Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Birds
2.3. Data Collection and Measured Traits
2.4. Blood Sample Collection and Genomic DNA Extraction
2.5. Identification of SNPs Associated with Egg Production Traits Using GWAS
2.6. Genotyping by PCR-RFLP and Reconstruction of Haplotypes
2.7. Polymorphism Evaluation
2.8. Marker-Trait Association Analysis
3. Results
3.1. Identification of Most Significant SNPs in RAPGEF6 Gene by GWAS
3.2. Phylogenetic Analysis
3.3. Genotyping by PCR-RFLP and Reconstruction of Haplotypes
3.4. Frequencies of Genotypes and Alleles at the SNP Locus
3.5. Association Analysis between the SNP Genotypes in RAPGEF6 Gene with Egg-Laying Performance in Jing Hong Hens Breed
3.6. Linkage Disequilibrium (LD) Analysis of SNPs in RAPGEF6 Gene in Chinese Jing Hong Chicken Population
4. Discussion
5. Conclusions
6. Patent
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Sun, C.; Yan, Y.; Li, G.; Shi, F.; Wu, G.; Liu, A.; Yang, N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Sci. Rep. 2018, 8, 10832. [Google Scholar] [CrossRef]
- Schulte-Drüggelte, R.; Thiele, H.H. Determining the optimum replacement schedule for commercial layers: does molting pay off? Lohmann Inf. 2013, 48, 47. [Google Scholar]
- Bain, M.M.; Nys, Y.; Dunn, I.C. Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? Br. Poult. Sci. 2016, 57, 330–338. [Google Scholar] [CrossRef]
- Kim, M.H.; Seo, D.S.; Ko, Y. Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poultr. Sci. 2004, 83, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Liu, Q.; Zhang, Y.Y.; Fan, X.C.; Xu, X.X.; Lv, Z.C.; Wei, M.L.; Jing, Y.; Mu, F.; Xu, R.F. Association of novel polymorphisms of forkhead box L2 and growth differentiation factor-9 genes with egg production traits in local Chinese Dagu hens. Poult. Sci. 2015, 94, 88–95. [Google Scholar] [CrossRef]
- Jing, Y.; Shan, X.; Mu, F.; Qin, N.; Zhu, H.; Liu, D.; Yuan, S.; Xu, R. Associations of the Novel Polymorphisms of Periostin and Platelet-Derived Growth Factor Receptor-Like Genes with Egg Production Traits in Local Chinese Dagu Hens. Anim. Biotechnol. 2016, 27, s208–s216. [Google Scholar] [CrossRef] [PubMed]
- Fairfull, R.W.; Gowe, R.S. Genetics of egg production in chickens. In Developments in Animal and Veterinary Sciences; Crawford, R.D., Ed.; Elsevier Science Publishers: Amsterdam, The Nederlands, 1990. [Google Scholar]
- Wolc, A.; Arango, J.; Settar, P.; O’Sullivan, N.P.; Dekkers, J.C.M. Evaluation of egg production in layers using random regression models. Poult. Sci. 2011, 90, 30. [Google Scholar] [CrossRef] [PubMed]
- Tyasi, T.L.; Qin, N.; Liu, D.; Niu, X.; Zhu, H.; Xu, R. The association between novel polymorphisms of gremlin genes and egg-laying performance traits in Chinese village Dagu hens. Ann. Anim. Sci. 2017, 18, 361–373. [Google Scholar] [CrossRef]
- Liu, D.; Niu, X.L.; Tyasi, T.L.; Qin, N.; Zhu, H.; Chen, X.; Xu, R. New polymorphisms of PAPPA and PAPPA2 genes and their associations with egg production traits in Chinese Dagu chickens. Indian J. Anim. Res. 2017, 1–6. [Google Scholar] [CrossRef]
