Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm
Abstract
:1. Germ Layer Formation
2. Mesendoderm Induction
3. Differentiation and Patterning of Ectoderm
4. TGFβ Pathway Inhibitors
5. P53 Inhibitors in Mesoderm Repression
6. Additional Transcriptional Regulators of Inappropriate Germ Layer Expression
7. Epigenetic Suppressors of Mesendoderm
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furlong, E.E. The importance of being specified: Cell fate decisions and their role in cell biology. Mol. Biol. Cell 2010, 21, 3797–3798. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Tada, S.; Era, T.; Furusawa, C.; Sakurai, H.; Nishikawa, S.; Kinoshita, M.; Nakao, K.; Chiba, T.; Nishikawa, S.I. Characterization of mesendoderm: A diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005, 132, 4363–4374. [Google Scholar] [CrossRef] [PubMed]
- Horb, M.E.; Thomsen, G.H. A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development 1997, 124, 1689–1698. [Google Scholar] [PubMed]
- Casey, E.S.; Tada, M.; Fairclough, L.; Wylie, C.C.; Heasman, J.; Smith, J.C. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 1999, 126, 4193–4200. [Google Scholar]
- Xanthos, J.B.; Kofron, M.; Wylie, C.; Heasman, J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 2001, 128, 167–180. [Google Scholar]
- Kofron, M.; Demel, T.; Xanthos, J.; Lohr, J.; Sun, B.; Sive, H.; Osada, S.; Wright, C.; Wylie, C.; Heasman, J. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 1999, 126, 5759–5770. [Google Scholar]
- Shen, M.M. Nodal signaling: Developmental roles and regulation. Development 2007, 134, 1023–1034. [Google Scholar] [CrossRef]
- Wylie, C.C.; Heasman, J. What my mother told me: Examining the roles of maternal gene products in a vertebrate. Trends Cell Biol. 1997, 7, 459–462. [Google Scholar] [CrossRef]
- Chen, X.; Rubock, M.J.; Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 1996, 383, 691. [Google Scholar] [CrossRef]
- Germain, S.; Howell, M.; Esslemont, G.M.; Hill, C.S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 2000, 14, 435–451. [Google Scholar] [PubMed]
- Topper, J.N.; DiChiara, M.R.; Brown, J.D.; Williams, A.J.; Falb, D.; Collins, T.; Gimbrone, M.A. CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells. Proc. Natl. Acad. Sci. USA 1998, 95, 9506–9511. [Google Scholar] [CrossRef] [PubMed]
- Howell, M.; Hill, C.S. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 1997, 16, 7411–7421. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, X.; Cai, Z.; Zhang, Z.; Han, C.; Jia, S.; Meng, A.; Wang, Q. Global Identification of SMAD2 Target Genes Reveals a Role for Multiple Co-regulatory Factors in Zebrafish Early Gastrulas. J. Biol. Chem. 2011, 286, 28520–28532. [Google Scholar] [CrossRef] [Green Version]
- Amaya, E.; Stein, P.A.; Musci, T.J.; Kirschner, M.W. FGF signalling in the early specification of mesoderm in Xenopus. Development 1993, 118, 477–487. [Google Scholar]
- Schulte-Merker, S.; Smith, J.C. Mesoderm formation in response to Brachyury requires FGF signalling. Curr. Biol. 1995, 5, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.B.; Harland, R.M. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev. Dyn. 2008, 237, 1243–1254. [Google Scholar] [CrossRef]
- Kim, J.; Lin, J.J.; Xu, R.H.; Kung, H.F. Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra autocatalytic loop during the early development of Xenopus embryos. J. Biol. Chem. 1998, 273, 1542–1550. [Google Scholar] [CrossRef]
- Smith, J.C.; Price, B.M.J.; Green, J.B.A.; Weigel, D.; Herrmann, B.G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 1991, 67, 79–87. [Google Scholar] [CrossRef]
- Kispert, A.; Ortner, H.; Cooke, J.; Herrmann, B.G. The Chick Brachyury Gene: Developmental Expression Pattern and Response to Axial Induction by Localized Activin. Dev. Biol. 1995, 168, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Tada, M.; Smith, J.C. Xwnt11 is a target of Xenopus Brachyury: Regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000, 127, 2227–2238. [Google Scholar] [PubMed]
