Special Issue: Computational Analysis of RNA Structure and Function
Acknowledgments
Conflicts of Interest
References
- Washietl, S.; Hofacker, I.L. Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J. Mol. Biol. 2004, 342, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Reinharz, V.; Major, F.; Waldispuhl, J. Towards 3D structure prediction of large RNA molecules: An integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 2012, 28, i207–i214. [Google Scholar] [CrossRef] [PubMed]
- Pervouchine, D.D. Towards Long-Range RNA Structure Prediction in Eukaryotic Genes. Genes 2018, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, T.M.; Pervouchine, D.D. An Evolutionary Mechanism for the Generation of Competing RNA Structures Associated with Mutually Exclusive Exons. Genes 2018, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Dong, H.; Shi, Y.; Bian, L. Mutually exclusive alternative splicing of pre-mRNAs. Wiley Interdiscip. Rev. RNA 2018, 9, e1468. [Google Scholar] [CrossRef] [PubMed]
- Thiel, B.C.; Ochsenreiter, R.; Gadekar, V.P.; Tanzer, A.; Hofacker, I.L. RNA Structure Elements Conserved between Mouse and 59 Other Vertebrates. Genes 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Sabarinathan, R.; Anthon, C.; Gorodkin, J.; Seemann, S.E. Multiple Sequence Alignments Enhance Boundary Definition of RNA Structures. Genes 2018, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Waldl, M.; Thiel, B.C.; Ochsenreiter, R.; Holzenleiter, A.; de Araujo Oliveira, J.V.; Walter, M.E.M.T.; Wolfinger, M.T.; Stadler, P.F. TERribly difficult: Searching for telomerase RNAs in Saccharomycetes. Genes 2018, 9, 323675. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, S.A.; Kidwell, M.A.; Doudna, J.A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 2014, 15, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Washietl, S.; Hofacker, I.L.; Stadler, P.F.; Kellis, M. RNA folding with soft constraints: Reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res. 2012, 40, 4261–4272. [Google Scholar] [CrossRef] [PubMed]
- Spasic, A.; Assmann, S.M.; Bevilacqua, P.C.; Mathews, D.H. Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res. 2018, 46, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Radecki, P.; Ledda, M.; Aviran, S. Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures. Genes 2018, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Parlea, L.G.; Sweeney, B.A.; Hosseini-Asanjan, M.; Zirbel, C.L.; Leontis, N.B. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs. Methods 2016, 103, 99–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontis, N.B.; Lescoute, A.; Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 2006, 16, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Bayrak, C.S.; Petingi, L.; Schlick, T. Dual graph partitioning highlights a small group of pseudoknot-containing RNA submotifs. Genes 2018, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Nithin, C.; Ghosh, P.; Bujnicki, J.M. Bioinformatics tools and benchmarks for computational docking and 3D structure prediction of RNA-protein complexes. Genes 2018, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Glazar, P.; Papavasileiou, P.; Rajewsky, N. circBase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [Google Scholar] [CrossRef]
- Pan, X.; Xiong, K.; Anthon, C.; Hyttel, P.; Freude, K.K.; Jensen, L.J.; Gorodkin, J. WebCircRNA: Classifying the circular RNA potential of coding and noncoding RNA. Genes 2018, 9, 536. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorodkin, J. Special Issue: Computational Analysis of RNA Structure and Function. Genes 2019, 10, 55. https://doi.org/10.3390/genes10010055
Gorodkin J. Special Issue: Computational Analysis of RNA Structure and Function. Genes. 2019; 10(1):55. https://doi.org/10.3390/genes10010055
Chicago/Turabian StyleGorodkin, Jan. 2019. "Special Issue: Computational Analysis of RNA Structure and Function" Genes 10, no. 1: 55. https://doi.org/10.3390/genes10010055
APA StyleGorodkin, J. (2019). Special Issue: Computational Analysis of RNA Structure and Function. Genes, 10(1), 55. https://doi.org/10.3390/genes10010055