- Mu, F.; Jing, Y.; Qin, N.; Zhu, H.Y.; Liu, D.H.; Yuan, S.G.; Xu, R.F. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens. Asian-Australas. J. Anim. Sci. 2016, 29, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Tyasi, T.L.; Qin, N.; Liu, D.; Zhu, H.; Chen, X.; Zhang, F.; Yuan, S.; Xu, R. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. J. Vet. Med. Sci. 2017, 79, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Charoensook, R.; Wichasit, N.; Pechrkong, T.; Incharoen, T.; Numthuam, S. STAT5B Gene Polymorphisms are Associated with Egg Production and Egg Quality Traits in Laying Hens. Asian J. Anim. Vet. Adv. 2016, 11, 847–853. [Google Scholar] [CrossRef]
- Hu, Y.D.; Huang, Q.K.; Zhu, Q.; Lan, D.; Feng, Z.Q.; Zhang, L.; Lan, X.; Ye, L.; Liu, Y.P.; He, M. Identification and association of single-nucleotide polymorphisms in gonadotropin-inhibitory hormone (GnIH) gene with egg production traits in Erlang mountainous chickens. Genet. Mol. Res. 2015, 14, 294–303. [Google Scholar] [CrossRef]
- Zhang, N.B.; Tang, H.; Kang, L.; Ma, Y.H.; Cao, D.G.; Lu, Y.; Hou, M.; Jiang, Y.L. Associations of single nucleotide polymorphisms in BMPR-IB gene with egg production in a synthetic broiler line. Asian-Australas. J. Anim. Sci. 2008, 21, 628–632. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L.H.; Zhao, X.L.; Liu, Y.P.; Zhu, Q. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken. Asian-Australas. J. Anim. Sci. 2014, 27, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.P.; Meng, G.H.; Li, N.; Yu, M.F.; Liang, X.W.; Min, Y.N.; Liu, F.Z.; Gao, Y.P. The association of very low-density lipoprotein receptor (VLDLR) haplotypes with egg production indicates VLDLR is a candidate gene for modulating egg production. Genet. Mol. Biol. 2016, 39, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Zhang, L.; Smith, D.G.; Xu, H.L.; Liu, Y.P.; Zhao, X.L.; Wang, Y.; Zhu, Q. Genetic effects of melatonin receptor genes on chicken reproductive traits. Czech J. Anim. Sci. 2013, 58, 58–64. [Google Scholar] [CrossRef]
- Xu, H.; Xu, S.; Min, Z.; Fang, M.; Hua, Z.; Nie, Q.; Zhang, X. The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 2010, 11, 17. [Google Scholar] [CrossRef]
- Cui, J.X.; Du, H.L.; Liang, Y.; Deng, X.M.; Li, N.; Zhang, X.Q. Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci. 2006, 85, 26–31. [Google Scholar] [CrossRef]
- Qin, N.; Fan, X.C.; Zhang, Y.Y.; Xu, X.X.; Tyasi, T.L.; Jing, Y.; Mu, F.; Wei, M.L.; Xu, R.F. New insights into implication of the SLIT/ROBO pathway in the prehierarchical follicle development of hen ovary. Poult. Sci. 2015, 94, 2235–2246. [Google Scholar] [CrossRef]
- Wilkanowska, A.; Mazurowski, A.; Mroczkowski, S.; Kokoszyński, D. Prolactin (PRL) and prolactin receptor (PRLR) genes and their role in poultry production traits. Folia Biol. 2014, 62, 1–8. [Google Scholar] [CrossRef]
- Jin, C.F.; Chen, Y.J.; Yang, Z.Q.; Shi, K.; Chen, C.K. A genome-wide association study of growth trait-related single nucleotide polymorphisms in Chinese Yancheng chickens. Gen. Mol. Res. 2015, 14, 15783–15792. [Google Scholar] [CrossRef]
- Ross, S.H.; Post, A.; Raaijmakers, J.H.; Verlaan, I.; Gloerich, M.; Bos, J.L. Ezrin is required for efficient Rap1-induced cell spreading. J. Cell Sci. 2011, 124, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Pannekoek, W.J.; Ross, S.H.; Verlaan, I.; Brouwer, P.M.; Bos, J.L. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc. Natl. Acad. Sci. USA 2013, 110, 11427–11432. [Google Scholar] [CrossRef] [PubMed]
