Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Phenotype
2.2. DNA Extraction and Genotyping
2.3. Quality Control
2.3.1. Heifers
2.3.2. Cows
2.3.3. Heifers and Cows Combined
2.4. Genome-Wide Association Analysis
2.5. Gene-Set Enrichment Analysis–Single Nucleotide Polymorphism
2.6. Network Analysis
3. Results
3.1. Genome-Wide Association Analyses
3.2. Gene-Set Enrichment Analyses–Single Nucleotide Polymorphisms
3.3. Ingenuity Pathway Analysis
4. Discussion
4.1. Positional Candidate Genes
4.2. Gene-Sets Enriched for Spontaneous Abortions
4.3. Master Regulators Shared in Two or More Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ford, H.B.; Schust, D.J. Recurrent pregnancy loss: Etiology, diagnosis, and therapy. Rev. Obstet. Gynecol. 2009, 2, 76–83. [Google Scholar] [PubMed]
- Andersen, M.D.; Alstrup, A.K.O.; Duvald, C.S.; Mikkelsen, E.F.R.; Mikkelsen, E.F.R.; Vendelbo, M.H.; Ovesen, P.G.; Pedersen, M. Animal models of fetal medicine and obstetrics. Anim. Models Fetal Med. Obstet. 2018, 343. [Google Scholar] [CrossRef]
- Oliveira, L.J.; Barreto, R.S.; Perecin, F.; Mansouri-Attia, N.; Pereira, F.T.; Meirelles, F.V. Modulation of maternal immune system during pregnancy in the cow. Reprod. Domest. Anim. 2012, 47 (Suppl. 4), 384–393. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.C. Reproductive loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef]
- Veerkamp, R.; Beerda, B. Genetics and genomics to improve fertility in high producing dairy cows. Theriogenology 2007, 68 (Suppl. 1), S266–S273. [Google Scholar] [CrossRef]
- Sun, C.; Madsen, P.; Lund, M.S.; Zhang, Y.; Nielsen, U.S.; Su, G. Improvement in genetic evaluation of female fertility in dairy cattle using multi-trait models including milk production traits. J. Anim. Sci. 2010, 88, 871–878. [Google Scholar] [CrossRef]
- Bellows, D.S.; Ott, S.L.; Bellows, R.A. Review: Cost of reproductive diseases and conditions in cattle. Prof. Anim. Sci. 2002, 18, 26–32. [Google Scholar] [CrossRef]
- Diskin, M.G.; Murphy, J.J.; Sreenan, J.M. Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 2006, 96, 297–311. [Google Scholar] [CrossRef]
- Diskin, M.G.; Parr, M.H.; Morris, D.G. Embryo death in cattle: An update. Reprod. Fertil. Dev. 2011, 24, 244–251. [Google Scholar] [CrossRef]
- Berg, D.K.; van Leeuwen, J.; Beaumont, S.; Berg, M.; Pfeffer, P.L. Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology 2010, 73, 250–260. [Google Scholar] [CrossRef]
- Diskin, M.G.; Sreenan, J.M. Fertilization and embryonic mortality rates in beef heifers after artificial insemination. J. Reprod. Fertil. 1980, 59, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.F.; Bolandl, M.P.; McGeady, T.A. Reproductive wastage following artificial insemination of heifers. Vet. Rec. 1981, 109, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Council on Dairy Cattle Breeding. Trend in Heifer Conception Rate for Holstein or Red & White. In Trends & Stats: Genetic and Phenotypic Trend; Council on Dairy Cattle Breeding: Bowie, MD, USA, 2019; Available online: https://queries.uscdcb.com/eval/summary/trend.cfm?R_Menu=HO.h#StartBody (accessed on 19 July 2019).
- Council on Dairy Cattle Breeding. Trend in Cow Conception Rate for Holstein or Red & White. In Trends & Stats: Genetic and Phenotypic Trend; Council on Dairy Cattle Breeding: Bowie, MD, USA, 2019; Available online: http://queries.uscdcb.com/eval/summary/trend.cfm?R_Menu=HO.c#StartBody (accessed on 10 July 2019).
