Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance of the Mice and Feeding
2.2. SAC Mice
2.3. Isolation and Cultivation of Primary Mouse Hepatocytes
2.4. Treatment with Cyclopamine, Rapamycin and Torin
2.5. Sample Preparation for Proteome Profiling
2.6. LC-MS Instrument Settings for Shotgun Proteome Profiling and Data Analysis
2.7. RNA Isolation and Quantitative Real-Time PCR (qPCR)
2.8. ATP-Assay
2.9. Seahorse Analysis
2.10. Akt Signalling Phosphorylation Array
2.11. Image Detection and Densitometric Analysis
2.12. Flow Cytometry
2.13. Western Blotting
2.14. Sample-Size Estimation
2.15. Study Design and Statistical Analyses
3. Results
3.1. Hh Signalling Influences the Energy Phenotype of Murine Hepatocytes by Targeting Mitochondrial Function
3.2. Hh Influences Mitochondrial Metabolism and Autophagy by Stimulating mTOR Signalling
3.3. Cyclopamine and Rapamycin Have a Synergistic Effect on Mitochondrial Metabolism and mTOR Signalling Activity
4. Discussion
4.1. Hh/mTOR Crosstalk in Hepatocytes
4.2. Hh/mTOR Crosstalk Influences Mitochondrial Metabolism and Therefore the Energy State of the Cell
4.3. The Sensitivity of Energy Metabolism to Hepatocyte-Specific Hh Signalling is Sex-Specific
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Luo, L.; Chen, J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019, 8, 1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Wang, Y. mTORC1 signaling in hepatic lipid metabolism. Protein Cell 2017, 9, 145–151. [Google Scholar] [CrossRef]
- Morita, M.; Gravel, S.; Chénard, V.; Sikström, K.; Zheng, L.; Alain, T.; Gandin, V.; Avizonis, D.; Arguello, M.; Zakaria, C.; et al. mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metab. 2013, 18, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Goo, C.K.; Lim, H.Y.; Ho, Q.S.; Too, H.-P.; Clément, M.-V.; Wong, K.P. PTEN/Akt Signaling Controls Mitochondrial Respiratory Capacity through 4E-BP1. PLoS ONE 2012, 7, e45806. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.; Jung, J.-H.; Park, J.; Lee, H.; Hong, Y.; Cho, H.; Kim, M.; Park, S.; Kwon, S.-H.; Kim, S.-H.; et al. S6 kinase 1 plays a key role in mitochondrial morphology and cellular energy flow. Cell. Signal. 2018, 48, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c. Cell Metab. 2012, 15, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edinger, A.L.; Linardic, C.M.; Chiang, G.G.; Thompson, C.B.; Abraham, R.T. Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 2003, 63. [Google Scholar]
- Thoreen, C.C.; Kang, S.A.; Chang, J.W.; Liu, Q.; Zhang, J.; Gao, Y.; Reichling, L.J.; Sim, T.; Sabatini, D.M.; Gray, N.S. An ATP-competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin-resistant Functions of mTORC1. J. Boil. Chem. 2009, 284, 8023–8032. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, E.; Aleithe, S.; Rennert, C.; Spormann, L.; Ott, F.; Meierhofer, D.; Gajowski, R.; Stöpel, C.; Hoehme, S.; Kücken, M.; et al. Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human. Cell Rep. 2019, 29, 4553–4567. [Google Scholar] [CrossRef] [Green Version]
- Matz-Soja, M.; Rennert, C.; Schönefeld, K.; Aleithe, S.; Boettger, J.; Schmidt-Heck, W.; Weiss, T.; Hovhannisyan, A.; Zellmer, S.; Klöting, N.; et al. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 2016, 5, 2062. [Google Scholar] [CrossRef]
- Marbach-Breitrück, E.; Matz-Soja, M.; Abraham, U.; Schmidt-Heck, W.; Sales, S.; Rennert, C.; Kern, M.; Aleithe, S.; Spormann, L.; Thiel, C.; et al. Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis. J. Hepatol. 2019, 70, 1192–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Liu, W.; Wang, J.Q.; Tang, Z.-Y. “Hedgehog pathway”: A potential target of itraconazole in the treatment of cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, Q.; Yen, C.-J.; Xia, W.; Izzo, J.G.; Lang, J.-Y.; Li, C.-W.; Hsu, J.L.; Miller, S.A.; Wang, X.; et al. The Crosstalk of mTOR/S6K1 and Hedgehog Pathways. Cancer Cell 2012, 21, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamcheu, J.; Roy, T.; Uddin, M.B.; Banang-Mbeumi, S.; Chamcheu, R.-C.N.; Walker, A.L.; Liu, Y.-Y.; Huang, S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019, 8, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, M.V.; Diehl, A.M. The hedgehog pathway in nonalcoholic fatty liver disease. Crit. Rev. Biochem. Mol. Boil. 2018, 53, 264–278. [Google Scholar] [CrossRef]