- Pannekoek, W.J.; van Dijk, J.J.; Chan, O.Y.; Huveneers, S.; Linnemann, J.R.; Spanjaard, E.; Brouwer, P.M.; van der Meer, A.J.; Zwartkruis, F.J.; Rehmann, H.; et al. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cell. Signal. 2011, 23, 2056–2064. [Google Scholar] [CrossRef]
- Bos, J.L. Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 2005, 17, 123–128. [Google Scholar] [CrossRef]
- Duchniewicz, M.; Zemojtel, T.; Kolanczyk, M.; Grossmann, S.; Scheele, J.S.; Zwartkruis, F.J. Rap1A-deficient T and B cells show impaired integrin-mediated cell adhesion. Mol. Cell. Biol. 2006, 26, 643–653. [Google Scholar] [CrossRef]
- Okada, K.; Chiba, K.; Fukuda, T.; Enatsu, N.; Matsushita, K.; Miyake, H.; Maeta, K.; Edamatsu, H.; Kataoka, T.; Fujisawa, M. Loss of RA-GEF-2 (RAPGEF6) in mouse causes altered localization of N-cadherin and can cause male infertility. J. Urol. 2014, 191, e741. [Google Scholar] [CrossRef]
- Kazuhiro, M.; Hironori, E.; Kaori, N.; Junji, I.; Bilasy, S.E.; Tohru, K. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex. eNeuro 2016, 3, ENEURO.0142-16.2016. [Google Scholar] [CrossRef]
- Okada, K.; Miyake, H.; Yamaguchi, K.; Chiba, K.; Maeta, K.; Bilasy, S.E.; Edamatsu, H.; Kataoka, T.; Fujisawa, M. Critical function of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in mouse spermatogenesis. Biochem. Biophys. Res. Commun. 2014, 445, 89–94. [Google Scholar] [CrossRef]
- Okada, K.; Yamaguchi, K.; Enatsu, N.; Li, F.; Matsushita, K.; Chiba, K.; Miyake, H.; Maeta, K.; Bilasy, S.E.; Edamatsu, H.; et al. Critical function of RA-GEF-2 (RAPGEF6) in mouse spermatogenesis. J. Urol. 2013, 189, e833–e834. [Google Scholar] [CrossRef]
- Levy, R.J.; Kvajo, M.; Li, Y.; Tsvetkov, E.; Dong, W.; Yoshikawa, Y.; Kataoka, T.; Bolshakov, V.Y.; Karayiorgou, M.; Gogos, J.A. Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice. Transl. Psychiatry 2015, 5, e577. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.J. Exploring the Role of Rapgef6 in Neuropsychiatric Disorders. Ph.D. Thesis, Columbia University, New York, NY, USA, 2013. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol: Chloroform. CSH Protoc. 2006, 2006. [Google Scholar] [CrossRef] [PubMed]
- Kranis, A.; Gheyas, A.A.; Boschiero, C.; Turner, F.; Yu, L.; Smith, S.; Talbot, R.; Pirani, A.; Brew, F.; Kaiser, P.; et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genom. 2013, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Stang, P.; Berlin, J.A.; Wilcox, M.A.; Li, Q. Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling. BMC Proc. 2009, 3, S109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ersoz, E.; Lai, C.-Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Duggal, P.; Gillanders, E.M.; Holmes, T.N.; Bailey-Wilson, J.E. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom. 2008, 9, 516. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.-C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X. POPGENE, the user-friendly shareware for population genetic analysis. In Molecular Biology and Biotechnology Centre; University of Alberta: Edmonton, AB, Canada, 1997. [Google Scholar]
