Sequence Expression of Supernumerary B Chromosomes: Function or Fluff?
Abstract
:1. Introduction
2. B Chromosomes Are Mosaics of Protein-Coding and Repetitive, Non-Coding Sequences
3. Expression of B-Linked DNA Sequences
3.1. Copies of Protein-Coding Genes
3.2. Transposable Elements
3.3. Long Non-Coding RNAs
3.4. Small Non-Coding RNAs
4. Functional Testing of Expressed B Loci and Some Challenges
Funding
Conflicts of Interest
References
- Jones, R.N. B-Chromosome drive. Am. Nat. 1991, 137, 430–442. [Google Scholar] [CrossRef]
- Jones, R.N. B chromosomes in plants. New Phytol. 1995, 131, 411–434. [Google Scholar] [CrossRef]
- Camacho, J.P.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2000, 355, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Stouthamer, R. PSR (paternal sex ratio) chromosomes: the ultimate selfish genetic elements. Genetica 2003, 117, 85–101. [Google Scholar] [CrossRef]
- Hurst, G.D.D.; Werren, J.H. The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2001, 2, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.M.; John, B. The B-chromosome system of Myrmeleotettix macculatus (Thunb.). Chromosoma 1967, 21, 140–162. [Google Scholar] [CrossRef]
- Fontana, P.G.; Vickery, V.R. Segregation-distortion in the B-chromosome system of Tettigidea lateralis (Say) (Orthoptera: Tetrigidae). Chromosoma 1973, 43, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Kayano, H. The maintenance of super-numerary chromosomes in wild populations of Lilium callosum by preferential segregation. Genetics 1961, 46, 1699–1712. [Google Scholar]
- Banaei-Moghaddam, A.M.; Schubert, V.; Kumke, K.; Weiβ, O.; Klemme, S.; Nagaki, K.; Macas, J.; González-Sánchez, M.; Heredia, V.; Gómez-Revilla, D.; et al. Nondisjunction in favor of a chromosome: The mechanism of rye B chromosome drive during pollen mitosis. Plant Cell 2012, 24, 4124–4134. [Google Scholar] [CrossRef]
- Han, F.; Lamb, J.C.; Yu, W.; Gao, Z.; Birchler, J.A. Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 2007, 19, 524–533. [Google Scholar] [CrossRef]
- Müntzing, A. Chromosome number, nuclear volume and pollen grain size in Galeopsis. Hereditas 2010, 10, 241–260. [Google Scholar] [CrossRef]
- Reed, K.M. Cytogenetic analysis of the paternal sex ratio chromosome of Nasonia vitripennis. Genome 1993, 36, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Werren, J.H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events. Mol. Reprod. Dev. 1995, 40, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Beukeboom, L.W.; Werren, J.H. Deletion analysis of the selfish B chromosome, paternal sex ratio (PSR), in the parasitic wasp Nasonia vitripennis. Genetics 1993, 133, 637–648. [Google Scholar] [PubMed]
- Klemme, S.; Banaei-Moghaddam, A.M.; Macas, J.; Wicker, T.; Novák, P.; Houben, A. High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol. 2013, 199, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Martín-Peciña, M.; Ruiz-Ruano, F.J.; Cabrero, J.; Corral, J.M.; López-León, M.D.; Sharbel, T.F.; Camacho, J.P.M. Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Ruiz-Ruano, F.J.; Camacho, J.P.M.; Cabrero, J.; López-León, M.D. Transcription of a B chromosome CAP-G pseudogene does not influence normal Condensin Complex genes in a grasshopper. Sci. Rep. 2017, 7, 17650. [Google Scholar] [CrossRef] [PubMed]
- Carchilan, M.; Kumke, K.; Mikolajewski, S.; Houben, A. Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma 2009, 118, 607–616. [Google Scholar] [CrossRef]
- Banaei-Moghaddam, A.M.; Meier, K.; Karimi-Ashtiyani, R.; Houben, A. Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell 2013, 25, 2536–2544. [Google Scholar] [CrossRef]
