3325. [Google Scholar] [CrossRef] [Green Version]
- Miura, N.; Ueda, M. Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells 2018, 7, E128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Bona, A.; Amador-García, A.; Gil, C.; Monteoliva, L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J. Proteom. 2018, 180, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, C.J. Moonlighting proteins. Trends Biochem. Sci. 1999, 24, 8–11. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Kozik, A. Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol. Oral Microbiol. 2014, 29, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Gancedo, C.; Flores, C.L.; Gancedo, J.M. The Expanding Landscape of Moonlighting Proteins in Yeasts. Microbiol Mol Biol Rev. 2016, 80, 765–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozik, A.; Karkowska-Kuleta, J.; Zajac, D.; Bochenska, O.; Kedracka-Krok, S.; Jankowska, U.; Rapala-Kozik, M. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol. 2015, 15, 197. [Google Scholar] [CrossRef] [Green Version]
- Karkowska-Kuleta, J.; Zajac, D.; Bras, G.; Bochenska, O.; Seweryn, K.; Kedracka-Krok, S.; Jankowska, U.; Rapala-Kozik, M.; & Kozik, A. Characterization of the interactions between human high-molecular-mass kininogen and cell wall proteins of pathogenic yeasts Candida tropicalis. Acta Biochim. Pol. 2016, 63, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Swoboda, R.K.; Bertram, G.; Hollander, H.; Greenspan, D.; Greenspan, J.S.; Gow, N.A.; Gooday, G.W.; Brown, A.J. Glycolytic enzymes of Candida albicans are nonubiquitous immunogens during candidiasis. Infect. Immun. 1993, 61, 4263–4271. [Google Scholar] [CrossRef] [Green Version]
- Klotz, S.A.; Pendrak, M.L.; Hein, R.C. Antibodies to alpha5beta1 and alpha(v)beta3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 2001, 147, 3159–3164. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ou, Y.; Sun, L.; Li, W.; Yang, J.; Zhang, X.; Hu, Y. Alcohol dehydrogenase of Candida albicans triggers differentiation of THP-1 cells into macrophages. J. Adv. Res. 2019, 18, 137–145. [Google Scholar] [CrossRef]
- Lee, P.Y.; Gam, L.H.; Yong, V.C.; Rosli, R.; Ng, K.P.; Chong, P.P. Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J. Appl. Microbiol. 2014, 116, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Gam, L.H.; Yong, V.C.; Rosli, R.; Ng, K.P.; Chong, P.P. Immunoproteomic analysis of antibody response to cell wall-associated proteins of Candida tropicalis. J. Appl. Microbiol. 2014, 117, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.L.; Nakayasu, E.S.; Joffe, L.S.; Guimaraes, A.J.; Sobreira, T.J.; Nosanchuk, J.D.; Cordero, R.J.; Frases, S.; Casadevall, A.; Almeida, I.C.; et al. Characterization of yeast extracellular vesicles, evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE 2010, 5, e11113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein Content (Micrograms per 1 × 1010 Vesicles) | Phospholipid Content (Nanomoles of Lecithin Equivalents per 1 × 1010 Vesicles) | |
---|---|---|
C. glabrata | 4.69 ± 0.87 | 4.79 ± 0.61 |
C. parapsilosis | 10.02 ± 3.99 | 17.67 ± 3.8 |
C. tropicalis | 8.15 ± 3.5 | 10.32 ± 0.22 |
Mean (nm) | Mode (nm) | SD (nm) | D10 (nm) | D50 (nm) | D90 (nm) | |
---|---|---|---|---|---|---|
C. glabrata | 171.0 ± 1.6 | 139.5 ± 7.7 | 74.9 ± 0.8 | 100.2 ± 5.65 | 157.9 ± 4.3 | 254.5 ± 10.5 |
C. parapsilosis | 128.5 ± 25.2 | 84.65 ± 11.65 | 68.95 ± 24.15 | 78.9 ± 10.06 | 107.3 ± 21.55 | 203.5 ± 52.4 |
C. tropicalis | 148.2 ± 21.75 | 90.65 ± 3.05 | 75.35 ± 18.15 | 83.7 ± 6.7 | 125.7 ± 17.1 | 242.3 ± 35.55 |
NCBI Accession Number | Protein Description | T | S | M |
---|---|---|---|---|