- Kiser, J.N.; Keuter, E.M.; Seabury, C.M.; Neupane, M.; Moraes, J.G.N.; Dalton, J.; Burns, G.W.; Spencer, T.E.; Neibergs, H.L. Validation of 46 loci associated with female fertility traits in cattle. BMC Genom. 2019, 20, 576. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Geary, T.M.; Kiser, J.N.; Burns, G.W.; Hansen, P.J.; Spencer, T.E.; Neibergs, H.L. Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle. PLoS ONE 2017, 12, e0188997. [Google Scholar] [CrossRef]
- Moraes, J.G.N.; Behura, S.K.; Geary, T.W.; Hansen, P.J.; Neibergs, H.L.; Spencer, T.E. Uterine influences on conceptus development in fertility-classified animals. Proc. Natl. Acad. Sci. USA 2018, 115, E1749–E1758. [Google Scholar] [CrossRef]
- Geary, T.W.; Burns, G.W.; Moraes, J.G.N.; Moss, J.I.; Denicol, A.C.; Dobbs, K.B.; Ortega, M.S.; Hansen, P.J.; Wehrman, M.E.; Neibergs, H.; et al. Identification of beef heifers with superior uterine capacity for pregnancy. Biol. Reprod. 2016, 95, 47. [Google Scholar] [CrossRef]
- Illumina. Bovine HD Genotyping BeadChip. In Agrigenomics; Illumina, Inc.: San Diego, CA, USA, 2012; Available online: https://www.illumina.com/Documents/products/datasheets/datasheet_bovineHD.pdf (accessed on 30 May 2019).
- Neogen. GGP Bovine 50K. In GeneSeek Genomic Profiler Bovine 50K; Neogen, Inc.: Lincoln, NE, USA, 2016; Available online: https://genomics.neogen.com/pdf/ag311_ggp_bovine50k_brochure.pdf (accessed on 10 May 2019).
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef]
- SNP & Variation Suite (Version 9.1) [SVS]; Golden Helix, Inc.: Bozeman MT, USA, 2019; Available online: http://www.goldenhelix.com/products/SNP_Variation/index.html (accessed on 10 May 2019).
- Kang, H.M.; Zaitlen, N.A.; Wade, C.M.; Kirby, A.; Heckerman, D.; Daly, M.J.; Eskin, E. Efficient control of population structure in model organism association mapping. Genetics 2008, 178, 1709–1723. [Google Scholar] [CrossRef]
- Taylor, J.F. Implementation and accuracy of genomic selection. Aquaculture 2014, 420, S8–S14. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Lee, S.H.; Yang, J.; Goddard, M.E.; Visscher, P.M.; Wray, N.R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 2012, 28, 2540–2542. [Google Scholar] [CrossRef] [PubMed]
- Dudbridge, F.; Gusnanto, A. Estimation of significance thresholds for genomewide associations scans. Genet. Epidemiol. 2008, 32, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2259. [Google Scholar] [CrossRef] [PubMed]
- Neibergs, H.L.; Seabury, C.M.; Wojtowicz, A.J.; Wang, Z.; Scraggs, E.; Kiser, J.N.; Neupane, M.E.; Womack, J.; Van Eenennaam, A.; Hagevoort, G.R.; et al. Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned Holstein calves. BMC Genom. 2014, 15, 1164. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.; Deng, S.; Wojnowski, L.; Kulle, B. GSEA-SNP: Applying gene-set enrichment analysis to SNP data from genome-wide association studies. Bioinformatics 2008, 24, 2784–2785. [Google Scholar] [CrossRef]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef]
- Lee, K.; Boyd, K.L.; Parekh, D.V.; Kehl-Fir, T.E.; Baldwin, H.S.; Brakebusch, C.; Skaar, E.P.; Boothby, M.; Zent, R. Cdc42 promotes host defenses against fatal infection. Infect. Immun. 2013, 81, 2714–2723. [Google Scholar] [CrossRef]
- Del Corvo, M.; Luini, M.; Stella, A.; Pagnacco, G.; Ajmone-Marsan, P.; Williams, J.L.; Minozzi, G. Identification of additional loci associated with antibody response to Mycobacterium avium ssp. Paratuberculosis in cattle by GSEA-SNP analysis. Mamm. Genome 2017, 28, 520–527. [Google Scholar]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity pathway analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Laisk, T.; Soares, A.L.G.; Ferreira, T.; Painter, J.N.; Laber, S.; Bacelis, J.; Chen, C.-Y.; Lepamets, M.; Lin, K.; Liu, S.; et al. The Genetic Architecture of Sporadic and Recurrent Miscarriage. bioRxiv 2019, 575167. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology; tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yin, M.; Gu, J.; Hou, Y.; Tian, F.; Sun, F. Metabolomic profiling of plasma samples from women with recurrent spontaneous abortion. Med. Sci. Monit. 2018, 24, 4038–4045. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, S.C. One carbon metabolism in pregnancy: Impact on maternal, fetal, and neonatal health. Mol. Cell. Endocrinol. 2016, 435, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, D.T.; Jamison, T.F.; Schreiber, S.L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 1996, 3, 623–639. [Google Scholar] [CrossRef] [Green Version]