- SAS. Sas/Ets 9.2 User’s Guide; SAS Publishing: Cary, NC, USA, 2009. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Luo, P.T.; Yang, R.Q.; Yang, N. Estimation of Genetic Parameters for Cumulative Egg Numbers in a Broiler Dam Line by Using a Random Regression Model. Poult. Sci. 2007, 86, 30–36. [Google Scholar] [CrossRef]
- Biscarini, F.; Bovenhuis, H.; Ellen, E.D.; Addo, S.; van Arendonk, J.A. Estimation of heritability and breeding values for early egg production in laying hens from pooled data. Poult. Sci. 2010, 89, 1842–1849. [Google Scholar] [CrossRef]
- Venturini, G.C.; Savegnago, R.P.; Nunes, B.N.; Ledur, M.C.; Schmidt, G.S.; El, F.L.; Munari, D.P. Genetic parameters and principal component analysis for egg production from White Leghorn hens. Poult. Sci. 2013, 92, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Schmahl, J.; Rizzolo, K.; Soriano, P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 2008, 22, 3255–3267. [Google Scholar] [CrossRef] [PubMed]
- McDerment, N.A.; Wilson, P.W.; Waddington, D.; Dunn, I.C.; Hocking, P.M. Identification of novel candidate genes for follicle selection in the broiler breeder ovary. BMC Genom. 2012, 13, 494. [Google Scholar] [CrossRef]
- Ismail, R.S.; Baldwin, R.L.; Fang, J.; Browning, D.; Karlan, B.Y.; Gasson, J.C.; Chang, D.D. Differential Gene Expression between Normal and Tumor-derived Ovarian Epithelial Cells. Cancer Res. 2000, 60, 6744–6749. [Google Scholar] [PubMed]
- Syed, V.; Zhang, X.K.; Lau, K.M.; Cheng, R.; Mukherjee, K.; Ho, S.M. Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene 2005, 24, 8128–8143. [Google Scholar] [CrossRef] [PubMed]
- Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994, 8, 1888–1896. [Google Scholar] [CrossRef]
- Aguado, L.I.; Ojeda, S.R. Prepubertal rat ovary: hormonal modulation of beta-adrenergic receptors and of progesterone response to adrenergic stimulation. Biol. Reprod. 1986, 34, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Tcherepanova, I.; Puigserver, P.; Norris, J.D.; Spiegelman, B.M.; Mcdonnell, D.P. Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J. Biol. Chem. 2000, 275, 16302–16308. [Google Scholar] [CrossRef] [PubMed]
- Onagbesan, O.M.; Metayer, S.; Tona, K.; Williams, J.; Decuypere, E.; Bruggeman, V. Effects of genotype and feed allowance on plasma luteinizing hormones, follicle-stimulating hormones, progesterone, estradiol levels, follicle differentiation, and egg production rates of broiler breeder hens. Poult. Sci. 2006, 85, 1245–1258. [Google Scholar] [CrossRef]
- Kim, D.; Ocón-Grove, O.; Johnson, A.L. Bone morphogenetic protein 4 supports the initial differentiation of hen (Gallus gallus) granulosa cells. Biol. Reprod. 2013, 88, 161. [Google Scholar] [CrossRef] [PubMed]
- Nonis, D.; Mctavish, K.J.; Shimasaki, S. Essential but differential role of FOXL2 wt and FOXL2 C134W in GDF-9 stimulation of follistatin transcription in co-operation with Smad3 in the human granulosa cell line COV434. Mol. Cell. Endocrinol. 2013, 372, 42–48. [Google Scholar] [CrossRef]
- Hazelett, D.J.; Conti, D.V.; Han, Y.; Al Olama, A.A.; Easton, D.; Eeles, R.A.; Kote-Jarai, Z.; Haiman, C.A.; Coetzee, G.A. Reducing GWAS Complexity. Cell Cycle 2016, 15, 22–24. [Google Scholar] [CrossRef] [PubMed]
SNPs (Location) | Population | n | Genotype Frequency | Allele Frequency | χ2 (HWE) | p Value | |||
---|---|---|---|---|---|---|---|---|---|
SNP-01 (AX-75745366) | TT | TC | CC | T | C | ||||
