Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View
Abstract
:1. Introduction
2. Dynamical Systems Theory in Biology: Basic Concepts
- Fixed point: static attractor;
- Limit cycle: periodic attractor;
- Torus: quasiperiodic attractor;
- Chaos: strange attractor.
3. Genomic Instability
4. Dynamical Systems View of Genomic Instability and Cancer
5. Experimental Approaches
5.1. Predictions That Can Be Experimentally Tested
5.2. How to Measure the State of the System?
5.3. Review of Potentially Informative Studies
6. Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Malley, M.A.; Dupre, J. Fundamental issues in systems biology. Bioessays 2005, 27, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks? Brief Funct. Genom. Proteom. 2004, 2, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Saetzler, K.; Sonnenschein, C.; Soto, A.M. Systems biology beyond networks: Generating order from disorder through self-organization. Semin. Cancer Biol. 2011, 21, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baverstock, K.; Nikjoo, H. Can a system approach help radiobiology? Radiat. Prot. Dosimetry 2011, 143, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H.; Costes, S.V. A systems biology approach to multicellular and multi-generational radiation responses. Mutat. Res. 2006, 597, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H. Cancer as an emergent phenomenon in systems radiation biology. Radiat. Environ. Biophys. 2008, 47, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Eschrich, S.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.H.; Bloom, G.; Torres-Roca, J.F. Systems biology modeling of the radiation sensitivity network: A biomarker discovery platform. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, T.J.; Gurkan-Cavusoglu, E.; Du, W.; Loparo, K.A. Integration of principles of systems biology and radiation biology: Toward development of in silico models to optimize IUdR-Mediated radiosensitization of dna mismatch repair deficient (damage tolerant) human cancers. Front. Oncol. 2011, 1, 20. [Google Scholar] [CrossRef]
- Unger, K. Integrative radiation systems biology. Radiat. Oncol. 2014, 9, 21. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chatterjee, D.; Singh, K.K.; Giri, A.K. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. Int. J. Hyg. Environ. Health 2013, 216, 574–586. [Google Scholar] [CrossRef]
- Sturla, S.J.; Boobis, A.R.; FitzGerald, R.E.; Hoeng, J.; Kavlock, R.J.; Schirmer, K.; Whelan, M.; Wilks, M.F.; Peitsch, M.C. Systems toxicology: From basic research to risk assessment. Chem. Res. Toxicol. 2014, 27, 314–329. [Google Scholar] [CrossRef] [PubMed]
- Self-Organized Biological Dynamics & Nonlinear Control, 1st ed.; Walleczek, J. (Ed.) Cambrige University Press: Cambridge, UK, 2000; 428p. [Google Scholar]
- Huang, S. Genetic and non-genetic instability in tumor progression: Link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev. 2013, 32, 423–448. [Google Scholar] [CrossRef]
- States, J.C.; Ouyang, M.; Helm, C.W. Systems approach to identify environmental exposures contributing to organ-specific carcinogenesis. Cancer Epidemiol. 2014, 38, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waliszewski, P.; Molski, M.; Konarski, J. On the holistic approach in cellular and cancer biology: Nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J. Surg. Oncol. 1998, 68, 70–78. [Google Scholar] [CrossRef]
- Li, Q.; Wennborg, A.; Aurell, E.; Dekel, E.; Zou, J.Z.; Xu, Y.; Huang, S.; Ernberg, I. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc. Natl. Acad. Sci. USA 2016, 113, 2672–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haykin, S.; Principe, J. Making sense of a complex world. IEEE Signal. Process. Mag. 1998, 15, 66–81. [Google Scholar] [CrossRef]
- Sprott, J.C. Chaos and Time Series Analysis; Oxford University Press: New York, NY, USA, 2003; 530p. [Google Scholar]
- Rasband, S.N. Chaotic Dynamics of Nonlinear Systems; Wiley: New York, NY, USA, 1990; 230p. [Google Scholar]
