Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Test Animal and Sample Collection
2.3. Total RNA Extraction
2.4. Construction and Detection of Transcriptome Sequencing Library
2.5. Gene Expression Level Analysis
2.6. Differentially Expressed Genes GO Enrichment Analysis
2.7. Differentially Expressed Genes KEGG Enrichment Analysis
2.8. Verification of RNA-Seq Results Using QRT-PCR
3. Results
3.1. Comparison of Body Weight between Fast-growth and Slow-Growth Groups
3.2. Measurement Data Quality Assessment Results
3.3. Transcriptome Data Alignment with Reference Genome Sequences
3.4. Differentially Expressed Genes Screening
3.5. GO Annotation and Enrichment Analysis of Differentially Expressed Genes
3.6. Pathway Enrichment Analysis of Differentially Expressed Genes
3.7. Validation of RNA-Seq Data by Quantitative Real-Time PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wei, X. Effects of Exercise-Induced 8-Hydroxyguanine on Proliferation and Differentiation of Mouse Skeletal Muscle Myoblasts. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Luo, W. Regulation of miRNAs-Mediated Signaling Pathway on Proliferation and Differentiation of Chicken Myoblasts. Ph.D. Thesis, Huanan Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2014, 39, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.J.; Burden, S.T.; Strauss, B.J.; Todd, C.; Lal, S. The role of computed tomography in evaluating body composition and the influence of reduced muscle mass on clinical outcome in abdominal malignancy: A systematic review. Eur. J. Clin. Nutr. 2015, 69, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Cai, H.Y.; Yan, H.J.; Chen, X.; Zhang, Z.; Zhang, A.H.; Yang, B.; Guo, J.R. Growth and Development of Poultry skeletal muscle and its Regulation. Feed Ind. 2014, 35, 87–92. [Google Scholar] [CrossRef]
- Ouyang, H.; Wang, Z.; Chen, X.; Yu, J.; Li, Z.; Nie, Q. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Front. Physiol. 2017, 8, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.X.; Fan, Q.C.; Wang, J.Y.; Zhang, T.; Xue, Q.; Shi, H.Q. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Anim. Reprod. Sci. 2015, 163, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.H. The breeding direction of yellow feather broilers in the light of the current industry situation. China Poult. Ind. Guide 2016, 11, 40–41. [Google Scholar]
- Roelfsema, F.; Yang, R.J.; Takahashi, P.Y.; Erickson, D.; Bowers, C.Y.; Veldhuis, J.D. Effects of Toremifene, a Selective Estrogen Receptor Modulator, on Spontaneous and Stimulated GH Secretion, IGF-I, and IGF-Binding Proteins in Healthy Elderly Subjects. J. Endocr. Soc. 2018, 2, 154–165. [Google Scholar] [CrossRef]
- Hernández-Hernández, J.M.; García-González, E.G.; Brun, C.E.; Rudnicki, M.A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin. Cell Dev. Biol. 2017, 72, 10–18. [Google Scholar] [CrossRef]
- Costa, V.; Angelini, C.; De, F.I.; Ciccodicola, A. Uncovering the complexity of transcriptomes with RNA-Seq. J. Biomed. Biotechnol. 2010, 2010, 853916. [Google Scholar] [CrossRef]
- Miriam, A.; Fernández, A.; Núñez, Y.; Benítez, R.; Isabel, B.; Barragán, C.; Fernández, A.I.; Rey, A.I.; Medrano, J.F.; Cánovas, Á.; et al. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS ONE 2015, 10, e0145162. [Google Scholar] [CrossRef]
- Yun, J.; Jin, H.; Cao, Y.; Zhang, L.; Zhao, Y.; Jin, X.; Yu, Y. RNA-Seq Analysis Reveals a Positive Role of HTR2A in Adipogenesis in Yan Yellow Cattle. Int. J. Mol. Sci. 2018, 19, 1760. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, B.; Zhou, S.; Zhu, H.; Qu, L.; Wang, X.; Chen, Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS ONE 2017, 12, e0187966. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.L.; Zhang, X.Q.; Han, K.P.; Ling, J.J.; Zhang, G.X.; Wang, J.Y.; Wang, Y.j. Prediction of Novel Transcripts and Discovery of Novel Genes on RNA-Seq Analysis of Jinghai Yellow Chicken Ovary. China Anim. Husb. Vet. Med. 2017, 44, 497–504. [Google Scholar] [CrossRef]