- Neveu, D.; Zucker, R.S. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 1996, 16, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Schatten, H. The mammalian centrosome and its functional significance. Histochem. Cell Biol. 2008, 129, 667–686. [Google Scholar] [CrossRef] [Green Version]
- Gladson, C.L.; Prayson, R.A.; Lie, W. The pathobiology of glioma tumors. Annu. Rev. Pathol. 2010, 5, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, J.; Zhang, J.; Yu, Z.; Yu, S.; Wu, L.; Wang, Y.; Gong, X.; Wu, C.; Cai, X.; et al. Oncogenic protein kinase D3 regulation networks in invasive breast cancer. Int. J. Biol. Sci. 2017, 13, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Au, A.C.; Hernandez, P.A.; Lieber, E.; Nadroo, A.M.; Shen, Y.M.; Kelley, K.A.; Gelb, B.D.; Diaz, G.A. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am. J. Hum. Genet. 2010, 87, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuśniercyk, P. Killer cell immunoglobulin-like receptor gene associations with autoimmune and allergic diseases, recurrent spontaneous abortion, and neoplasms. Front. Immunol. 2013, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, N.; Wang, H.; Zhang, B.; Kang, Y.; Guo, Q.; Xiao, H.; Yang, H.; Liao, S. Maternal natural killer cell immunoglobulin receptor genes and human leukocyte antigen-C ligands influence recurrent spontaneous abortion in the Han Chinese population. Exp. Ther. Med. 2018, 15, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravet, S.; Scott-Algara, D.; Bonnet, E.; Tran, H.K.; Tran, T.; Nguyen, N.; Truong, L.X.; Theodorou, I.; Barré-Sinoussi, F.; Pancino, G.; et al. Distinctive NK-cell receptor repertoires sustain high-level constitutive NK-cell activation in HIV-exposed uninfected individuals. Blood 2007, 109, 4296–4305. [Google Scholar] [CrossRef] [PubMed]
- Koopman, L.A.; Kopcow, H.D.; Rybalov, B.; Boyson, J.E.; Orange, J.S.; Schatz, F.; Masch, R.; Lockwood, C.J.; Schachter, A.D.; Park, P.J.; et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 2003, 198, 1201–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niokou, D.; Keramitsoglou, T.; Darlamitsou, A.; Tsekoura, C.; Papadimitropoulos, M.; Lepage, V.; Balafoutas, C.; Varla-Leftherioti, M.; Spyropoulou-Vlachou, M.; Stavropoulos-Giokas, C.; et al. Natural killer (NK) cell receptors’ repertoire in couples with recurrent spontaneous abortions. Am. J. Reprod. Immunol. 2003, 49, 183–191. [Google Scholar]
- Varla-Leftherioti, M.; Spyropoulou-Vlachou, M.; Keramitsoglou, T.; Papadimitropoulos, M.; Tsekoura, C.; Graphou, O.; Papadopoulou, C.; Gerondi, M.; Stavropoulos-Giokas, C. Lack of the appropriate natural killer cell inhibitory receptors in women with spontaneous abortion. Hum. Immunol. 2005, 66, 65–71. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.-R.; Jiao, Y.-L.; Wang, L.-C.; Li, J.-F.; Cui, B.; Xu, C.-Y.; Shi, Y.-H.; Chen, Z.-J. Increased activating killer immunoglobulin-like receptor genes and decreased specific HLA-C alleles in couples with recurrent spontaneous abortion. Biochem. Biophys. Res. Commun. 2007, 360, 696–701. [Google Scholar]
- Flores, A.C.; Marcos, C.Y.; Paladino, N.; Arruvito, L.; Williams, F.; Middleton, D.; Fainboim, L. KIR receptors and HLA-C in the maintenance of pregnancy. Tissue Antigens 2007, 69 (Suppl. 1), 112–113. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, X.; Lu, P.; Song, Y.; Lin, Q. Killer immunoglobulin like receptor repertoire on uterine natural killer cell subsets in women with recurrent spontaneous abortions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 140, 218–223. [Google Scholar] [CrossRef]
- Hiby, S.E.; Regan, L.; Lo, W.; Farrell, L.; Carrington, M.; Moffett, A. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum. Reprod. 2008, 23, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.G.; Bompeixe, E.P.; Franca, P.P.; Marques de Moraes, M.; da Graca Bicalho, M. Activating killer cell immunoglobulin-like receptor genes’ association with recurrent miscarriage. Am. J. Reprod. Immunol. 2009, 62, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Nowak, I.; Malinowski, A.; Tchórzewski, H.; Barcz, E.; Wilczyński, J.R.; Gryboś, M.; Kurpisz, M.; Łuszczek, W.; Banasik, M.; Reszczyńska-Ślęzak, D.; et al. Frequencies of killer immunoglobulin-like receptor genotypes influence susceptibility to spontaneous abortion. J. Appl. Genet. 2009, 50, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Hiby, S.E.; Apps, R.; Sharkey, A.M.; Farrell, L.E.; Gardner, L.; Mulder, A.; Claas, F.H.; Walker, J.J.; Redman, C.W.; Redman, C.C.; et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Investig. 2010, 120, 4102–4110. [Google Scholar] [CrossRef]