- Huang, S.; Ernberg, I.; Kauffman, S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 2009, 20, 869–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taherian Fard, A.; Ragan, M.A. Modeling the attractor landscape of disease progression: A network-based approach. Front. Genet. 2017, 8, 48. [Google Scholar] [CrossRef]
- Davila-Velderrain, J.; Martinez-Garcia, J.C.; Alvarez-Buylla, E.R. Modeling the epigenetic attractors landscape: Toward a post-genomic mechanistic understanding of development. Front. Genet. 2015, 6, 160. [Google Scholar] [CrossRef]
- Baverstock, K. Radiation-induced genomic instability: A paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat. Res. 2000, 454, 89–109. [Google Scholar] [CrossRef]
- Morgan, W.F.; Day, J.P.; Kaplan, M.I.; McGhee, E.M.; Limoli, C.L. Genomic instability induced by ionizing radiation. Radiat. Res. 1996, 146, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.A.; Hill, M.A. Non-targeted effects of radiation exposure: Recent advances and implications. Radiat. Prot. Dosimetry 2015, 166, 118–124. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.P.; Mothersill, C. Comparative effects of UV A and UV B on clonogenic survival and delayed cell death in skin cell lines from humans and fish. Int. J. Radiat. Biol. 1997, 72, 111–119. [Google Scholar] [PubMed]
- Brennan, R.J.; Schiestl, R.H. Persistent genomic instability in the yeast Saccharomyces cerevisiae induced by ionizing radiation and DNA-damaging agents. Radiat. Res. 2001, 155, 768–777. [Google Scholar] [CrossRef]
- Phillipson, R.P.; Tobi, S.E.; Morris, J.A.; McMillan, T.J. UV-A induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism. Free Radic. Biol. Med. 2002, 32, 474–480. [Google Scholar] [CrossRef]
- Korkalainen, M.; Huumonen, K.; Naarala, J.; Viluksela, M.; Juutilainen, J. Dioxin induces genomic instability in mouse embryonic fibroblasts. PLoS ONE 2012, 7, e37895. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Little, J.B.; Hu, K.; Zhang, W.; Zhang, L.; Dewhirst, M.W.; Huang, Q. Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res. 2001, 61, 428–432. [Google Scholar]
- Coen, N.; Mothersill, C.; Kadhim, M.; Wright, E.G. Heavy metals of relevance to human health induce genomic instability. J. Pathol. 2001, 195, 293–299. [Google Scholar] [CrossRef]
- Santibanez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, A.; Sanchez-Perez, Y.; Garcia-Cuellar, C.M. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017, 229, 412–422. [Google Scholar] [CrossRef]
- Little, M.P. Cancer models, genomic instability and somatic cellular Darwinian evolution. Biol. Direct 2010, 5, 19. [Google Scholar] [CrossRef]
- Barber, R.; Plumb, M.A.; Boulton, E.; Roux, I.; Dubrova, Y.E. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc. Natl. Acad. Sci. USA 2002, 99, 6877–6882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, R.C.; Hardwick, R.J.; Shanks, M.E.; Glen, C.D.; Mughal, S.K.; Voutounou, M.; Dubrova, Y.E. The effects of in utero irradiation on mutation induction and transgenerational instability in mice. Mutat. Res. 2009, 664, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubrova, Y.E. Radiation-induced transgenerational instability. Oncogene 2003, 22, 7087–7093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 2003, 159, 581–596. [Google Scholar] [CrossRef]
- Mukherjee, D.; Coates, P.J.; Lorimore, S.A.; Wright, E.G. The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiat. Res. 2012, 177, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dubrova, Y.E.; Hickenbotham, P.; Glen, C.D.; Monger, K.; Wong, H.P.; Barber, R.C. Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. Environ. Mol. Mutagen. 2008, 49, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Ilnytskyy, Y.; Kovalchuk, O. Non-targeted radiation effects-an epigenetic connection. Mutat. Res. 2011, 714, 113–125. [Google Scholar] [CrossRef]
- Barber, R.C.; Dubrova, Y.E. The offspring of irradiated parents, are they stable? Mutat. Res. 2006, 598, 50–60. [Google Scholar] [CrossRef]