- Yu, P. Effects of Different Feeding Methods on Growth Performance, Slaughter Performance and Meat Quality Traits of Quality Chickens. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2012. [Google Scholar]
- Zhao, X.; Fu, J.; Jiang, L.; Zhang, W.; Shao, Y.; Jin, C.; Xiong, J.; Li, C. Transcriptome-based identification of the optimal reference genes as internal controls for quantitative RT-PCR in razor clam (Sinonovacula constricta). Genes Genom. 2018, 40, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gu, Y.P.; Wang, J.Y.; Sheng, H.W.; Shi, H.Q. Correlation between J-band and body weight in DNA fingerprints of Jinghai I Yellow Chicken. Chin. Poult. 2004, 8, 149–151. [Google Scholar] [CrossRef]
- Zhang, P. Correlation between DNA Fingerprinting J Band and Two SCAR Markers and Body Weight of Jinghai I Yellow Chicken. Master’s Thesis, Yangzhou University, Yangzhou, China, 2005. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, G.; Li, T.; Ling, J.; Zhang, X.; Wang, J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS ONE 2017, 12, e0173824. [Google Scholar] [CrossRef] [PubMed]
- Haile, S.; Corbett, R.D.; MacLeod, T.; Bilobram, S.; Smailus, D.; Tsao, P.; Kirk, H.; McDonald, H.; Pandoh, P.; Bala, M.; et al. Increasing quality, throughput and speed of sample preparation for strand-specific messenger RNA sequencing. BMC Genom. 2017, 18, 515. [Google Scholar] [CrossRef]
- Davies, J.; Denyer, T.; Hadfield, J. Bioanalyzer chips can be used interchangeably for many analyses of DNA or RNA. BioTechniques 2016, 60, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Das, D.K.; Ali, T.; Krampis, K.; Ogunwobi, O.O. Fibronectin and androgen receptor expression data in prostate cancer obtained from a RNA-sequencing bioinformatics analysis. Data Brief 2017, 11, 131–135. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Ito, M.; Negishi, S.; Sobue, S.; Ichihara, M.; Ohno, K. Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: Meta-analyses of gene expression profiles. Free Radic. Res. 2018, 52, 434–445. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-SEQ: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liu, M.; Liu, W.; Cui, J.; Li, C. Bioinformatics analysis of RNA sequencing data reveals multiple key genes in uterine corpus endometrial carcinoma. Oncol. Lett. 2018, 15, 205–212. [Google Scholar] [CrossRef]
- Sławińska, A.; D’Andrea, M.; Pilla, F.; Bednarczyk, M.; Siwek, M. Expression profiles of Toll-like receptors 1,2 and 5 in selected organs of commercial and indigenous chickens. J. Appl. Genet. 2013, 54, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Poppenberg, K.E.; Wong, L.; Chen, Y.; Borowitz, D.; Goetz, D.; Sheehan, D.; Frederick, C.; Tutino, V.M.; Meng, H.; et al. RNA sequencing data from neutrophils of patients with cystic fibrosis reveals potential for developing biomarkers for pulmonary exacerbations. J. Cyst. Fibros. 2018, S1569199318306192. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Ishikawa, A.; Nishibori, M.; Tsudzuki, M. A longitudinal quantitative trait locus mapping of chicken growth traits. Mol. Genet. Genom. 2019, 294, 243–252. [Google Scholar] [CrossRef]
- Zhang, G.X.; Fan, Q.C.; Zhang, T.; Wang, J.Y.; Wang, W.H.; Xue, Q.; Wang, Y.J. Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genet. Mol. Res. 2015, 14, 15331–15338. [Google Scholar] [CrossRef] [PubMed]