- Delgado, M.; Caperta, A.; Ribeiro, T.; Viegas, W.; Jones, R.N.; Morais-Cecílio, L. Different numbers of rye B chromosomes induce identical compaction changes in distinct A chromosome domains. Cytogenet. Genome Res. 2004, 106, 320–324. [Google Scholar] [CrossRef]
- Rubtsov, N.B.; Borisov, Y.M. Sequence composition and evolution of mammalian B chromosomes. Genes 2018, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.J. Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics 1973, 73, 387–391. [Google Scholar] [PubMed]
- Ma, W.; Gabriel, T.S.; Martis, M.M.; Gursinsky, T.; Schubert, V.; Vrána, J.; Doležel, J.; Grundlach, H.; Altschmied, L.; Scholz, U.; et al. Rye B chromosomes encode a functional Argonaute-like protein within vitroslicer activities similar to its A chromosome paralog. New Phytol. 2016, 213, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Domínguez, B.; Ruiz-Ruano, F.J.; Cabrero, J.; Corral, J.M.; López-León, M.D.; Sharbel, T.F.; Camacho, J.P.M. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci. Rep. 2017, 7, 45200. [Google Scholar] [CrossRef] [PubMed]
- Akbari, O.S.; Antoshechkin, I.; Hay, B.A.; Ferree, P.M. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio. G3 2013, 3, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jing, X.A.; Aldrich, J.C.; Clifford, C.; Chen, J.; Akbari, O.S.; Ferree, P.M. Unique sequence organization and small RNA expression of a “selfish” B chromosome. Chromosoma 2017, 126, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Valente, G.T.; Conte, M.A.; Fantinatti, B.E.A.; Cabral-de-Mello, D.C.; Carvalho, R.F.; Vicari, M.R.; Kocher, T.D.; Martins, C. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol. Biol. Evol. 2014, 31, 2061–2072. [Google Scholar] [CrossRef]
- Valente, G.T.; Nakajima, R.T.; Fantinatti, B.E.A.; Marques, D.F.; Almeida, R.O.; Simões, R.P.; Martins, C. B chromosomes: from cytogenetics to systems biology. Chromosoma 2017, 126, 73–81. [Google Scholar] [CrossRef]
- Becker, S.E.D.; Thomas, R.; Trifonov, V.A.; Wayne, R.K.; Graphodatsky, A.S.; Breen, M. Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res. 2011, 19, 685–708. [Google Scholar] [CrossRef]
- Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.C.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhou, S.; et al. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet. 2009, 5, e1000618. [Google Scholar] [CrossRef]
- Goodwin, S.B.; M’barek, S.B.; Dhillon, B.; Wittenberg, A.H.J.; Crane, C.F.; Hane, J.K.; Foster, A.J.; Van der Lee, T.A.J.; Grimwood, J.; Aerts, A.; et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011, 7, e1002070. [Google Scholar] [CrossRef] [PubMed]
- Houben, A.; Banaei-Moghaddam, A.M.; Klemme, S.; Timmis, J.N. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 2014, 71, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Martis, M.M.; Klemme, S.; Banaei-Moghaddam, A.M.; Blattner, F.R.; Macas, J.; Schmutzer, T.; Scholz, U.; Gundlach, H.; Wicker, T.; Simkova, H.; et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. 2012, 109, 13343–13346. [Google Scholar] [CrossRef] [PubMed]
- Makunin, A.; Romanenko, S.; Beklemisheva, V.; Perelman, P.; Druzhkova, A.; Petrova, K.; Prokopov, D.; Chernyaeva, E.; Johnson, J.; Kukekova, A.; et al. Sequencing of supernumerary chromosomes of red fox and raccoon dog confirms a non-random gene acquisition by B Chromosomes. Genes 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.; Schmutzer, T.; Scholz, U.; Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes 2017, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-M.; Lin, B.-Y. Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 2003, 164, 299–310. [Google Scholar] [PubMed]