- Glen, C.D.; Dubrova, Y.E. Exposure to anticancer drugs can result in transgenerational genomic instability in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 2984–2988. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.R.; Chen, H.; Collins, A.R.; Connell, M.; Damia, G.; Dasgupta, S.; Malhotra, M.; Meeker, A.K.; Amedei, A.; Amin, A.; et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin. Cancer Biol. 2015, 35, S5–S24. [Google Scholar] [CrossRef]
- Loeb, L.A. Human cancers express a mutator phenotype: Hypothesis, origin, and consequences. Cancer Res. 2016, 76, 2057–2059. [Google Scholar] [CrossRef] [PubMed]
- Baverstock, K.; Karotki, A.V. Towards a unifying theory of late stochastic effects of ionizing radiation. Mutat. Res. 2011, 718, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Streffer, C. Strong association between cancer and genomic instability. Radiat. Environ. Biophys. 2010, 49, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Milic, M.; Frustaci, A.; Del Bufalo, A.; Sanchez-Alarcon, J.; Valencia-Quintana, R.; Russo, P.; Bonassi, S. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. Mutat. Res. 2015, 776, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Mothersill, C.; Seymour, C. Radiation-induced non-targeted effects: Some open questions. Radiat. Prot. Dosimetry 2015, 166, 125–130. [Google Scholar] [CrossRef]
- Baverstock, K.; Rönkkö, M. Epigenetic regulation of the mammalian cell. PLoS ONE 2008, 3, e2290. [Google Scholar] [CrossRef]
- Falt, S.; Holmberg, K.; Lambert, B.; Wennborg, A. Long-term global gene expression patterns in irradiated human lymphocytes. Carcinogenesis 2003, 24, 1837–1845. [Google Scholar] [CrossRef] [Green Version]
- Huumonen, K.; Immonen, H.K.; Baverstock, K.; Hiltunen, M.; Korkalainen, M.; Lahtinen, T.; Parviainen, J.; Viluksela, M.; Wong, G.; Naarala, J.; et al. Radiation-induced genomic instability in Caenorhabditis elegans. Mutat Res. 2012, 748, 36–41. [Google Scholar] [CrossRef]
- Huumonen, K.; Korkalainen, M.; Boman, E.; Heikkila, J.; Hoyto, A.; Lahtinen, T.; Luukkonen, J.; Viluksela, M.; Naarala, J.; Juutilainen, J. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: Two components in radiation-induced genomic instability? Mutat. Res. 2014, 765, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.; Falt, S.; Johansson, A.; Lambert, B. Clonal chromosome aberrations and genomic instability in X-irradiated human T-lymphocyte cultures. Mutat. Res. 1993, 286, 321–330. [Google Scholar] [CrossRef]
- Holmberg, K.; Meijer, A.E.; Auer, G.; Lambert, B.O. Delayed chromosomal instability in human T-lymphocyte clones exposed to ionizing radiation. Int. J. Radiat. Biol. 1995, 68, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Oh, P.Y.; Ingber, D.E.; Huang, S. Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol. 2006, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.; Lloyd, D. The living cell: A complex autodynamic multi-oscillator system? Cell Biol. Int. 2000, 24, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Mellor, J. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nat. Struct. Mol. Biol. 2016, 23, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Klevecz, R.R.; Li, C.M.; Marcus, I.; Frankel, P.H. Collective behavior in gene regulation: The cell is an oscillator, the cell cycle a developmental process. FEBS J. 2008, 275, 2372–2384. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.; Murray, D.B.; Aon, M.A.; Cortassa, S.; Roussel, M.R.; Beckmann, M.; Poole, R.K. Temporal metabolic partitioning of the yeast and protist cellular networks: The cell is a global scale-invariant (fractal or self-similar) multioscillator. J. Biomed. Opt. 2018, 24, 051404. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.R.; Lloyd, D. Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J. 2007, 274, 1011–1018. [Google Scholar] [CrossRef]
- McNamee, J.P.; Chauhan, V. Radiofrequency radiation and gene/protein expression: A review. Radiat. Res. 2009, 172, 265–287. [Google Scholar] [CrossRef]