- Abdalhag, M.A.; Zhang, T.; Fan, Q.C.; Zhang, X.Q.; Zhang, G.X.; Wang, J.Y.; Wei, Y.; Wang, Y.J. Single nucleotide polymorphisms associated with growth traits in Jinghai yellow chickens. Genet. Mol. Res. 2015, 14, 16169–16177. [Google Scholar] [CrossRef]
- Shen, P.H.; Fan, Q.X.; Li, Y.W.; Zhang, W.; He, X.K.; Wang, Z.; Zhang, Y.H. SNCG shRNA suppressed breast cancer cell xenograft formation and growth in nude mice. Chin. Med. J. 2011, 124, 1524–1528. [Google Scholar] [CrossRef]
- Li, Y.; Shou, C.C. Progress in research on SNCG gene. J. Ningxia Med. Univ. 2004, 26, 383–386. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Zhang, P.P.; Chen, L.; Tang, L.L.; Yang, X.J.; He, Q.M.; Wen, X.; Sun, Y.; Liu, N.; et al. ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res. 2019, 38, 11. [Google Scholar] [CrossRef] [Green Version]
- Strauss, C.; Kornowski, M.; Benvenisty, A.; Shahar, A.; Masury, H.; Ben-Porath, I.; Ravid, T.; Arbel-Eden, A.; Goldberg, M. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. Oncotarget 2014, 5, 9396–9409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.S.; Daley, J.M.; Pham, N.T.; Niu, H.; Xue, X.; Ira, G.; Sung, P. A novel role of the Dna2 translocase function in DNA break resection. Genes Dev. 2017, 31, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Liu, F.; Xie, L.; Peng, Y.; Lv, X.; Zhu, Y.; Zhang, Z.; He, X. miR-125b Suppresses Proliferation and Invasion by Targeting MCL1 in Gastric Cancer. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Sun, W.; Hao, X.; Wei, M.; Su, X.; Zhang, Y.; Su, L.; Liu, X. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int. 2015, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Placzek, W.J. PTBP1 enhances miR-101-guided AGO2 targeting to MCL1 and promotes miR-101-induced apoptosis. Cell Death Dis. 2018, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.C.; Whitehead, L.; Adams, R.H.; Dewson, G.; Coultas, L. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death Differ. 2016, 23, 1371–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, J.; Stanley, E.G.; Ng, E.S.; Elefanty, A.G.; Traver, D.; Willert, K. WNT9A Is a Conserved Regulator of Hematopoietic Stem and Progenitor Cell Development. Genes 2018, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.Q.; Jiang, Z.Q.; Dou, T.F.; Li, Q.H.; Xu, Z.Q.; Liu, L.X.; Gu, D.H.; Rong, H.; Huang, Y.; Chen, X.B.; et al. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Shen, L.; Zhang, P.; Tan, Z.; Cheng, X.; Luo, J.; Zhao, X.; Yang, Q.; Gu, H.; Jiang, A.; et al. The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD. J. Mol. Med. 2018, 96, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Gant, J.C.; Blalock, E.M.; Chen, K.C.; Kadish, I.; Thibault, O.; Porter, N.M.; Landfield, P.W. FK506-Binding Protein 12.6/1b, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats. J. Neurosci. 2018, 38, 1030–1041. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, T.; Wei, Y.; Ding, F.X.; Zhang, L.; Wang, J.Y. Functional identification of an exon 1 substitution in the myostatin gene and its expression in breast and leg muscle of the Bian chicken. Br. Poul. Sci. 2015, 56, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.N.; Sun, H.X.; Zhang, Y.J.; Liu, Y.Q.; Gu, Z.H.; Shi, X.F. Effects of Interfering with MSTN on Proliferation, Differentiation and Expression of Related Genes in Sheep Myoblasts. J. Anim. Husb. Vet. 2018, 49, 46–54. [Google Scholar] [CrossRef]
- Fernlund, E.; Lundin, C.; Hertervig, E.; Kongstad, O.; Alders, M.; Platonov, P. Novel Mutation in the KCNJ2 Gene Is Associated with a Malignant Arrhythmic Phenotype of Andersen-Tawil Syndrome. Ann. Noninvasive Electrocardiol. 2013, 18, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.S. Cloning, Expression and Preliminary Functional Analysis of a New Member of PLK Kinase Family PLK5. Master’s Thesis, Zhejiang University, Hangzhou, China, 2007. [Google Scholar]