- Faridi, R.M.; Agrawal, S. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum. Reprod. 2010, 26, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Owak, I.; Malinowski, A.; Tchórzewski, H.; Barcz, E.; Wilczyński, J.R.; Banasik, M.; Gryboś, M.; Kurpisz, M.; Łuszczek, W.; Majorczyk, E.; et al. HLA-C C1C2 heterozygosity may protect women bearing the killer immunoglobulin-like receptor AA genotype from spontaneous abortion. J. Reprod. Immunol. 2011, 88, 32–37. [Google Scholar]
- Ozturk, O.G.; Sahin, G.; Karacor, E.D.; Kucukgoz, U. Evaluation of KIR genes in recurrent miscarriage. J. Assist. Reprod. Genet. 2010, 29, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Keramitsoglou, T.; Papadimitropoulos, M.; Tsekoura, C.; Sankarkumar, U.; Paparistidis, N.; Ghosh, K.; Pawar, A.; Vrani, V.; Daniilidis, M.; Parapanissiou, E.; et al. 14th International HLA and Immunogenetics Workshop: Report from the reproductive immunology component. Tissue Antigens 2007, 69 (Suppl. 1), 297–303. [Google Scholar]
- Varla-Leftherioti, M.; Keramitsoglu, T.; Parapanissiou, E.; Kurpisz, M.; Kontopoulou-Antonopoulou, V.; Tsekoura, C.; Kamieniczna, M.; Novokowska, B.; Paparistidis, N.; Vrani, V.; et al. HLA-DQA1*0505 sharing and Killer immunoglobulin-like receptors in sub-fertile couples: Report of the 15th International Histocompatibility Workshop. Tissue Antigens 2010, 75, 668–672. [Google Scholar] [CrossRef]
- Seiffert, M.; Custodio, J.M.; Wolf, I.; Harkey, M.; Liu, Y.; Blattman, J.N.; Greenberg, P.D.; Rohrschneider, L.R. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol. Cell. Biol. 2003, 23, 2415–2424. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, T.Y.; Verma, S.; Bunting, K.D. Grb2-associated binding (Gab) proteins in hematopoietic and immune cell biology. Am. J. Blood Res. 2011, 1, 130–134. [Google Scholar] [PubMed]
- Jia, P.; Li, F.; Gu, W.; Zhang, W.; Cai, Y. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation. PLoS ONE 2017, 12, e0173473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sármay, G.; Angyal, A.; Kertész, A.; Maus, M.; Medgyesi, D. The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immunol. Lett. 2006, 104, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Hirano, T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci. 2003, 94, 1029–1033. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Y.; Zhang, Y.; Aierken, N.; Shao, N.; Ye, R.; Lin, Y.; Wang, S. AFF3 upregulation mediates tamoxifen resistance in breast cancers. J. Exp. Clin. Cancer Res. 2018, 37, 254. [Google Scholar] [CrossRef] [Green Version]
- Fettke, F.; Schumacher, A.; Canellada, A.; Toledo, N.; Bekeredjian-Ding, I.; Bondt, A.; Wuhrer, M.; Costa, S.-D.; Zenclussen, A.C. Maternal and fetal mechanisms of B cell regulation during pregnancy: Human chorionic gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis. Front. Immunol. 2016, 7, 495. [Google Scholar] [CrossRef] [Green Version]
- Rolle, L.; Tehran, M.M.; Raeva, Y.; Schumacher, A.; Hartig, R.; Costa, S.-D.; Jensen, F.; Zenclussen, A.C.; Morell-García, A.; Morell-García, A. Cutting edge: IL-10 producing regulatory B cells in early human pregnancy. Am. J. Reprod. Immunol. 2013, 70, 448–453. [Google Scholar] [CrossRef]
- Elis, S.; Coyral-Castel, S.; Freret, S.; Cognié, J.; Desmarchais, A.; Fatet, A.; Rame, C.; Briant, E.; Maillard, V.; Dupont, J. Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. J. Dairy Sci. 2013, 96, 7591–7602. [Google Scholar] [CrossRef]
- Walker, C.G.; Littlejohn, M.D.; Mitchell, M.D.; Roche, J.R.; Meier, S. Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains. Physiol. Genomics. 2012, 44, 47–58. [Google Scholar] [CrossRef]
- Li, K.; Zhang, X.; Chen, G.; Pei, L.; Xiao, H.; Jiang, J.; Li, J.; Zheng, X.; Li, D. Association of fatty acids and lipids metabolism in placenta with early spontaneous pregnancy loss in Chinese women. Food Funct. 2018, 9, 1179–1186. [Google Scholar] [CrossRef]
- Grimes, S.B.; Wild, R. Effect of pregnancy on lipid metabolism and lipoproteins levels. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK498654/ (accessed on 20 February 2018).