P1 | 858 | 0.33 (282) | 0.52 (450) | 0.15 (126) | 0.59 (1014) | 0.41 (702) | 6.17 * | 0.0130 | |
P2 | 818 | 0.32 (265) | 0.54 (438) | 0.14 (115) | 0.59 (968) | 0.41 (668) | 9.57 * | 0.0020 | |
P1 + P2 | 1676 | 0.33 (547) | 0.53 (888) | 0.14 (241) | 0.59 (1982) | 0.41 (1370) | 15.51 * | 0.0001 | |
SNP-02 (AX-75745380) | CC | CT | TT | C | T | ||||
P1 | 858 | 0.81 (697) | 0.19 (161) | - | 0.91 (1555) | 0.09 (161) | 9.20 * | 0.0024 | |
P2 | 818 | 0.82 (668) | 0.18 (150) | - | 0.91 (1486) | 0.09 (150) | 8.33 * | 0.0039 | |
P1 + P2 | 1676 | 0.81 (1365) | 0.19 (311) | - | 0.91 (3041) | 0.09 (311) | 17.53 * | 0.0000 | |
SNP-03 (AX-75745340) | AA | AG | GG | A | G | ||||
P1 | 858 | 0.91 (782) | 0.09 (76) | - | 0.96 (1640) | 0.04 (76) | 1.84 NS | 0.1746 | |
P2 | 818 | 0.78 (642) | 0.22 (176) | - | 0.89 (1460) | 0.11 (176) | 11.89 * | 0.0006 | |
P1 + P2 | 1676 | 0.85 (1424) | 0.15 (252) | - | 0.92 (3100) | 0.08 (252) | 11.08 * | 0.0009 | |
SNP-04 (AX-75745388) | GG | GA | AA | G | A | ||||
P1 | 858 | 0.49 (421) | 0.51 (437) | - | 0.75 (1279) | 0.25 (437) | 100.16 * | 0.0000 | |
P2 | 818 | 0.50 (405) | 0.50 (413) | - | 0.75 (1223) | 0.25 (413) | 93.28 * | 0.0000 | |
P1+P2 | 1676 | 0.49 (826) | 0.51 (850) | - | 0.75 (2502) | 0.25 (850) | 193.44 * | 0.0000 | |
SNP-05 (AX-75745341) | AA | AG | GG | A | G | ||||
P1 | 858 | - | 0.12 (104) | 0.88 (754) | 0.06 (104) | 0.94 (1612) | 3.57 NS | 0.0588 | |
P2 | 818 | - | 0.27 (223) | 0.73 (595) | 0.14 (223) | 0.86 (1413) | 20.37 * | 0.0000 | |
P1 + P2 | 1676 | - | 0.20 (327) | 0.80 (1349) | 0.10 (327) | 0.90 (3025) | 19.58 * | 0.0000 |
Haplotype | Polymorphism Site | Frequency in Population | ||||
---|---|---|---|---|---|---|
T15836649C | A15829057G | A15829303G | P1 | P2 | (P1 + P2) | |
H1 | T | A | G | 0.5378 | 0.4762 | 0.5089 |
H2 | C | A | G | 0.3829 | 0.3467 | 0.3644 |
H3 | T | A | A | 0.0270 | 0.0377 | 0.0322 |
H4 | T | G | A | 0.0167 | 0.0480 | 0.0316 |
H5 | T | G | G | 0.0095 | 0.0298 | 0.0186 |
H6 | C | G | G | 0.0093 | 0.0109 | 0.0106 |
H7 | C | G | A | 0.0087 | 0.0189 | 0.0144 |
H8 | C | A | A | 0.0081 | 0.0318 | 0.0193 |
SNPs (Location) | Population | Number of Chickens (n) | Gene Homozygosity (Ho) | Gene Heterozygosity (He) | Effective Allele Number (Ne) | Polymorphism Information Content (PIC) |
---|---|---|---|---|---|---|
SNP-01 (AX-75745366) | P1 | 858 | 0.5165 | 0.4835 | 1.9360 | 0.3666 |
P2 | 818 | 0.5168 | 0.4832 | 1.9349 | 0.3665 | |
P1 + P2 | 1676 | 0.5167 | 0.4833 | 1.9355 | 0.3665 | |
SNP-02 (AX-75745380) | P1 | 858 | 0.8300 | 0.1700 | 1.2049 | 0.1556 |
P2 | 818 | 0.8334 | 0.1666 | 1.1998 | 0.1527 | |
P1 + P2 | 1676 | 0.8317 | 0.1683 | 1.2024 | 0.1542 | |
SNP-03 (AX-75745340) | P1 | 858 | 0.9153 | 0.0847 | 1.0925 | 0.0811 |
P2 | 818 | 0.8080 | 0.1920 | 1.2376 | 0.1736 | |
P1 + P2 | 1676 | 0.8609 | 0.1391 | 1.1615 | 0.1294 | |
SNP-04 (AX-75745388) | P1 | 858 | 0.6204 | 0.3796 | 1.6119 | 0.3076 |
P2 | 818 | 0.6226 | 0.3774 | 1.6063 | 0.3062 | |
P1 + P2 | 1676 | 0.6214 | 0.3786 | 1.6092 | 0.3069 | |
SNP-05 (AX-75745341) | P1 | 858 | 0.8861 | 0.1139 | 1.1285 | 0.1074 |
P2 | 818 | 0.7645 | 0.2355 | 1.3080 | 0.2077 | |
P1 + P2 | 1676 | 0.8239 | 0.1761 | 1.2137 | 0.1606 |
SNPs (Location) | Population | n | Genotype Frequency (LSM ± SEM) | F-value, p Value and Level of Significance | ||||