- Bugrov, A.G.; Karamysheva, T.V.; Perepelov, E.A.; Elisaphenko, E.A.; Rubtsov, D.N.; Warchałowska-Śliwa, E.; Tatsuta, H.; Rubtsov, N.B. DNA content of the B chromosomes in grasshopper Podisma kanoi Storozh. (Orthoptera, Acrididae). Chromosome Res. 2007, 15, 315–325. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; Cabrero, J.; López-León, M.D.; Sánchez, A.; Camacho, J.P.M. Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma 2018, 127, 45–57. [Google Scholar] [CrossRef]
- Coan, R.; Martins, C. Landscape of transposable elements focusing on the B chromosome of the cichlid fish Astatotilapia latifasciata. Genes 2018, 9, 269. [Google Scholar] [CrossRef]
- Marques, A.; Klemme, S.; Houben, A. Evolution of plant B chromosome enriched sequences. Genes 2018, 9, 515. [Google Scholar] [CrossRef]
- McAllister, B.F. Isolation and characterization of a retroelement from B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Insect Mol. Biol. 1995, 4, 253–262. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.F.; Werren, J.H. Hybrid origin of a B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Chromosoma 1997, 106, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Perfectti, F.; Werren, J.H. The interspecific origin of B chromosomes: experimental evidence. Evolution 2001, 55, 1069–1073. [Google Scholar] [CrossRef]
- McVean, G.T. Fractious chromosomes: hybrid disruption and the origin of selfish genetic elements. Bioessays 1995, 17, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Schartl, M.; Nanda, I.; Schlupp, I.; Wilde, B.; Epplen, J.T.; Schmid, M.; Parzefall, J. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 1995, 373, 68–71. [Google Scholar] [CrossRef]
- Banaei-Moghaddam, A.M.; Martis, M.M.; Macas, J.; Gundlach, H.; Himmelbach, A.; Altschmied, L.; Mayer, K.F.X.; Houben, A. Genes on B chromosomes: Old questions revisited with new tools. Biochim. Biophys. Acta 2015, 1849, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Lee, E.S. Non-coding RNA: what is functional and what is junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Du, Y.; Zhao, X.; Jin, W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 2016, 16, 88. [Google Scholar] [CrossRef]
- Trifonov, V.A.; Dementyeva, P.V.; Larkin, D.M.; O’Brien, P.C.M.; Perelman, P.L.; Yang, F.; Ferguson-Smith, M.A.; Graphodatsky, A.S. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol. 2013, 11, 90. [Google Scholar] [CrossRef]
- Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 2011, 12, 449–462. [Google Scholar] [CrossRef]
- Malik, H.S.; Bayes, J.J. Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. Biochem. Soc. Trans. 2006, 34, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Teruel, M.; Cabrero, J.; Perfectti, F.; Camacho, J.P.M. B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 2010, 119, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.L.; Cabral-de-Mello, D.C.; Rocha, M.F.; Loreto, V.; Martins, C.; Moura, R.C. Chromosomal mapping of rDNAs and H3 histone sequences in the grasshopper Rhammatocerus brasiliensis (Acrididae, gomphocerinae): extensive chromosomal dispersion and co-localization of 5S rDNA/H3 histone clusters in the A complement and B chromosome. Mol. Cytogenet. 2011, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- SanMiguel, P.; Tikhonov, A.; Jin, Y.K.; Motchoulskaia, N.; Zakharov, D.; Melake-Berhan, A.; Springer, P.S.; Edwards, K.J.; Lee, M.; Avramova, Z.; et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996, 274, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Mun, S.; Joshi, A.; Han, K.; Liang, P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res. 2018, 25, 521–533. [Google Scholar] [CrossRef]