- Martínez, M.; Mougan, I. Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 1998, 71, 2528–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shellhaas, C.S.; Coffman, T.; Dargie, P.J.; Killam, A.P.; Kay, H.H. Intravillous eicosanoid compartmentalization and regulation of placental blood flow. J. Soc. Gynecol. Investig. 1997, 4, 58–63. [Google Scholar] [CrossRef]
- Ahn, H.J.; Yang, H.; An, B.S.; Chio, K.C.; Jeung, E.B. Expression and regulation of Enpp2 in rat uterus during the estrous cycle. J. Vet. Sci. 2011, 12, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Meeteren, L.A.; Ruurs, P.; Christodoulou, E.; Goding, J.W.; Takakusa, H.; Kikuchi, K.; Perrakis, A.; Nagano, T.; Moolenaar, W.H. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol. Chem. 2005, 280, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filis, P.; Kind, P.C.; Spears, N. Implantation failure in mice with a disruption in Phospholipase C beta 1 gene: Lack of embryonic attachment, aberrant steroid hormone signaling and defective endocannabinoid metabolism. Mol. Hum. Reprod. 2013, 5, 290–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorrilla, M.; Yatsenko, A.N. The genetics of infertility: Current status of the field. Curr. Genet. Med. Rep. 2013, 1, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Blobe, G.C.; Obeid, L.M.; Hannun, Y.A. Regulation of protein kinase C and role in cancer biology. Cancer Metastasis Rev. 1994, 13, 411–431. [Google Scholar] [CrossRef]
- Kim, B.; Kim, Y.-S.; Ahn, J.; Kim, J.; Cho, S.; Won, K.-J.; Ozaki, H.; Karaki, H.; Lee, S.-M. Conventional-type protein kinase C contributes to phorbol ester-induced inhibition of rat myometrial tension. Br. J. Pharmacol. 2003, 139, 408–414. [Google Scholar] [CrossRef]
- Phillippe, M. Protein kinase C, an inhibitor of oxytocin-stimulated phasic myometrial contractions. Biol. Reprod. 1994, 50, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Savineau, J.P.; Mironneau, J. An analysis of the actin of phorbol 12, 13-dibutyrate on mechanical activity in rat uterine smooth muscle. J. Pharmacol. Exp. Ther. 1990, 255, 133–139. [Google Scholar]
- Robin, P.; Boulven, I.; Desmyter, C.; Harbon, S.; Leiber, D. ET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells. Am. J. Physiol. Cell Physiol. 2002, 283, C251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parco, I.E.L.; Dallot, E.; Breuiller-Fouché, M. Protein kinase C and human uterine contractility. BMC Pregnancy Childbirth 2007, 7 (Suppl. 1), S11. [Google Scholar]
- Ozaki, H.; Yasuda, K.; Kim, Y.-S.; Egawa, M.; Kanzaki, H.; Nakazawa, H.; Hori, M.; Seto, M.; Karaki, H. Possible role of the protein kinase C/CP1-17 pathway in the augmented contraction of human myometrium after gestation. Br. J. Pharmacol. 2003, 140, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Bermeo, M.E.; Fomin, V.P.; Ventolini, G.; Gibbs, S.G.; McKenna, D.S.; Hurd, W.W. Magnesium sulfate induces translocation of protein kinase C isoenzymes alpha and delta in myometrial cells from pregnant women. Am. J. Obestet. Gynecol. 2004, 190, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Gospodarowicz, D.; Jones, K.L.; Sato, G. Purification of a growth factor for ovarian cells from bovine pituitary glands. Proc. Natl. Acad. Sci. USA 1974, 71, 2295–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfarb, M. Function of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev. 1996, 7, 311–325. [Google Scholar] [CrossRef]
- Murakami, A.; Ishida, S.; Thurlow, J.; Revest, J.M.; Dickson, C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001, 29, 3347–3355. [Google Scholar] [CrossRef] [Green Version]