gi|18073449 (CAC83344) | GAS-1 homologue | + | + | |
gi|20258069 (AAM16160) | phospholipase B | + | ||
gi|302309608 (XP_444845) | CAGL0A01826g probable glucose transporter (Hxt5) | + | ||
gi|50284733 (XP_444794) | CAGL0A00495g plasma membrane ATPase 1 (Pma1) | + | + | |
gi|50284865 (XP_444860) | CAGL0A02211g high-affinity hexose transporter (Hxt7) | + | + | |
gi|50284867 (XP_444861) | CAGL0A02233g high-affinity hexose transporter (Hxt6) | + | ||
gi|50284869 (XP_444862) | CAGL0A02255g uncharacterized protein | + | + | |
gi|50284959 (XP_444908) | CAGL0A03234g elongation factor 2 (Eft2) | + | + | |
gi|50285099 (XP_444978) | CAGL0A04829g hexokinase (Hxk2) | + | ||
gi|50285355 (XP_445106) | CAGL0B03069g transaldolase (Tal1) | + | ||
gi|50286153 (XP_445505) | CAGL0D02090g GDP-dissociation inhibitor (Asc1) | + | ||
gi|50286375 (XP_445616) | CAGL0D04708g copper transport protein (Ctr1) | + | ||
gi|50286669 (XP_445764) | CAGL0E01727g putative aspartic protease (Yap3) | + | + | + |
gi|50286871 (XP_445865) | CAGL0E04092g siderophore iron transporter (Arn1) | + | ||
gi|50287007 (XP_445933) | AGL0E05632g proline and gamma-aminobutyrate permease (Put4) | + | ||
gi|50287107 (XP_445983) | CAGL0F00209g high-affinity nicotinic acid transporter (Tna1) | + | ||
gi|50287735 (XP_446297) | CAGL0F07579g cell wall mannoprotein (Cwp1) | + | + | + |
gi|50287897 (XP_446378) | CAGL0G00308g cell wall protein with similarity to glucanases (Scw4) | + | + | + |
gi|50287951 (XP_446404) | 60S acidic ribosomal protein P0 | + | + | |
gi|50288681 (XP_446770) | CAGL0G09383g glyceraldehyde-3-phosphate dehydrogenase 3 (Tdh3) | + | + | + |
gi|50288687 (XP_446773) | CAGL0G09515g sporulation-specific exo-1,3-beta-glucanase (I/II) (Exg1/Spr1) | + | + | + |
gi|50289283 (XP_447072) | CAGL0H06369g cystathionine gamma-lyase (Cys3) | + | + | |
gi|50289307 (XP_447084) | CAGL0H06633g phosphoenolpyruvate carboxykinase (Pck1) | + | ||
gi|50289515 (XP_447189) | 60S ribosomal protein L1 | + | ||
gi|50289685 (XP_447274) | CAGL0I00484g exo-1,3-beta-glucanase (Exg1) | + | + | + |
gi|50289857 (XP_447360) | CAGL0I02486g enolase I (Eno1) | + | + | + |
gi|50290013 (XP_447438) | CAGL0I04356g translation initiation factor eIF4A (Tif1) | + | + | + |
gi|50290317 (XP_447590) | CAGL0I07843g alcohol dehydrogenase I (Adh1) | + | + | + |
gi|50291073 (XP_447969) | CAGL0J06050g secreted glycoprotein (Ygp1) | + | + | |
gi|50292035 (XP_448450) | CAGL0K05137g vacuolar acid trehalase precursor (Ath1) | + | + | + |
gi|50292597 (XP_448731) | CAGL0K11858g putative flavodoxin (Pst2) | + | + | |
gi|50292725 (XP_448795) | CAGL0L00495g heat shock protein (Hsc82) | + | ||
gi|50292739 (XP_448802) | acetate-CoA ligase (Acs1) | + | + | + |
gi|50292893 (XP_448879) | CAGL0L02497g fructose-bisphosphate aldolase (Fba1) | + | + | |
gi|50293403 (XP_449113) | CAGL0L07722g phosphoglycerate kinase (Pgk1) | + | + | + |
gi|50293465 (XP_449144) | CAGL0L08448g non-classical export protein 2 (Nce102) | + | ||
gi|50294025 (XP_449424) | CAGL0M01826g GPI-anchored protein (Ecm33) | + | + | |
gi|50294171 (XP_449497) | CAGL0M03465g ammonia transport outward protein 1 (Spg2) | + | + | |
gi|50294560 (XP_449691) | CAGL0M07920g pyruvate decarboxylase (Pdc1) | + | + | + |
gi|50294908 (XP_449865) | CAGL0M12034g pyruvate kinase (Cdc19) | + | + | + |
gi|50295024 (XP_449923) | CAGL0M13343g 6-phosphogluconate dehydrogenase (Gnd1) | + | + | + |
gi|50295070 (XP_449946) | CAGL0M13849g glycophospholipid-anchored surface glycoprotein (Gas2) | + |
NCBI Accession Number | Protein Description | T | S | M |
---|---|---|---|---|
gi|21953342 (CAC86400) | lipase 2 (Lip2) | + | ||
gi|354543255 (CCE39973) | hypothetical protein CPAR2_100110 GPI-anchored cell surface protein (Pga4) | + | ||