- Cheng, Y.-M.; Lin, B.-Y. Molecular organization of large fragments in the maize B chromosome: indication of a novel repeat. Genetics 2004, 166, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.; Lamatsch, D.K.; Steinlein, C.; Engel, W.; Schartl, M.; Schmid, M. The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res. 2003, 11, 23–35. [Google Scholar] [CrossRef]
- Gross, L. Transposon silencing keeps jumping genes in their place. PLoS Biol. 2006, 4, e353. [Google Scholar] [CrossRef]
- McGurk, M.P.; Barbash, D.A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 2018, 28, 714–725. [Google Scholar] [CrossRef]
- Ramos, É.; Cardoso, A.L.; Brown, J.; Marques, D.F.; Fantinatti, B.E.A.; Cabral-de-Mello, D.C.; Oliveira, R.A.; O’Neill, R.J.; Martins, C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2016, 126, 313–323. [Google Scholar] [CrossRef]
- Perry, R.B.-T.; Ulitsky, I. The functions of long noncoding RNAs in development and stem cells. Development 2016, 143, 3882–3894. [Google Scholar] [CrossRef]
- Ulitsky, I.; Bartel, D.P. lincRNAs: genomics, evolution, and mechanisms. Cell 2013, 154, 26–46. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Oh, H.; Meller, V.H.; Kuroda, M.I. Variable splicing of non-coding roX2 RNAs influences targeting of MSL dosage compensation complexes in Drosophila. RNA Biol. 2005, 2, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Park, Y. Extent of chromatin spreading determined by roX RNA Recruitment of MSL proteins. Science 2002, 298, 1620–1623. [Google Scholar] [CrossRef]
- Lucchesi, J.C.; Kuroda, M.I. dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 2015, 7, a019398. [Google Scholar] [CrossRef] [PubMed]
- Ilik, I.A.; Quinn, J.J.; Georgiev, P.; Tavares-Cadete, F.; Maticzka, D.; Toscano, S.; Wan, Y.; Spitale, R.C.; Luscombe, N.; Backofen, R.; et al. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 2013, 51, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Sahakyan, A.; Yang, Y.; Plath, K. The Role of Xist in X-chromosome dosage compensation. Trends Cell Biol. 2018, 28, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Rougeulle, C.; Chaumeil, J.; Sarma, K.; Allis, C.D.; Reinberg, D.; Avner, P.; Heard, E. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol. 2004, 24, 5475–5484. [Google Scholar] [CrossRef]
- Han, P.; Chang, C.-P. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015, 12, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Böhmdorfer, G.; Wierzbicki, A.T. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 2015, 25, 623–632. [Google Scholar] [CrossRef]
- Aldrich, J.C.; Leibholz, A.; Cheema, M.S.; Ausiό, J.; Ferree, P.M. A “selfish” B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis. Sci. Rep. 2017, 7, 42551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Novel functions for small RNA molecules. Curr. Opin. Mol. Ther. 2009, 11, 641–651. [Google Scholar] [PubMed]
- Chapman, E.J.; Carrington, J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 2007, 8, 884–896. [Google Scholar] [CrossRef]
- López-León, M.D.; Cabrero, J.; Pardo, M.C.; Viseras, E.; Camacho, J.P.M.; Santos, J.L. Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 1993, 71, 352–362. [Google Scholar] [CrossRef]
Functional Group | Gene Name | Organism | Transcribed | Gene Integrity | References |
---|---|---|---|---|---|
Cell Division and Microtubules | Tubulin beta-1 (TUBB1) | Cichlid fishes | yes | High | [27] |
Tubulin beta-5 (TUBB5) | Cichlid fishes | yes | High | [27] | |
Spindle and kinetochore-associated protein-1 (SKA-1) | Cichlid fishes | yes | High | [27] | |
Kinesin-like protein-11 (KIFF11) | Cichlid fishes | yes | High | [27] | |
Centromere-associated protein-E (CENP-E) | Cichlid fishes | yes | High | [27] | |