- Kubrusly, M.S.; Corrêa-Giannella, M.L.; Bellodi-Privato, M.; De Sá, S.V.; De Oliveira, C.P.M.S.; Soares, I.C.; Wakamatsu, A.; Alves, V.A.F.; Giannella-Neto, D.; Bacchella, T.; et al. A role for mammalian target of rapamycin (mTOR) pathway in non alcoholic steatohepatitis related-cirrhosis. Histol. Histopathol. 2010, 25, 1123–1131. [Google Scholar]
- Klein, S.D.; Nguyen, D.C.; Bhakta, V.; Wong, D.; Chang, V.Y.; Davidson, T.B.; Martinez-Agosto, J.A. Mutations in the sonic hedgehog pathway cause macrocephaly-associated conditions due to crosstalk to the PI3K/AKT/mTOR pathway. Am. J. Med Genet. Part A 2019, 179, 2517–2531. [Google Scholar] [CrossRef]
- Matz-Soja, M.; Aleithe, S.; Marbach, E.; Böttger, J.; Arnold, K.; Schmidt-Heck, W.; Kratzsch, J.; Gebhardt, R. Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels. Cell Commun. Signal. 2014, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Klingmüller, U.; Bauer, A.; Bohl, S. Primary mouse hepatocytes for systems biology approaches: A standardized in vitro system for modelling of signal transduction pathways. Syst. Biol. 2006, 153, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, R.; Lerche, K.S.; Götschel, F. 4-Aminoethylamino-emodin – a novel potent inhibitor of GSK-3β– acts as an insulin-sensitizer avoiding downstream effects of activated β-catenin. J. Cell. Mol. Med. 2009, 14, 1276–1293. [Google Scholar] [CrossRef] [Green Version]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Gielisch, I.; Meierhofer, D. Metabolome and Proteome Profiling of Complex I Deficiency Induced by Rotenone. J. Proteome Res. 2014, 14, 224–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef]
- Schmidt-Heck, W.; Matz-Soja, M.; Aleithe, S.; Marbach, E.; Guthke, R.; Gebhardt, R. Fuzzy modeling reveals a dynamic self-sustaining network of the GLI transcription factors controlling important metabolic regulators in adult mouse hepatocytes. Mol. BioSyst. 2015, 11, 2190–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinform. 2013, 30, 523–530. [Google Scholar] [CrossRef]
- Bjørkøy, G.; Lamark, T.; Pankiv, S. Chapter 12 Monitoring Autophagic Degradation of p62/SQSTM1. In Autophagy in Mammalian Systems; Klionsky, D.J., Ed.; Academic Press Elsevier: San Diego, CA, USA, 2009; Volume 452, pp. 181–197. [Google Scholar]
- Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Øvervatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Boil. 2005, 171, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Maiti, S.; Mondal, S.; Satyavarapu, E.M.; Mandal, C. mTORC2 regulates hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation. Cell Death Dis. 2017, 8, e2926. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Hou, S.; Orr, B.A.; Kuo, B.R.; Youn, Y.H.; Ong, T.; Roth, F.; Eberhart, C.G.; Robinson, G.; Solecki, D.J.; et al. mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Dev. Cell 2017, 43, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hu, L.; Liu, Z.; Qin, Y.; Li, R.; Zhang, G.; Zhao, B.; Bi, C.; Lei, Y.; Bai, Y. Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway. Oncol. Lett. 2017, 14, 7970–7976. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ni, H.-M.; Ding, W.-X. Emerging Players in Autophagy Deficiency-Induced Liver Injury and Tumorigenesis. Gene Expr. 2019, 19, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Parathath, S.R.; Mainwaring, L.A.; Fernandez-L, A.; Campbell, D.O.; Kenney, A.M. Insulin receptor substrate 1 is an effector of sonic hedgehog mitogenic signaling in cerebellar neural precursors. Development 2008, 135, 3291–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carriere, A.; Cargnello, M.; Julien, L.-A.; Gao, H.; Bonneil, E.; Thibault, P.; Roux, P.P. Oncogenic MAPK Signaling Stimulates mTORC1 Activity by Promoting RSK-Mediated Raptor Phosphorylation. Curr. Boil. 2008, 18, 1269–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, H.; Li, X.; Zhou, C.; Wen, Y.; Shen, Y.; Zhou, L.; Li, J. Effects and mechanisms of blocking the hedgehog signaling pathway in human gastric cancer cells. Oncol. Lett. 2015, 9, 1997–2002. [Google Scholar] [CrossRef]