gi|354543404 (CCE40123) | hypothetical protein CPAR2_101610 putative aminopeptidase yscI precursor (Lap41) | + | ||
gi|354543610 (CCE40331) | hypothetical protein CPAR2_103690 cell wall protein (Pga45) | + | + | |
gi|354543842 (CCE40564) | hypothetical protein CPAR2_106000 exo-1,3-beta-glucanase (Xog1) | + | ||
gi|354543893 (CCE40615) | hypothetical protein CPAR2_106500 putative cell wall protein (Scw4) | + | + | + |
gi|354543976 (CCE40698) | hypothetical protein CPAR2_107330 | + | + | + |
gi|354543994 (CCE40716) | hypothetical protein CPAR2_107510 putative carboxypeptidase Y precursor (Prc3) | + | ||
gi|354544089 (CCE40811) | hypothetical protein CPAR2_108490 | + | ||
gi|354544096 (CCE40818) | hypothetical protein CPAR2_108560 GPI-anchored cell wall protein (Ecm33) | + | + | + |
gi|354544127 (CCE40850) | hypothetical protein CPAR2_108890 glucan endo-1,3-beta-D-glucosidase (Eng1) | + | ||
gi|354544206 (CCE40929) | hypothetical protein CPAR2_109660 glycosidase (Phr2) | + | + | |
gi|354544345 (CCE41068) | hypothetical protein CPAR2_300570 | + | + | |
gi|354544403 (CCE41126) | hypothetical protein CPAR2_301150 predicted membrane protein induced during mating (Fmp45) | + | + | |
gi|354544501 (CCE41225) | hypothetical protein CPAR2_302140 cell surface glycosidase (Phr1) | + | ||
gi|354544883 (CCE41608) | hypothetical protein CPAR2_801600 subtilisin-like protease (proprotein convertase) (Kex2) | + | ||
gi|354544910 (CCE41635) | hypothetical protein CPAR2_801850 Ala- Leu- and Ser-rich protein (Op4) | + | + | + |
gi|354545228 (CCE41955) | hypothetical protein CPAR2_805040 putative adhesin-like | + | + | + |
gi|354545372 (CCE42100) | hypothetical protein CPAR2_806490 1,3-beta-glucan-linked structural cell wall protein (Pir1) | + | + | + |
gi|354545390 (CCE42118) | hypothetical protein CPAR2_806670 secreted yeast cell wall protein (Ywp1) | + | + | |
gi|354545518 (CCE42246) | hypothetical protein CPAR2_807950 | + | + | + |
gi|354546478 (CCE43208) | hypothetical protein CPAR2_208530 putative inducible acid phosphatase (Pho100) | + | + | |
gi|354546810 (CCE43542) | hypothetical protein CPAR2_211860 putative GPI-anchored protein (Pga17) | + | ||
gi|354547091 (CCE43824) | secreted hypothetical protein CPAR2_500500 | + | + | + |
gi|354547255 (CCE43989) | hypothetical protein CPAR2_502140 GPI-linked chitinase (Cht2) | + | ||
gi|354547299 (CCE44033) | hypothetical protein CPAR2_502580 alcohol dehydrogenase (Adh1) | + | ||
gi|354547623 (CCE44358) | hypothetical protein CPAR2_401600 1,3-beta-glucosyltransferase, cell wall enzyme (Bgl2) | + | + | + |
gi|354547664 (CCE44399) | hypothetical protein CPAR2_402000 GPI-anchored protein of cell wall (Pga30) | + | ||
gi|354548052 (CCE44788) | hypothetical protein CPAR2_405910 vacuolar membrane protein (Abg1) | + | + | |
gi|354548190 (CCE44926) | hypothetical protein CPAR2_407280 | + | + | + |
gi|354548203 (CCE44939) | hypothetical protein CPAR2_407410 cell surface mannoprotein (Mp65) | + | + | + |
gi|354548325 (CCE45061) | hypothetical protein CPAR2_700650 Pry family cell wall protein (Rbe1) | + | ||
gi|354548638 (CCE45375) | hypothetical protein CPAR2_703880 putative mannosyltransferase (Mnn7) | + |
NCBI Accession Number | Protein Description | T | S | M |
---|---|---|---|---|
gi|220900339 (ACL82370) | secreted aspartyl protease (Sapt4) | + | ||
gi|255720907 (XP_002545388) | cell wall glucan 1,3-beta-glucosidase precursor CTRG_00169 (Bgl2) | + | + | |
gi|255721523 (XP_002545696) | cell wall protein with similarity to Hwp1 CTRG_00477 (Rbt1) | + | + | |
gi|255722347 (XP_002546108) | putative constitutive acid phosphatase CTRG_00890 (Pho113) | + | ||