Centromere-associated protein-N (CENP-N) | Red fox | NK | NK | [34] | |
Cytoskeleton-associated protein 2 (CKAP2) | Grasshoppers | yes | truncated | [24] | |
Condensin I complex subunit G (CAP-G) | Grasshoppers | yes | truncated | [24] | |
E3 ubiquitin-protein ligase MYCBP2 | Grasshoppers | yes | truncated | [24] | |
Kinesin-like protein KIF20A | Grasshoppers | yes | High | [24] | |
DNA topoisomerase 2-alpha (TOP2A) | Grasshoppers | yes | truncated | [24] | |
Kinesin-3-like | Rye | yes | High | [19,23] | |
Shortage in chiasmata gene (SHOC 1) | Rye | yes | High | [19,23] | |
Chromosome-associated kinesin KIF4A-like | Rye | yes | high + truncated | [19,23] | |
Aurora kinase-B (AURK) | Cichlid fishes | yes | High | [27] | |
Separin-like protein | Cichlid fishes | yes | High | [27] | |
Coiled-coil and C2 domain Containing 2A (CC2D2A) | Deer | NK | NK | [34] | |
Ecotropic viral integration site 5-like (EVI5) | Deer | NK | NK | [34] | |
E3 ubiquitin-protein ligase CHFR | Deer | NK | NK | [34] | |
G1/S-specific cyclin-D2 (CCND2) | Deer | NK | NK | [34] | |
Tripartite motif-containing 67 (TRIM67) | Deer | NK | NK | [34] | |
Palladin (PALLD) | Deer | NK | NK | [34] | |
Cdc42 effector protein 4 (CDC42EP4) | Deer | NK | NK | [34] | |
v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (C-KIT) | Red fox | NK | NK | [34] | |
Raccoon dogs | NK | NK | [34] | ||
Deer | NK | NK | [34] | ||
Differentiation, Proliferation | Kinase insert domain receptor (KDR) | Raccoon dogs | NK | NK | [34] |
Low density lipoprotein receptor-related protein 1B(LRP1B) | Raccoon dogs | NK | NK | [29,34] | |
AICDA | Raccoon dogs | NK | NK | [34] | |
RET | Raccoon dogs | NK | NK | [34] | |
APOBEC1 | Raccoon dogs | NK | NK | [34] | |
ARNTL | Raccoon dogs | NK | NK | [34] | |
BARX2 | Raccoon dogs | NK | NK | [34] | |
BTBD10 | Raccoon dogs | NK | NK | [34] | |
COL4A3BP | Raccoon dogs | NK | NK | [34] | |
CXCR4 | Raccoon dogs | NK | NK | [34] | |
ENPP1 | Raccoon dogs | NK | NK | [34] | |
GDF3 | Raccoon dogs | NK | NK | [34] | |
GNAS | Raccoon dogs | NK | NK | [34] | |
HMGCR | Raccoon dogs | NK | NK | [34] | |
JAG1 | Raccoon dogs | NK | NK | [34] | |
MDM4 | Raccoon dogs | NK | NK | [34] | |
TNNI3K | Deer | NK | NK | [34] | |
ZNF268 | Deer | NK | NK | [34] | |
ACVR2B | Deer | NK | NK | [34] | |
BCL6 | Deer | NK | NK | [34] | |
BST1 | Deer | NK | NK | [34] | |
CD38 | Deer | NK | NK | [34] | |
DHCR7 | Deer | NK | NK | [34] | |
DLEC1 | Deer | NK | NK | [34] | |
EOMES | Deer | NK | NK | [34] | |
FBXL5 | Deer | NK | NK | [34] | |
FGFBP1 | Deer | NK | NK | [34] | |
FNIP1 | Deer | NK | NK | [34] | |
GABRB1 | Deer | NK | NK | [34] | |
GFI1 | Deer | NK | NK | [34] | |
HPSE | Deer | NK | NK | [34] | |
MYD88 | Deer | NK | NK | [34] | |
PLCD1 | Deer | NK | NK | [34] | |
SDK2 | Deer | NK | NK | [34] | |
SERPINB9 | Deer | NK | NK | [34] | |
SSBP3 | Deer | NK | NK | [34] | |
SST | Deer | NK | NK | [34] | |
SSTR2 | Deer | NK | NK | [34] | |
TXK | Deer | NK | NK | [34] | |
CIP2A (CIP2A protein) | Grasshopper | yes | High | [34] | |
Neuron Synapse, Cell Junction | Cadherin-associated protein-2 (CTNND2) | Red Fox | NK | NK | [34] |
LRRC7 | Raccoon dogs | NK | NK | [34] | |
CXCR4 | Raccoon dogs | NK | NK | [34] | |
ARHGAP32 | Raccoon dogs | NK | NK | [34] | |
SDK1 and 2 | Deer | NK | NK | [34] | |
GABRA4 and GABRB1 | Deer | NK | NK | [34] | |
LPP | Deer | NK | NK | [34] | |
SHANK2 | Deer | NK | NK | [34] | |
Recombination and Repair | DNA repair protein XRCC2 | Cichlid fishes | yes | High | [27] |
SC protein-2 (SYCP-2) | Cichlid fishes | yes | High | [27] | |
Regulator of telomere elongation helicase (RTEL) | Cichlid fishes | ye | High | [27] | |