- Schohl, A.; Fagotto, F. A role for maternal β-catenin in early mesoderm induction in Xenopus. EMBO J. 2003, 22, 3303–3313. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.T. Xenopus Egg Wnt/β-Catenin Pathway. Sci. Signal. 2005, 2005, cm2. [Google Scholar] [CrossRef]
- Cordenonsi, M.; Montagner, M.; Adorno, M.; Zacchigna, L.; Martello, G.; Mamidi, A.; Soligo, S.; Dupont, S.; Piccolo, S. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 2007, 315, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Heasman, J. Patterning the early Xenopus embryo. Development 2006, 133, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi-Suzuki, K.; Funami, J.; Tokumori, D.; Saito, A.; Watabe, T.; Miyazono, K.; Kanda, A.; Suzuki, A. Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus. Development 2003, 130, 3929–3939. [Google Scholar] [CrossRef] [PubMed]
- Cordenonsi, M.; Dupont, S.; Maretto, S.; Insinga, A.; Imbriano, C.; Piccolo, S. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 2003, 113, 301–314. [Google Scholar] [CrossRef]
- Yang, S.-H.; Jaffray, E.; Hay, R.T.; Sharrocks, A.D. Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell 2003, 12, 63–74. [Google Scholar] [CrossRef]
- Ciruna, B.; Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 2001, 1, 37–49. [Google Scholar] [CrossRef]
- Nentwich, O.; Dingwell, K.S.; Nordheim, A.; Smith, J.C. Downstream of FGF during mesoderm formation in Xenopus: The roles of Elk-1 and Egr-1. Dev. Biol. 2009, 336, 313–326. [Google Scholar] [CrossRef]
- Mancilla, A.; Mayor, R. Neural crest formation in Xenopus laevis: Mechanisms of Xslug induction. Dev. Biol. 1996, 177, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.V.; Bronner-Fraser, M. Establishing neuronal identity in vertebrate neurogenic placodes. Development 2000, 127, 3045–3056. [Google Scholar] [PubMed]
- Wilson, P.A.; Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 1995, 376, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Lamb, T.M.; Knecht, A.K.; Smith, W.C.; Stachel, S.E.; Economides, A.N.; Stahl, N.; Yancopolous, G.D.; Harland, R.M. Neural induction by the secreted polypeptide noggin. Science 1993, 262, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Sasai, Y.; Lu, B.; Steinbeisser, H.; De Robertis, E.M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 1995, 377, 757. [Google Scholar] [CrossRef]
- Hemmati-Brivanlou, A.; Thomsen, G.H. Ventral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 1995, 17, 78–89. [Google Scholar] [CrossRef]
- Hawley, S.H.; Wünnenberg-Stapleton, K.; Hashimoto, C.; Laurent, M.N.; Watabe, T.; Blumberg, B.W.; Cho, K.W. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 1995, 9, 2923–2935. [Google Scholar] [CrossRef]
- Weinstein, D.C.; Hemmati-Brivanlou, A. Neural induction in Xenopus laevis: Evidence for the default model. Curr. Opin. Neurobiol. 1997, 7, 7–12. [Google Scholar] [CrossRef]
- Bell, E.; Muñoz-Sanjuán, I.; Altmann, C.R.; Vonica, A.; Brivanlou, A.H. Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 2003, 130, 1381–1389. [Google Scholar] [CrossRef]
- Bates, T.J.D.; Vonica, A.; Heasman, J.; Brivanlou, A.H.; Bell, E. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Development 2013, 140, 4177–4181. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, F.; Liang, J.; Wu, W.; Zhang, J. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus. PLoS Biol. 2012, 10, e1001286. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Eggen, B.J.L.; Weinstein, D.C.; Brivanlou, A.H. Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms. Dev. Biol. 2003, 255, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Zacchigna, L.; Cordenonsi, M.; Soligo, S.; Adorno, M.; Rugge, M.; Piccolo, S. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 2005, 121, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A.; Afrakhte, M.; Morén, A.; Nakayama, T.; Christian, J.L.; Heuchel, R.; Itoh, S.; Kawabata, M.; Heldin, N.E.; Heldin, C.H.; et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997, 389, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Casellas, R.; Brivanlou, A.H. Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev. Biol. 1998, 198, 1–12. [Google Scholar] [CrossRef]