- Mukai, H.; Tanaka, H.; Goto, K.; Kawai, K.; Yamashita, K.; Munekata, E. Structure-activity relationships of mammalian bombesin-like neuropeptides in the contraction of rat uterus. Neuropeptides 1991, 19, 243–250. [Google Scholar] [CrossRef]
- Minamino, N.; Kangawa, K.; Matsuo, H. Neuromedin B: A novel bombesin-like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 1983, 114, 541–548. [Google Scholar] [CrossRef]
- Weber, H.C. Regulations and signaling of human bombesin receptors and their biological effects. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 66–71. [Google Scholar] [CrossRef]
- Majumdar, I.D.; Weber, H.C. Biology of mammalian bombesin-like peptides and their receptors. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Erspamer, V.; Erpamer, G.F.; Inselvini, M. Some pharmacological actions of alytesin and bombesin. J. Pharm. Pharmacol. 1970, 22, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.S.; Fei, K.L.; Wu, M.T.; Wu, X.H.; Liang, Q.H. Neuromedin B and its receptor influence the activity of myometrial primary cells in vitro through regulations of I16 expression via the Rela/p65 pathway in mice. Biol. Reprod. 2012, 86, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vora, S.; Abbas, A.; Kim, C.J.; Summerfield, T.L.; Kusanovic, J.P.; Iams, J.D.; Romero, R.; Kniss, D.; Ackerman, W. Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes. Reprod. Biol. Endocrinol. 2010, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Yan, Q.; Fang, S.; Liu, M.; Li, Y.; Yuan, Y.F.; Li, Y.; Zhu, Y.; Qi, J.; Yang, X.; et al. Calcium-binding protein promotes hepatocellular carcinoma growth and metastasis by activating signal-regulated kinases signaling pathway. Hepatology 2017, 66, 1529–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Gu, J.; Zhang, Z.; Wang, Y.; Gu, C. MiR-451 promotes cell proliferation and metastasis in pancreatic cancer through targeting CAB39. BioMed Res. Int. 2017, 2017, 2381482. [Google Scholar] [CrossRef] [Green Version]
- Hokin, M.R.; Hokin, L.E. Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 1953, 203, 967–977. [Google Scholar]
- Michell, R.H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 1975, 415, 81–147. [Google Scholar] [CrossRef]
- Rebecchi, M.J.; Pentyala, S.N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 2000, 80, 1291–1335. [Google Scholar] [CrossRef]
- Clouthier, D.E.; Bueno, M.R.P.; Tavares, A.L.P.; Lyonnet, S.; Amiel, J.; Gordon, C.T. Understanding the basis of auriculocondylar syndrome: Insights from human and mouse genetic studies. Am. J. Med. Genet. C Semin. Med. Genet. 2013, 4, 306–317. [Google Scholar] [CrossRef] [Green Version]
Chromosome (Location in Mb) 1 | SNP ID 2 | Population 3 | p-Value 4 | Positional Candidate Gene(s) 5 |
---|---|---|---|---|
1 (9–10) | rs110416429 | C | 2.32 × 10−7 | - |
2 (88–89) | rs41640492 | H H + C | 2.70 × 10−8 1.11 × 10−13 | - |
7 (15–16) | rs137810199 | H + C | 1.23 × 10−6 | LOC100300764, LOC100300806 |
7 (83–84) | rs109588489 | H | 4.55 × 10−7 | ACOT12, LOC104968970 |
7 (97–98) | rs110673622 | H + C | 5.58 × 10−7 | - |
8 (31–32) | rs41659609 | H + C | 1.85 × 10−6 | LOC104969317, LOC782470 |
10 (42–43) | rs41618585 | H H + C | 1.15 × 10−14 4.21 × 10−20 | - |
10 (56–57) | rs43014621 | H + C | 7.35 × 10−7 | WDR72 |
10 (98–99) | rs42814099 | C | 6.22 × 10−6 | - |
11 (5–6) | rs41822060 | H C H + C | 1.39 × 10−7 2.18 × 10−7 1.15 × 10−14 | AFF3 |
14 (64–65) | rs43430961 | C H + C | 1.26 × 10−9 2.83 × 10−9 | NCALD |
16 (70–71) | rs109993299 | H | 9.68 × 10−6 | PTPN14 |
18 (4–5) | rs43002722 | H | 8.55 × 10−8 | - |
18 (21–22) | rs41872094 | H | 8.61 × 10−8 | AKTIP, RBL2 |
20 (27–28) | rs109855946 | H + C | 6.31 × 10−11 | - |