---|---|---|---|---|---|---|---|---|
F-Value | p Value | Level of Significance | ||||||
SNP-01 (AX-75745366) | TT | TC | CC | |||||
P1 | 858 | 78.63 ± 1.08 a (282) | 80.50 ± 0.86 a (450) | 72.61 ± 1.62 b (126) | 9.25 | <0.0001 | *** | |
P2 | 818 | 85.30 ± 1.02 a (265) | 80.49 ± 0.79 b (438) | 76.40 ± 1.54 c (115) | 13.29 | <0.0001 | *** | |
P1 + P2 | 1676 | 81.86 ± 0.75 a (547) | 80.49 ± 0.59 a (888) | 74.42 ± 1.13 b (241) | 15.67 | <0.0001 | *** | |
SNP-02 (AX-75745380) | CC | CT | TT | |||||
P1 | 858 | 79.20 ± 0.70 (697) | 76.67 ± 1.45 (161) | - | 2.49 | 0.1151 | NS | |
P2 | 818 | 81.18 ± 0.65 (668) | 82.78 ± 1.37 (150) | - | 1.12 | 0.2896 | NS | |
P1 + P2 | 1676 | 80.17 ± 0.48 (1365) | 79.62 ± 1.00 (311) | - | 0.25 | 0.6197 | NS | |
SNP-03 (AX-75745340) | AA | AG | GG | |||||
P1 | 858 | 79.99 ± 0.64 a (782) | 65.69 ± 2.06 b (76) | - | 44.03 | <0.0001 | *** | |
P2 | 818 | 83.28 ± 0.65 a (642) | 74.87 ± 1.24 b (176) | - | 36.30 | <0.0001 | *** | |
P1 + P2 | 1676 | 81.47 ± 0.46 a (1424) | 72.10 ± 1.09 b (252) | - | 62.55 | <0.0001 | *** | |
SNP-04 (AX-75745388) | GG | GA | GG | |||||
P1 | 858 | 78.92 ± 0.90 (421) | 78.54 ± 0.88 (437) | - | 0.09 | 0.7633 | NS | |
P2 | 818 | 81.08 ± 0.83 (405) | 81.86 ± 0.83 (413) | - | 0.45 | 0.5015 | NS | |
P1 + P2 | 1676 | 79.97 ± 0.61 (826) | 80.15 ± 0.61 (850) | - | 0.04 | 0.8355 | NS | |
SNP-05 (AX-75745341) | AA | AG | GG | |||||
P1 | 858 | - | 72.43 ± 1.79 b (104) | 79.59 ± 0.66 a (754) | 14.09 | <0.0001 | *** | |
P2 | 818 | - | 74.50 ± 1.09 b (223) | 84.09 ± 0.67 a (595) | 56.57 | <0.0001 | *** | |
P1 + P2 | 1676 | - | 73.84 ± 0.96 b (327) | 81.57 ± 0.47 a (1349) | 51.96 | <0.0001 | *** |
Trait | Population | n | Haplotype Frequency (LSM ± SEM) | F-Value, p Value and Level of Significance | |||||
---|---|---|---|---|---|---|---|---|---|
F-Value | p Value | Level of Significance | |||||||
Laying Rate | H1 (AAGG) | H2 (AAAG) | H3 (AGGG) | H4 (AGAG) | |||||
P1 | 858 | 79.79 ± 0.40 ab (724) | 83.03 ± 2.33 a (58) | 75.85 ± 3.24 b (30) | 59.07 ± 2.62 c (46) | 20.963 | <0.0001 | *** | |
P2 | 818 | 84.50 ± 0.70 a (534) | 77.27 ± 1.56 b (108) | 80.46 ± 2.07 ab (61) | 71.90 ± 1.51 c (115) | 22.226 | <0.0001 | *** | |
P1 + P2 | 1676 | 81.76 ± 0.49 a (1258) | 79.28 ± 1.34 a (166) | 78.94 ± 1.8 a (91) | 68.23 ± 1.36 b (161) | 0.246 | <0.0001 | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmal, S.A.; Bhuiyan, A.A.; Omar, A.I.; Ma, S.; Sun, C.; Han, Z.; Zhang, M.; Zhao, S.; Li, S. Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan. Genes 2019, 10, 384. https://doi.org/10.3390/genes10050384
Azmal SA, Bhuiyan AA, Omar AI, Ma S, Sun C, Han Z, Zhang M, Zhao S, Li S. Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan. Genes. 2019; 10(5):384. https://doi.org/10.3390/genes10050384
Chicago/Turabian StyleAzmal, Syed Ali, Ali Akbar Bhuiyan, Abdullah Ibne Omar, Shuai Ma, Chenghao Sun, Zhongdong Han, Meikuen Zhang, Shuhong Zhao, and Shijun Li. 2019. "Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan" Genes 10, no. 5: 384. https://doi.org/10.3390/genes10050384
APA StyleAzmal, S. A., Bhuiyan, A. A., Omar, A. I., Ma, S., Sun, C., Han, Z., Zhang, M., Zhao, S., & Li, S. (2019). Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan. Genes, 10(5), 384. https://doi.org/10.3390/genes10050384