- Onichtchouk, D.; Chen, Y.G.; Dosch, R.; Gawantka, V.; Delius, H.; Massagué, J.; Niehrs, C. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999, 401, 480–485. [Google Scholar] [CrossRef]
- Yan, X.; Lin, Z.; Chen, F.; Zhao, X.; Chen, H.; Ning, Y.; Chen, Y.-G. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J. Biol. Chem. 2009, 284, 30097–30104. [Google Scholar] [CrossRef]
- Yun, C.H.; Choi, S.C.; Park, E.; Kim, S.J.; Chung, A.S.; Lee, H.K.; Lee, H.J.; Han, J.K. Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation. Development 2007, 134, 769–777. [Google Scholar] [CrossRef]
- Chen, X.; Weisberg, E.; Fridmacher, V.; Watanabe, M.; Naco, G.; Whitman, M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 1997, 389, 85–89. [Google Scholar] [CrossRef]
- Liu, J.X.; Xu, Q.H.; Li, S.; Yu, X.; Liu, W.; Ouyang, G.; Zhang, T.; Chen, L.L. Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 1103–1116. [Google Scholar] [CrossRef]
- Sasai, N.; Yakura, R.; Kamiya, D.; Nakazawa, Y.; Sasai, Y. Ectodermal factor restricts mesoderm differentiation by inhibiting p53. Cell 2008, 133, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Suri, C.; Haremaki, T.; Weinstein, D.C. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm. Development 2005, 132, 2733–2742. [Google Scholar] [CrossRef] [PubMed]
- Teegala, S.; Chauhan, R.; Lei, E.; Weinstein, D.C. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev. Dyn. 2018, 247, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-W.; Hummert, P.; Mills, J.C.; Kroll, K.L. Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 2011, 138, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhu, X.; Chen, G.; Ma, X.; Zhang, Y.; Khand, A.A.; Shi, H.; Gu, F.; Lin, H.; Chen, Y.; et al. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. Development 2016, 143, 492–503. [Google Scholar] [CrossRef]
- Bouwmeester, T.; Kim, S.; Sasai, Y.; Lu, B.; De Robertis, E.M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 1996, 382, 595–601. [Google Scholar] [CrossRef]
- Hsu, D.R.; Economides, A.N.; Wang, X.; Eimon, P.M.; Harland, R.M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1998, 1, 673–683. [Google Scholar] [CrossRef]
- Piccolo, S.; Agius, E.; Leyns, L.; Bhattacharyya, S.; Grunz, H.; Bouwmeester, T.; De Robertis, E.M. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 1999, 397, 707–710. [Google Scholar] [CrossRef]
- Weiss, A.; Attisano, L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 47–63. [Google Scholar] [CrossRef]
- Suzuki, A.; Thies, R.S.; Yamaji, N.; Song, J.J.; Wozney, J.M.; Murakami, K.; Ueno, N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 1994, 91, 10255–10259. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Suzuki, A.; Ueno, N.; Kimelman, D. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev. Biol. 1995, 169, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, S.; Sasai, Y.; Lu, B.; De Robertis, E.M. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996, 86, 589–598. [Google Scholar] [CrossRef]