gi|255722852 (XP_002546360) | putative GPI-anchored adhesin-like protein CTRG_05838 (Hyr3) | + | + | + |
gi|255722954 (XP_002546411) | lysophospholipase 1 precursor CTRG_05889 (Plb3) | + | ||
gi|255723403 (XP_002546635) | alcohol dehydrogenase 1 CTRG_06113 (Adh1) | + | ||
gi|255723898 (XP_002546878) | putative GPI-anchored protein CTRG_01183 (Pga17) | + | + | |
gi|255724450 (XP_002547154) | pyruvate kinase CTRG_01460 (Cdc19) | + | ||
gi|255725506 (XP_002547682) | protein of unknown function CTRG_01989 | + | + | + |
gi|255725714 (XP_002547786) | cell surface mannoprotein CTRG_02093 (Mp65) | + | + | |
gi|255725930 (XP_002547891) | putative adhesin-like cell wall mannoprotein CTRG_02188 (Flo9) | + | ||
gi|255727360 (XP_002548606) | secreted protein CTRG_02903 | + | ||
gi|255727428 (XP_002548640) | phosphoglycerate kinase CTRG_02937 (Pgk1) | + | + | |
gi|255727881 (XP_002548866) | enolase 1 CTRG_03163 (Eno1) | + | + | |
gi|255728149 (XP_002549000) | extracellular/plasma membrane-associated glucoamylase CTRG_03297 (Gca1) | + | ||
gi|255728237 (XP_002549044) | putative adhesin-like protein CTRG_03341 | + | + | |
gi|255728723 (XP_002549287) | opaque-phase-specific protein OP4 precursor CTRG_03584 (Op4) | + | + | + |
gi|255729274 (XP_002549562) | secreted protein CTRG_03859 | + | + | + |
gi|255729440 (XP_002549645) | cell surface glycosidase CTRG_03942 (Phr1) | + | ||
gi|255729820 (XP_002549835) | putative inducible acid phosphatase CTRG_04132 (Pho100) | + | + | |
gi|255729832 (XP_002549841) | conserved hypothetical protein CTRG_04138 | + | + | |
gi|255729942 (XP_002549896) | cell wall acid trehalase CTRG_04193 (Atc1) | + | + | |
gi|255730149 (XP_002549999) | glycosidase CTRG_04296 (Phr2) | + | ||
gi|255730873 (XP_002550361) | putative cell wall protein CTRG_04659 (Scw4) | + | + | |
gi|255731107 (XP_002550478) | predicted protein CTRG_04776 | + | ||
gi|255731223 (XP_002550536) | protein of unknown function CTRG_04834 | + | + | + |
gi|255731592 (XP_002550720) | peptidyl-prolyl cis-trans isomerase CTRG_05018 (Cyp1) | + | ||
gi|255732093 (XP_002550970) | ADP,ATP carrier protein CTRG_05268 | + | ||
gi|255732521 (XP_002551184) | alcohol dehydrogenase 2 CTRG_05482 (Adh2) | + | + | + |
gi|255732780 (XP_002551313) | putative plasma membrane protein CTRG_05611 | + | + | |
gi|255732890 (XP_002551368) | glyceraldehyde-3-phosphate dehydrogenase CTRG_05666 (Tdh3) | + | ||
gi|255732910 (XP_002551378) | predicted protein CTRG_05676 | + | ||
gi|255733002 (XP_002551424) | plasma membrane H(+)-ATPase CTRG_05722 (Pma1) | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karkowska-Kuleta, J.; Kulig, K.; Karnas, E.; Zuba-Surma, E.; Woznicka, O.; Pyza, E.; Kuleta, P.; Osyczka, A.; Rapala-Kozik, M.; Kozik, A. Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells 2020, 9, 1722. https://doi.org/10.3390/cells9071722
Karkowska-Kuleta J, Kulig K, Karnas E, Zuba-Surma E, Woznicka O, Pyza E, Kuleta P, Osyczka A, Rapala-Kozik M, Kozik A. Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells. 2020; 9(7):1722. https://doi.org/10.3390/cells9071722
Chicago/Turabian StyleKarkowska-Kuleta, Justyna, Kamila Kulig, Elzbieta Karnas, Ewa Zuba-Surma, Olga Woznicka, Elzbieta Pyza, Patryk Kuleta, Artur Osyczka, Maria Rapala-Kozik, and Andrzej Kozik. 2020. "Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis" Cells 9, no. 7: 1722. https://doi.org/10.3390/cells9071722
APA StyleKarkowska-Kuleta, J., Kulig, K., Karnas, E., Zuba-Surma, E., Woznicka, O., Pyza, E., Kuleta, P., Osyczka, A., Rapala-Kozik, M., & Kozik, A. (2020). Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells, 9(7), 1722. https://doi.org/10.3390/cells9071722