- Shida, T.; Furuya, M.; Nikaido, T.; Hasegawa, M.; Koda, K.; Oda, K.; Miyazaki, M.; Kishimoto, T.; Nakatani, Y.; Ishikura, H. Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Boil. Ther. 2006, 5, 1530–1538. [Google Scholar] [CrossRef] [Green Version]
- Zuo, M.; Rashid, A.; Churi, C.; Vauthey, J.-N.; Chang, P.; Li, Y.; Hung, M.-C.; Li, D.; Javle, M. Novel therapeutic strategy targeting the Hedgehog signalling and mTOR pathways in biliary tract cancer. Br. J. Cancer 2015, 112, 1042–1051. [Google Scholar] [CrossRef] [Green Version]
- Ikenoue, T.; Inoki, K.; Yang, Q.; Zhou, X.; Guan, K.-L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008, 27, 1919–1931. [Google Scholar] [CrossRef] [Green Version]
- Leibovitch, M.; Topisirovic, I. Dysregulation of mRNA translation and energy metabolism in cancer. Adv. Boil. Regul. 2018, 67, 30–39. [Google Scholar] [CrossRef]
- Dowling, R.J.; Topisirovic, I.; Alain, T.; Bidinosti, M.; Fonseca, B.D.; Petroulakis, E.; Wang, X.; Larsson, O.; Selvaraj, A.; Liu, Y.; et al. mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs. Science 2010, 328, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.J.; Manor, U.; Petralia, R.S.; Brose, R.D.; Wu, R.T.Y.; Ott, C.; Wang, Y.-X.; Charnoff, A.; Lippincott-Schwartz, J.; Mattson, M.P. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol. Boil. Cell 2017, 28, 387–395. [Google Scholar] [CrossRef]
- Kalim, K.W.; Zhang, S.; Chen, X.; Li, Y.; Yang, J.-Q.; Zheng, Y.; Guo, F. mTOR has a developmental stage-specific role in mitochondrial fitness independent of conventional mTORC1 and mTORC2 and the kinase activity. PLoS ONE 2017, 12, e0183266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.D.; Pakay, J.L.; Ocloo, A.; Kokoszka, J.; Wallace, U.C.; Brookes, P.S.; Cornwall, E.J. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem. J. 2005, 392, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalainayakan, S.P.; Ghosh, P.; Dey, S.; Fitzgerald, K.E.; Sohoni, S.; Konduri, P.C.; Garrossian, M.; Liu, L.; Zhang, L. Cyclopamine tartrate, a modulator of hedgehog signaling and mitochondrial respiration, effectively arrests lung tumor growth and progression. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ozretić, P.; Trnski, D.; Musani, V.; Maurac, I.; Kalafatić, D.; Orešković, S.; Levanat, S.; Sabol, M. Non-canonical Hedgehog signaling activation in ovarian borderline tumors and ovarian carcinomas. Int. J. Oncol. 2017, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagawa, S.; Matsumaru, D.; Murashima, A.; Omori, A.; Satoh, Y.; Haraguchi, R.; Motoyama, J.; Iguchi, T.; Nakagata, N.; Hui, C.-C.; et al. The role of sonic hedgehog-Gli2 pathway in the masculinization of external genitalia. Endocrinol. 2011, 152, 2894–2903. [Google Scholar] [CrossRef] [Green Version]
- Rennert, C.; Eplinius, F.; Hofmann, U.; Johänning, J.; Rolfs, F.; Schmidt-Heck, W.; Guthke, R.; Gebhardt, R.; Ricken, A.M.; Matz-Soja, M. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility. Arch. Toxicol. 2017, 91, 3677–3687. [Google Scholar] [CrossRef]
- Franco, H.L.; Yao, H.H.-C. Sex and hedgehog: Roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation. Chromosom. Res. 2011, 20, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Guergen, D.; Kusch, A.; Stottmeister, C.; Al-Diab, O.; Grahammer, F.; Huber, T.B.; Rajewski, N.; Dragun, D. Sex-specific dimorphism in cellular stress response upon mTOR inhibition revealed by podocyte specific RNA sequencing. Transplant. 2018, 102, S231. [Google Scholar] [CrossRef]