- Rahman, M.S.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 2015, 3, 15005. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sasaki, H.; Lowe, L.; Hogan, B.L.; Kuehn, M.R. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993, 361, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Sive, H.L. The frog prince-ss: A molecular formula for dorsoventral patterning in Xenopus. Genes Dev. 1993, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Berger, W.; Meindl, A.; van de Pol, T.J.; Cremers, F.P.; Ropers, H.H.; Döerner, C.; Monaco, A.; Bergen, A.A.; Lebo, R.; Warburg, M. Isolation of a candidate gene for Norrie disease by positional cloning. Nat. Genet. 1992, 1, 199–203. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Dabdoub, A.; Smallwood, P.M.; Williams, J.; Woods, C.; Kelley, M.W.; Jiang, L.; Tasman, W.; Zhang, K.; et al. Vascular development in the retina and inner ear: Control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 2004, 116, 883–895. [Google Scholar] [CrossRef]
- Harms, P.W.; Chang, C. Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev. 2003, 17, 2624–2629. [Google Scholar] [CrossRef] [Green Version]
- Yeo, C.; Whitman, M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol. Cell 2001, 7, 949–957. [Google Scholar] [CrossRef]
- Lagna, G.; Hata, A.; Hemmati-Brivanlou, A.; Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 1996, 383, 832–836. [Google Scholar] [CrossRef]
- Kavsak, P.; Rasmussen, R.K.; Causing, C.G.; Bonni, S.; Zhu, H.; Thomsen, G.H.; Wrana, J.L. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell 2000, 6, 1365–1375. [Google Scholar] [CrossRef]
- Imamura, T.; Takase, M.; Nishihara, A.; Oeda, E.; Hanai, J.; Kawabata, M.; Miyazono, K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997, 389, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Lagna, G.; Massagué, J.; Hemmati-Brivanlou, A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998, 12, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Gardner, H.; Berg, L.K.; Christian, J.L. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells 1998, 3, 387–394. [Google Scholar] [CrossRef]
- Luo, K.; Lodish, H.F. Signaling by chimeric erythropoietin-TGF-beta receptors: Homodimerization of the cytoplasmic domain of the type I TGF-beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 1996, 15, 4485–4496. [Google Scholar] [CrossRef]
- Shore, P.; Sharrocks, A.D. The MADS-box family of transcription factors. Eur. J. Biochem. 1995, 229, 1–13. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, Q.; Jiang, F.; Pins, M.; Kozlowski, J.M.; Wang, Z. Suppression of prostate tumor growth by U19, a novel testosterone-regulated apoptosis inducer. Cancer Res. 2003, 63, 4698–4704. [Google Scholar]
- Liu, J.-X.; Zhang, D.; Xie, X.; Ouyang, G.; Liu, X.; Sun, Y.; Xiao, W. Eaf1 and Eaf2 negatively regulate canonical Wnt/β-catenin signaling. Development 2013, 140, 1067–1078. [Google Scholar] [CrossRef]
- Hikasa, H.; Sokol, S.Y. Wnt signaling in vertebrate axis specification. Cold Spring Harb. Perspect. Biol. 2013, 5, a007955. [Google Scholar] [CrossRef]
- Pohl, B.S.; Knöchel, W. Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene 2005, 344, 21–32. [Google Scholar] [CrossRef]
- Mir, A.; Kofron, M.; Zorn, A.M.; Bajzer, M.; Haque, M.; Heasman, J.; Wylie, C.C. FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula. Development 2007, 134, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, V.E. The T-box gene family: Emerging roles in development, stem cells and cancer. Development 2014, 141, 3819–3833. [Google Scholar] [CrossRef] [PubMed]
- Wilson, V.; Conlon, F.L. The T-box family. Genome Biol. 2002, 3, reviews3008.1. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, M.V.; Lewis, L.E.; Sun, G.; Wang, E.; Li, L.; Said-Salman, I.; Feucht, L.; Huang, T. Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene 2004, 330, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Plageman, T.F.; Yutzey, K.E. T-box genes and heart development: Putting the “T” in heart. Dev. Dyn. 2005, 232, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Reich, S.; Weinstein, D.C. Queens College City, University of New York: New York, NY, USA, 2019; Unpublished work.