- Leszczynski, D.; de Pomerai, D.; Koczan, D.; Stoll, D.; Franke, H.; Albar, J.P. Five years later: The current status of the use of proteomics and transcriptomics in EMF research. Proteomics 2012, 12, 2493–2509. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Lu, D.; Chiang, H.; Leszczynski, D.; Xu, Z. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Bioelectromagnetics 2012, 33, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Fedrowitz, M.; Loscher, W. Gene expression in the mammary gland tissue of female Fischer 344 and Lewis rats after magnetic field exposure (50 Hz, 100 muT) for 2 weeks. Int. J. Radiat. Biol. 2012, 88, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Kirschenlohr, H.; Ellis, P.; Hesketh, R.; Metcalfe, J. Gene expression profiles in white blood cells of volunteers exposed to a 50 Hz electromagnetic field. Radiat. Res. 2012, 178, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Zhang, Z.Y.; Yang, C.J.; Lian, H.Y.; Cai, P. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutat. Res. 2013, 758, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Zhijian, C.; Xiaoxue, L.; Wei, Z.; Yezhen, L.; Jianlin, L.; Deqiang, L.; Shijie, C.; Lifen, J.; Jiliang, H. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray. Biochem. Biophys. Res. Commun. 2013, 433, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yu, H.; Sun, Y.; Yang, C.; Lian, H.; Cai, P. The Energy Metabolism in Caenorhabditis elegans under the extremely low-frequency electromagnetic field exposure. Sci. Rep. 2015, 5, 8471. [Google Scholar] [CrossRef]
- Kuzniar, A.; Laffeber, C.; Eppink, B.; Bezstarosti, K.; Dekkers, D.; Woelders, H.; Zwamborn, A.P.; Demmers, J.; Lebbink, J.H.; Kanaar, R. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS ONE 2017, 12, e0170762. [Google Scholar] [CrossRef]
- Lamkowski, A.; Kreitlow, M.; Radunz, J.; Willenbockel, M.; Sabath, F.; Schuhn, W.; Stiemer, M.; Fichte, L.O.; Dudzinski, M.; Bohmelt, S.; et al. Gene expression analysis in human peripheral blood cells after 900 MHz RF-EMF short-term exposure. Radiat. Res. 2018, 189, 529–540. [Google Scholar] [CrossRef]
- Glaab, E.; Schneider, R. PathVar: Analysis of gene and protein expression variance in cellular pathways using microarray data. Bioinformatics 2012, 28, 446–447. [Google Scholar] [CrossRef]
- Parham, F.; Portier, C.J.; Chang, X.; Mevissen, M. The use of signal-transduction and metabolic pathways to predict human disease targets from electric and magnetic fields using in vitro data in human cell lines. Front. Public Health 2016, 4, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Klevecz, R.R. A rapid genome-scale response of the transcriptional oscillator to perturbation reveals a period-doubling path to phenotypic change. Proc. Natl. Acad. Sci. USA 2006, 103, 16254–16259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshii, T.; Ahmad, M.; Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009, 7, e1000086. [Google Scholar] [CrossRef] [PubMed]
- Fedele, G.; Edwards, M.D.; Bhutani, S.; Hares, J.M.; Murbach, M.; Green, E.W.; Dissel, S.; Hastings, M.H.; Rosato, E.; Kyriacou, C.P. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 2014, 10, e1004804. [Google Scholar] [CrossRef] [PubMed]
- Kumlin, T.; Heikkinen, P.; Laitinen, J.T.; Juutilainen, J. Exposure to a 50-hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice. J. Radiat. Res. 2005, 46, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Petitclerc, D.; Burchard, J.F.; Nguyen, D.H.; Block, E. Blood melatonin and prolactin concentrations in dairy cows exposed to 60 Hz electric and magnetic fields during 8 h photoperiods. Bioelectromagnetics 2004, 25, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.M.; Jeong, J.H.; Kim, J.S.; Lee, B.C.; Je, H.D.; Sohn, U.D. Extremely low frequency magnetic field exposure modulates the diurnal rhythm of the pain threshold in mice. Bioelectromagnetics 2003, 24, 206–210. [Google Scholar] [CrossRef]
- Manzella, N.; Bracci, M.; Ciarapica, V.; Staffolani, S.; Strafella, E.; Rapisarda, V.; Valentino, M.; Amati, M.; Copertaro, A.; Santarelli, L. Circadian gene expression and extremely low-frequency magnetic fields: An in vitro study. Bioelectromagnetics 2015, 36, 294–301. [Google Scholar] [CrossRef]
- Markkanen, A.; Juutilainen, J.; Lang, S.; Pelkonen, J.; Rytomaa, T.; Naarala, J. Effects of 50 Hz magnetic field on cell cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation. Bioelectromagnetics 2001, 22, 345–350. [Google Scholar] [CrossRef]