21 (53–54) | rs133762978 | H + C | 5.46 × 10−6 | - |
24 (36–37) | rs42941005 | H H + C | 1.18 × 10−6 6.03 × 10−8 | - |
25 (39–40) | rs133562920 | C | 8.76 × 10−6 | ZNF12, LOC100140207, LOC100847388, LOC618542 |
26 (9–10) | rs133222015 | C | 7.05 × 10−6 | - |
27 (108–109) | rs133726820 | H H + C | 5.29 × 10−6 7.15 × 10−6 | LOC104970060 |
28 (29–30) | rs109459492 | H H + C | 8.63 × 10−7 2.45 × 10−9 | CAMK2G |
X (39–40) | rs137198342 | H C H + C | 2.22 × 10−8 1.04 × 10−14 1.46 × 10−21 | GAB3, KIR3DS1, LOC786275 |
X (134–135) | rs137331944 | H + C | 2.38 × 10−6 | - |
Gene-Set name (ID) 1 | # Genes 2 (# LEG) 3 | NES 4 | Leading-Edge Genes (LEGs) | Gene-Set Function |
---|---|---|---|---|
Holstein Heifers | ||||
Chromosome organization (GO: 0051276) | 54 (17) | 3.13 | BRE, TEX14, EYA2, BANP, RRS1, USP15, VPS72, ASCC3, MCM3, RNF20, SUDS3, PRKCB, OBFC1, POLE3, AURKA, CENPH, HMG20B | The assembly or disassembly of chromosomes at the cellular level (Ashburner et al., 2000 [37]) |
Holstein Cows | ||||
Lipid catabolic process (GO: 0016042) | 46 (14) | 3.37 | PLCB1, PAFAH1B3, IAH1, ENPP2, LIPE, NCEH1, PNLIPRP2, PLA2G2A, NEU3, PAFAH1B1, PAFAH2, DDHD1, PEX13, SMPDL3A | Involved in the breakdown of lipids (Li et al., 2018 [38]) |
Glycine serine and threonine metabolism (KEGG: hsa00260) | 21 (5) | 3.01 | PSPH, CHDH, SARDH, DAO, CTH | Involved in amino acid metabolism necessary for proper cellular regulation (Kalhan, 2016 [39]) |
Combined Heifer and Cow Populations | ||||
Mitotic G2 G2/M phases (R: REACT_21391) | 41 (14) | 3.39 | PLK4, TUBGCP5, CEP164, PPP2R1A, CEP70, HSP90AA1, YWHAG, CEP76, NUMA1, CDK1, MNAT1, E2F3, CEP192, AKAP9 | Involved in the second growth phase/check-point (G2) and the transition from G2 to mitosis (M) during the cell cycle (Hung et al., 1996 [40]) |
Long term potentiation (KEGG: hsa04720) | 43 (24) | 3.31 | CAMK2G, GNAQ, ITPR1, PRKCB, RPS6KA3, PRKX, GRIN2A, RAF1, GRIA1, CAMK2A, CAMK2B, CAMK4, CALML5, PRKCA, RAP1A, PLCB1, RPS6KA2, GRM1, PPP3CC, PPP3CA, GRM5, ITPR2, GRIN2B, CAMK2D | Involved in calcium signaling pathways in the hippocampus triggered by a postsynaptic rise in intracellular calcium concentrations (Neveu and Zucker, 1996 [41]) |
GnRH Signaling pathway (KEGG: hsa04912) | 57 (16) | 3.29 | CAMK2G, ADCY2, GNAQ, ITPR1, PRKCB, PLA2G5, PRKX, RAF1, ADCY9, CAMK2A, EGFR, PLA2G6, CAMK2B, CALML5, PRKCA, PLCB1 | Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH (Kanehisa and Goto, 2000 [42]) |
Recruitment of mitotic centrosome proteins and complexes (R: REACT_15296) | 35 (12) | 3.11 | PLK4, TUBGCP5, CEP164, PPP2R1A, CEP70, HSP90AA1, YWHAG, CEP76, NUMA1, CDK1, CEP192, AKAP9 | Produces proteins that serve as the microtubule organization center and is closely associated with the nucleus until the G2/M transition where the microtubule organization center matures into the division component center for the mitotic poles (Schatten, 2008 [43]) |
Glioma (KEGG: hsa05214) | 43 (14) | 3.03 | CAMK2G, PRKCB, PDGFRB, PTEN, RAF1, CDK6, CAMK2A, EGFR, PIK3CG, CAMK2B, CALML5, PRKCA, E2F3, PIK3CA | Gene pathway is involved with one of the most common primary brain tumors, glioma (Gladson et al., 2010 [44]) |
Ingenuity Canonical Pathways 1 | Population | B–H p-Value 2 | Number of Target Molecules 3 |
---|---|---|---|
Synaptic Long Term Potentiation | Cows Heifers and Cows | 7.41 × 10−5 2.00 × 10−31 | 5 21 |
Phospholipases | Cows Heifers and Cows | 6.15 × 10−5 8.32 × 10−4 | 4 3 |
Antioxidant Action of Vitamin C | Cows Heifers and Cows | 1.82 × 10−4 3.39 × 10−3 | 4 3 |
Endothelin-1 Signaling | Cows Heifers and Cows | 1.17 × 10−3 3.98 × 10−16 | 4 14 |
Role of MAPK Signaling in the Pathogenesis of Influenza | Cows Heifers and Cows | 1.23 × 10−3 3.89 × 10−6 | 3 5 |