- Kusch, A.; Schmidt, M.; Gürgen, D.; Postpieszala, D.; Catar, R.; Hegner, B.; Davidson, M.M.; Mahmoodzadeh, S.; Dragun, D. 17ß-Estradiol Regulates mTORC2 Sensitivity to Rapamycin in Adaptive Cardiac Remodeling. PLoS ONE 2015, 10, e0123385. [Google Scholar] [CrossRef] [PubMed]
- Gürgen, D.; Kusch, A.; Klewitz, R.; Hoff, U.; Catar, R.; Hegner, B.; Kintscher, U.; Luft, F.C.; Dragun, D. Sex-Specific mTOR Signaling Determines Sexual Dimorphism in Myocardial Adaptation in Normotensive DOCA-Salt Model. Hypertens. 2013, 61, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peer, E.; Tesanovic, S.; Aberger, F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers 2019, 11, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parascandolo, A.; Laukkanen, M.O.; De Rosa, N.; Ugolini, C.; Cantisani, M.C.; Cirafici, A.M.; Basolo, F.; Santoro, M.; Castellone, M.D. A dual mechanism of activation of the Sonic Hedgehog pathway in anaplastic thyroid cancer: Crosstalk with RAS-BRAF-MEK pathway and ligand secretion by tumor stroma. Oncotarget 2017, 9, 4496–4510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, L.K.; Von Euler, M.; Korkmaz, S.; Schenck-Gustafsson, K. Sex differences in drugs: The development of a comprehensive knowledge base to improve gender awareness prescribing. Boil. Sex Differ. 2017, 8, 32. [Google Scholar] [CrossRef] [Green Version]
Gene Names | Primer Sequences | |
---|---|---|
Actb | F | CATCCGTAAAGACCTCTATGCCAAC |
R | ATGGAGCCACCGATCCACA | |
Ccnd1 | F | GAGACCATTCCCTTGACTGC |
R | TGGTCTGCTTGTTCTCATCC | |
Deptor | F | TCTCAGGAGACGCATGACAG |
R | AGATTTGGGGTTGCAGAGC | |
4E-bp1 | F | GGGACTACAGCACCACTCC |
R | CTCATCGCTGGTAGGGCTAG | |
Fu | F | TGCCTCTCAGCCTTCTTAGG |
R | TAAGAGCGCCCCATACCA | |
Gsk3-β | F | CCGTCTGCTGGAGTACACAC |
R | GAGCATGTGGAGGGATAAGG | |
Mlst8 | F | CAGAGTGCAGAGCGTGTGTT |
R | GCCTGCAGTTGCTAAGATGA | |
Mtor | F | AATGAGGGCCGGAGACAT |
R | TGTTGTCAAAGAAGGGCTGA | |
Pras40 | F | GAGGAAGATGAGGACGAGCC |
R | TGGGTAGGCAGGGCTGTG | |
Ptch1 | F | ACTCCAAAAGAAGAAGGCGC |
R | CCAGAAGCAGTCCAAAGGTG | |
Raptor | F | GGCCTGCCTCCAGGGAAACC |
R | GATCCTTCCCAGGCAAATGG | |
Rictor | F | TTCCACTACAGACACAGTCCAGAT |
R | TGGCTAGAAATCGTGCTTCTC | |
S6k1 | F | GGGGAGTTGGACCATATGAAC |
R | TCTTCCCAGTATTTGCTCCTG | |
Slc25a1 | F | GGCACACAAATACCGGAAC |
R | AATACGATGGCCACATCCAG | |
Slc25a4 | F | TCGTAGGATGATGATGCAGTCT |
R | TTGGCTCCTTCATCTTTTGC | |
Slc25a15 | F | GGCACTGTTTTTGGCCTATG |
R | ACCATGCTTCCAATTGGTTC | |
Slc25a20 | F | AAATCTCCAGAGGATGAACTTAGC |
R | CCTGTGGTGAACACACCAGATA | |
Slc25a47 | F | GGACTCTACAAGGGCAGCTC |
R | AAAGTAGGTGGCAAAGGAGTGA | |
Smo | F | GCAAGCTCGTGCTCTGGT |
R | GGGCATGTAGACAGCACACA | |
Sufu | F | CTTCCAGTCAGAGAACACCT |
R | TTGGGCTGAATGTAACTC | |
Ywhaz | F | TTACTTGGCCGAGGTTGCT |
R | TGCTGTGACTGGTCCACAAT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spormann, L.; Rennert, C.; Kolbe, E.; Ott, F.; Lossius, C.; Lehmann, R.; Gebhardt, R.; Berg, T.; Matz-Soja, M. Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver. Cells 2020, 9, 1817. https://doi.org/10.3390/cells9081817
Spormann L, Rennert C, Kolbe E, Ott F, Lossius C, Lehmann R, Gebhardt R, Berg T, Matz-Soja M. Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver. Cells. 2020; 9(8):1817. https://doi.org/10.3390/cells9081817
Chicago/Turabian StyleSpormann, Luise, Christiane Rennert, Erik Kolbe, Fritzi Ott, Carolin Lossius, Robert Lehmann, Rolf Gebhardt, Thomas Berg, and Madlen Matz-Soja. 2020. "Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver" Cells 9, no. 8: 1817. https://doi.org/10.3390/cells9081817
APA StyleSpormann, L., Rennert, C., Kolbe, E., Ott, F., Lossius, C., Lehmann, R., Gebhardt, R., Berg, T., & Matz-Soja, M. (2020). Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver. Cells, 9(8), 1817. https://doi.org/10.3390/cells9081817