- Markkanen, A.; Juutilainen, J.; Naarala, J. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int. J. Radiat. Biol. 2008, 84, 742–751. [Google Scholar] [CrossRef]
- Luukkonen, J.; Hoyto, A.; Sokka, M.; Liimatainen, A.; Syvaoja, J.; Juutilainen, J.; Naarala, J. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Int. J. Radiat. Biol. 2017, 93, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, P.; Del Re, B.; Franceschini, A.; Capri, M.; Lukas, S.; Bersani, F.; Giorgi, G. Synergic effect of retinoic acid and extremely low frequency magnetic field exposure on human neuroblastoma cell line BE(2)C. Bioelectromagnetics 2010, 31, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chang, C.W.; Chen, C.R.; Chuang, C.Y.; Chiang, C.S.; Shu, W.Y.; Fan, T.C.; Hsu, I.C. Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway. PLoS ONE 2014, 9, e104732. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, W.B.; Liu, K.J.; Ao, L.; Cao, J.; Zhong, J.L.; Liu, J.Y. Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields. Cell Cycle 2016, 15, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.; Richard, D.; Viergutz, T.; Kriehuber, R.; Weiss, D.G.; Simko, M. Alterations in the cell cycle and in the protein level of cyclin D1, p21CIP1, and p16INK4a after exposure to 50 Hz MF in human cells. Radiat. Environ. Biophys. 2002, 41, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Viergutz, T.; Simko, M. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation. Cell Prolif. 2004, 37, 337–349. [Google Scholar] [CrossRef]
- Lloyd, D.; Murray, D.B. Redox rhythmicity: Clocks at the core of temporal coherence. Bioessays 2007, 29, 465–473. [Google Scholar] [CrossRef]
- Karotki, A.V.; Baverstock, K. What mechanisms/processes underlie radiation-induced genomic instability? Cell Mol. Life Sci. 2012, 69, 3351–3360. [Google Scholar] [CrossRef]
- Cho, Y.H.; Jeon, H.K.; Chung, H.W. Effects of extremely low-frequency electromagnetic fields on delayed chromosomal instability induced by bleomycin in normal human fibroblast cells. J. Toxicol. Environ. Health A 2007, 70, 1252–1258. [Google Scholar] [CrossRef]
- Mairs, R.J.; Hughes, K.; Fitzsimmons, S.; Prise, K.M.; Livingstone, A.; Wilson, L.; Baig, N.; Clark, A.M.; Timpson, A.; Patel, G.; et al. Microsatellite analysis for determination of the mutagenicity of extremely low-frequency electromagnetic fields and ionising radiation in vitro. Mutat. Res. 2007, 626, 34–41. [Google Scholar] [CrossRef]
- Luukkonen, J.; Liimatainen, A.; Juutilainen, J.; Naarala, J. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat. Res. 2014, 760, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Luukkonen, J.; Juutilainen, J.; Naarala, J. Genomic instability induced by 50Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 794, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Herrala, M.; Mustafa, E.; Naarala, J.; Juutilainen, J. Assessment of genotoxicity and genomic instability in rat primary astrocytes exposed to 872 MHz radiofrequency radiation and chemicals. Int. J. Radiat. Biol. 2018, 94, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Herrala, M.; Naarala, J.; Juutilainen, J. Assessment of induced genomic instability in rat primary astrocytes exposed to intermediate frequency magnetic fields. Environ. Res. 2019, 173, 112–116. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naarala, J.; Kolehmainen, M.; Juutilainen, J. Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes 2019, 10, 479. https://doi.org/10.3390/genes10060479
Naarala J, Kolehmainen M, Juutilainen J. Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes. 2019; 10(6):479. https://doi.org/10.3390/genes10060479
Chicago/Turabian StyleNaarala, Jonne, Mikko Kolehmainen, and Jukka Juutilainen. 2019. "Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View" Genes 10, no. 6: 479. https://doi.org/10.3390/genes10060479
APA StyleNaarala, J., Kolehmainen, M., & Juutilainen, J. (2019). Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes, 10(6), 479. https://doi.org/10.3390/genes10060479