- McGarry, T.J.; Kirschner, M.W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 1998, 93, 1043–1053. [Google Scholar] [CrossRef]
- Kroll, K.L.; Salic, A.N.; Evans, L.M.; Kirschner, M.W. Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development 1998, 125, 3247–3258. [Google Scholar]
- Margueron, R.; Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 2011, 469, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, Y.B.; Pirrotta, V. A new world of Polycombs: Unexpected partnerships and emerging functions. Nat. Rev. Genet. 2013, 14, 853–864. [Google Scholar] [CrossRef]
- Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R.S.; Zhang, Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002, 298, 1039–1043. [Google Scholar] [CrossRef]
- Laugesen, A.; Højfeldt, J.W.; Helin, K. Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harb Perspect Med 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Wapinski, O.L.; Vierbuchen, T.; Qu, K.; Lee, Q.Y.; Chanda, S.; Fuentes, D.R.; Giresi, P.G.; Ng, Y.H.; Marro, S.; Neff, N.F.; et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013, 155, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.; Friday, R.V.; Woodland, H.R. Mode of action of VegT in mesoderm and endoderm formation. Development 1999, 126, 4903–4911. [Google Scholar] [PubMed]
- Tie, F.; Banerjee, R.; Stratton, C.A.; Prasad-Sinha, J.; Stepanik, V.; Zlobin, A.; Diaz, M.O.; Scacheri, P.C.; Harte, P.J. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 2009, 136, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Gates, L.A.; Shi, J.; Rohira, A.D.; Feng, Q.; Zhu, B.; Bedford, M.T.; Sagum, C.A.; Jung, S.Y.; Qin, J.; Tsai, M.-J.; et al. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J. Biol. Chem. 2017, 292, 14456–14472. [Google Scholar] [CrossRef] [Green Version]
- Brennan, J.; Lu, C.C.; Norris, D.P.; Rodriguez, T.A.; Beddington, R.S.; Robertson, E.J. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 2001, 411, 965–969. [Google Scholar] [CrossRef]
- Tam, P.P.L.; Loebel, D.A.F.; Tanaka, S.S. Building the mouse gastrula: Signals, asymmetry and lineages. Curr. Opin. Genet. Dev. 2006, 16, 419–425. [Google Scholar] [CrossRef]
- Li, L.; Song, L.; Liu, C.; Chen, J.; Peng, G.; Wang, R.; Liu, P.; Tang, K.; Rossant, J.; Jing, N. Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. J. Mol. Cell Biol. 2015, 7, 455–465. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Blocks Mesoderm via Inhibition of TGFβ Signal Transduction | Blocks Mesoderm via Alternative Pathway | Additional Comments | References |
---|---|---|---|---|
Dand5 (Coco) | + | Blocks via ligand inhibition | [39,40] | |
Ndp (Norrin) | + | Blocks via ligand inhibition | [41] | |
Tomoregulin-1 (TMEFF1) | + | Inhibits Cripto/receptor complex | [42] | |
Trim33 (Ectodermin) | + | Promotes degradation of Smad4 | [43] | |
Smad7 | + | Inhibitory Smad | [44,45] | |
BAMBI | + | Inhibits receptor/Smad association | [46,47] | |
Serum Response Factor (SRF) | + | Inhibits FoxH1/Smad2 association | [48,49] | |
Eaf1/2 | + | + | Associates with Smad2 and P53 | [50] |
ZNF585B (XFDL156) | + | P53 inhibitor | [51] | |
FoxI1e | + | Transcriptional activator | [52] | |
Tbx2 | + | Transcriptional repressor | [53] | |
Geminin | + | PRC2 dependent | [54] | |
Ascl1 | + | Recruits HDAC1 | [55] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, S.; Weinstein, D.C. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes 2019, 10, 895. https://doi.org/10.3390/genes10110895
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes. 2019; 10(11):895. https://doi.org/10.3390/genes10110895
Chicago/Turabian StyleReich, Shoshana, and Daniel C. Weinstein. 2019. "Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm" Genes 10, no. 11: 895. https://doi.org/10.3390/genes10110895
APA StyleReich, S., & Weinstein, D. C. (2019). Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes, 10(11), 895. https://doi.org/10.3390/genes10110895