Regulation of Transcrption | Peroxisome proliferator-activated receptor gamma coactivator-1 (PPRC1) | Cichlid fishes | yes | Low | [27] |
Mesogenin-1 (MSGN1) | Cichlid fishes | yes | Low | [28] | |
C-Myc-binding protein (MYCBP) | Cichlid fishes | yes | Low | [28] | |
Nuclear receptor-subfamily 2-group F-member 6 (NR2F6) | Cichlid fishes | yes | Low | [28] | |
Zinc finger protein-596 (ZNF596) | Cichlid fishes | yes | High | [28] | |
DEAD-box ATP-dependent RNA helicase 7 | Maize | yes | High | [48] | |
Myb-like DNA-binding domain | Maize | yes | High | [48] | |
Conserved mid region of cactin | Maize | yes | High | [48] | |
Argonaute-likeprotein (AGO4) | Rye | yes | High | [23] | |
DNA (cytosine-5-)-methyltransferase | Rye | yes | High | [19] | |
Ubiquitin ligase sinat5 | Rye | yes | High | [19] | |
histone-lysine n-methyltransferase | Rye | yes | High | [19] | |
protein kinase subfamily lrk10l-2 | Rye | yes | High | [19] | |
Sex determination and Differentiation | Wilms tumor gene | cichlid fishes | yes | Low | [27] |
pre-B-cell leukemia transcription factor 1 | cichlid fishes | yes | Low | [27] | |
FKBP4 | cichlid fishes | yes | Low | [27] | |
FNDC3A | cichlid fishes | yes | Low | [27] | |
Metabolism Regulation | Fucose-1-phosphate guanylyltransferase (FPGT) | Siberian Roe deer | yes | High | [49] |
Raccoon dogs | NK | NK | [29,34] | ||
Lysosomal alpha-mannosidase | Raccoon dogs | NK | NK | [29,34] | |
Hydroxypyruvate isomerase (HYI) | Grasshoppers | yes | truncated | [24] | |
Putative aldose reductase-related protein | Maize | yes | High | [48] | |
Leucine-rich repeat- containing protein 23 (LRC23) | Cichlid fishes | yes | Low | [27,28] | |
Leucin-Rich Protein | Acidic leucine-rich nuclear phosphoprotein 32 family member E (Cpd1) | Cichlid fishes | yes | High | [27] |
Leucine-rich repeats and immunoglobulin-like domains 1(LRIG1) | Raccoon dogs | NK | NK | [29,34] | |
Leucine-rich repeat and IQ domain-containing protein 3 (LRRIQ3) | Siberian Roe deer | yes | High | [49] | |
Olfactory Receptors | Olfactory receptors 5F1 (or OR11-10) | Cichlid fishes | yes | High | [27] |
Olfactory receptor 6C4 (or OR12-10 | Cichlid fishes | yes | High | [27] | |
Olfactory receptor 6N1 (or OR6N1) | Cichlid fishes | yes | High | [27] | |
Olfactory receptor 51E1 (or OR51E1 | Cichlid fishes | yes | High | [27] | |
Ribonucleotide Binding | GTP-binding protein 6 (GTPB6) | Grasshoppers | yes | High | [24] |
Mitochondrial GTPase 1 (MTG1) | Grasshoppers | yes | High | [24] | |
Development | Indian hedgehog homolog b (IHHB) | Raccoon dogs | NK | NK | [29] |
Immune Responses | Rnasel 2 (Ribonuclease-like 2) | Raccoon dogs | NK | NK | [29] |
Cell-cell Signalling and Cellular Response to Stimuli | VPS10 domain receptor protein SORCS 3–like | Raccoon dogs | NK | NK | [29] |
SLIT | Grasshoppers | yes | truncated | [34] | |
Histones | H3 and H4 | Migratory locust | NK | it varies among copies | [52] |
Grasshoppers | NK | NK | [53] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalla Benetta, E.; Akbari, O.S.; Ferree, P.M. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes 2019, 10, 123. https://doi.org/10.3390/genes10020123
Dalla Benetta E, Akbari OS, Ferree PM. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes. 2019; 10(2):123. https://doi.org/10.3390/genes10020123
Chicago/Turabian StyleDalla Benetta, Elena, Omar S. Akbari, and Patrick M. Ferree. 2019. "Sequence Expression of Supernumerary B Chromosomes: Function or Fluff?" Genes 10, no. 2: 123. https://doi.org/10.3390/genes10020123
APA StyleDalla Benetta, E., Akbari, O. S., & Ferree, P. M. (2019). Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes, 10(2), 123. https://doi.org/10.3390/genes10020123