Sperm Motility | Cows Heifers and Cows | 1.23 × 10−3 3.16 × 10−11 | 4 11 |
Master Regulator1 | Molecule Type 2 | Population | p-Value 3 | Positional Candidate and Leading-Edge Genes 4 (#) 5 |
---|---|---|---|---|
FGF3 | Growth Factor | Heifers Heifers and Cows | 1.07 × 10−3 4.40 × 10−3 | ACOT12, AFF3, AURKA, BABAM2, BANP, CAMK2G, CENPH, EYA2, GAB3, HMG20B, MCM3, PRKCB, RBL2, USP15, VPS72 (18) ADCY2, ADCY9, AFF3, CAMK2A, CAMK2B, CAMK2D, CAMK2G, CDK1, CDK6, CEP164, CEP70, EGFR, GAB3, GNAQ, GRM5, HSP90AA1, ITPR2, PDGFRB, PLA2G5, PLA2G6, PLCB1, PLK4, PPP3CA, PRKCA, PRKCB, PRKX, PTEN, RAF1, RPS6KA2, RPS6KA3, YWHAG (18) |
NMB | Other | Heifers Cows | 2.60 × 10−3 2.30 × 10−3 | AFF3, ASCC3, AURKA, BABAM2, BANP, CAMK2G, EYA2, GAB3, HMG20B, PRKCB, RRS1, USP15, VPS72 (14) AFF3, DAO, GAB3, LIPE, NCALD, NCEH1, NEU3, PAFAH1B1, PAFAH1B3, PLCB1, PSPH, SARDH, SMPDL3A (16) |
CAB39 | Enzyme | Cows Heifers and Cows | 7.00 × 10−4 1.00 × 10–4 | AFF3, CHDH, CTH, ENPP2, LIPE, NCALD, NCEH1, PAFAH1B1, PAFAH1B3, PLA2G2A, PLCB1, SARDH, SMPDL3A (12) AFF3, AKAP9, CALML5, CAMK2A, CAMK2D, CAMK4, CEP164, CEP70, E2F3, GNAQ, GRIA1, GRIN2A, GRIN2B, GRM1, ITPR1, ITPR2, NCALD, PIK3CG, PLA2G5, PLA2G6, PLCB1, PLK4, PPP2R1A, PRKX, PTEN, RAF1, RAP1A, RPS6KA2, RPS6KA3, YWHAG (23) |
PLCB4 | Enzyme | Cows Heifers and Cows | 9.00 × 10–4 7.00 × 10–3 | PLCB1 (1) PLCB1 (1) |
Previous Study 1 | Phenotype 2 | Breed 3 | Shared Genes 4 |
---|---|---|---|
[17] | HF pregnant vs. HF open endometrium | Angus crossbred heifers | AFF3, GRIN2A, CAMK4, RPS6KA2, PDGFRB, ENPP2, PAFAH2, SMPDL3A, PSPH, SARDH, DAO, BANP, OBFC1 |
SF pregnant vs. SF open endometrium | Angus crossbred heifers | LOCI100300806, RPS6KA3, PLCB1, ENPP2, SARDH | |
HF vs. SF conceptus | Angus crossbred heifers | MNAT1, CAMK4, RPS6KA2, ADCY9, EGFR, E2F3, OBFC1, EYA2, ENPP2 | |
HF open endometrium vs. IF open endometrium | Angus crossbred heifers | LOCI100300806 | |
[16] | HF vs. SF pregnancy establishment | Angus crossbred heifers | PLA2G5, PLA2G6, RAF1, PIK3CA, ENPP2, PLA2G2A, PAFAH1B1, PRKCB |
[18] | HF vs. SF endometrial biopsies | Angus crossbred heifers | LOCI100300806 |
SF vs. IF endometrial biopsies | Angus crossbred heifers | LOCI100300806 | |
[73] | Fertil– and Fertil + | Holstein cows | LIPE |
[74] | HF vs. SF endometrium (immune response) | Holstein heifers | ADCY2, ITPR1, RAP1A, PPP3CA, ITPR2, CAMK2D, CAMK2G, PRKCA, PIK3CA |
HF vs. SF endometrium (carbuncular endometrium biopsy) | Holstein heifers | PIK3CG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliver, K.F.; Wahl, A.M.; Dick, M.; Toenges, J.A.; Kiser, J.N.; Galliou, J.M.; Moraes, J.G.N.; Burns, G.W.; Dalton, J.; Spencer, T.E.; et al. Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows. Genes 2019, 10, 954. https://doi.org/10.3390/genes10120954
Oliver KF, Wahl AM, Dick M, Toenges JA, Kiser JN, Galliou JM, Moraes JGN, Burns GW, Dalton J, Spencer TE, et al. Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows. Genes. 2019; 10(12):954. https://doi.org/10.3390/genes10120954
Chicago/Turabian StyleOliver, Kayleen F., Alexandria M. Wahl, Mataya Dick, Jewel A. Toenges, Jennifer N. Kiser, Justine M. Galliou, Joao G.N. Moraes, Gregory W. Burns, Joseph Dalton, Thomas E. Spencer, and et al. 2019. "Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows" Genes 10, no. 12: 954. https://doi.org/10.3390/genes10120954
APA StyleOliver, K. F., Wahl, A. M., Dick, M., Toenges, J. A., Kiser, J. N., Galliou, J. M., Moraes, J. G. N., Burns, G. W., Dalton, J., Spencer, T. E., & Neibergs, H. L. (2019). Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows. Genes, 10(12), 954. https://doi.org/10.3390/genes10120954