- Ren, J.; Jiang, X.H. Progress in the study of PLK1 and CDK1 in cell cycle and tumor. Mod. Med. Health 2016, 32, 872–875. [Google Scholar] [CrossRef]
- Li, Y.L.; Xin, Y.B.; Wu, W.X.; Xiao, S. Expression and significance of RacGAP1 and Cyclin-D1 in gastric cancer. Chin. Lab. Diagn. 2017, 21, 2138–2140. [Google Scholar] [CrossRef]
- Lau, K.M.; Ma, M.T.; Xia, J.T.; Chan, Q.K.Y.; Ng, C.F.; To, K.F. Activation of GPR30 stimulates GTP-binding of Gαi1 protein to sustain activation of Erk1/2 in inhibition of prostate cancer cell growth and modulates metastatic properties. Exp. Cell Res. 2017, 350, 199–209. [Google Scholar] [CrossRef]
- Yu, P.; Agbaegbu, C.; Malide, D.A.; Wu, X.; Katagiri, Y.; Hammer, J.A.; Geller, H.M. Cooperative interactions of LPPR family members in membrane localization and alteration of cellular morphology. J. Cell Sci. 2015, 128, 3210–3222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L. Preliminary Study on the Regulation of microRNA on the Expression of Suspected Pathogenic Gene LPPR4 in Coronary Heart Disease. Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2017. [Google Scholar]
Gene Name | Product Size (bp) | TM (°C) | Primer Sequence (5′–3′) |
---|---|---|---|
SNCG | 160 | 60 | F: ATACCAGGGAGCACAGAA R: ATGAGGCGAGTGAAAGAC |
ARNTL | 130 | 60 | F: TTGTTGTGGGCTGTGA R: TTGGCAATGTCTTTCG |
MCL1 | 165 | 60 | F: ACGGCGTGATGCAGAAAC R: AGGCACCAAATGAGATGAGC |
STYK1 | 136 | 60 | F: TTGGTTGGATGCTGTGTAGA R: CAGTGAGGTCGTAGGGGAAA |
PLPPR4 | 204 | 60 | F: AAAGTCATTCCCATCTCAAC R: AGAAAGCCACAGTAAACATC |
RACGAP1 | 164 | 60 | F: CCATAGTGGCAAAGACGA R: GGATTCCACCTGCTTAGAG |
WNT9A | 188 | 60 | F: AGAAGCAGCGCAGGAT R: AATGGCGTAGAGGAAGG |
KCNJ2 | 187 | 60 | F: GCACCTTGGGATTGGCTTGG R: GAGAGGCTGGAGTCCCCAAA |
β-actin | 169 | 60 | F: CAGCCATCTTTCTTGGGTAT R: CTGTGATCTCCTTCTGCATCC |
Sample Group | Fast-Growth Weight (g) | Slow-Growth Weight (g) |
---|---|---|
M4 | 316.00 ± 20.07 A | 210.00 ± 32.78 B |
F4 | 306.67 ± 5.77 A | 203.33 ± 22.55 B |
M8 | 948.33 ± 35.47 A | 571.67 ± 40.41 B |
F8 | 761.67 ± 16.07 A | 540.00 ± 35.00 B |
Sample Name | Raw Reads | Clean Reads | Clean Bases | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
M4F-1 | 61,102,148 | 57,553,102 | 8.63G | 95.78 | 90.66 | 54.20 |
M4F-2 | 63,629,812 | 60,018,588 | 9.00G | 95.67 | 90.43 | 54.17 |
M4F-3 | 62,940,690 | 59,343,986 | 8.90G | 95.68 | 90.56 | 54.90 |
F4F-1 | 57,332,426 | 53,990,618 | 8.10G | 95.55 | 90.24 | 54.58 |
F4F-2 | 65,164,376 | 61,663,414 | 9.25G | 95.63 | 90.36 | 54.13 |
F4F-3 | 51,857,508 | 49,118,588 | 7.37G | 96.58 | 92.14 | 54.51 |
M4S-1 | 52,827,100 | 50,822,036 | 7.62G | 97.28 | 93.27 | 50.82 |
M4S-2 | 54,511,420 | 51,581,852 | 7.74G | 96.56 | 92.07 | 53.38 |
M4S-3 | 50,497,564 | 47,770,614 | 7.17G | 96.55 | 92.13 | 54.80 |
F4S-1 | 53,045,954 | 50,337,158 | 7.55G | 96.46 | 91.93 | 54.68 |
F4S-2 | 56,550,890 | 53,588,300 | 8.04G | 96.49 | 92.03 | 54.43 |
F4S-3 | 59,058,956 | 56,081,520 | 8.41G | 96.45 | 91.88 | 53.89 |
Sample Name | Raw Reads | Clean Reads | Clean Bases | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
M8F-1 | 52,721,010 | 50,382,466 | 7.56G | 96.80 | 92.54 | 54.03 |
M8F-2 | 57,894,528 | 54,856,958 | 8.23G | 96.61 | 92.21 | 54.64 |
M8F-3 | 62,623,374 | 59,583,598 | 8.94G | 96.59 | 92.19 | 54.04 |
F8F-1 | 62,961,680 | 59,233,086 | 8.88G | 96.66 | 92.22 | 54.19 |
F8F-2 | 52,949,754 | 50,073,278 | 7.51G | 96.78 | 92.52 | 54.58 |
F8F-3 | 54,514,850 | 51,990,782 | 7.80G | 96.91 | 92.69 | 52.85 |
M8S-1 | 52,367,686 | 49,864,380 | 7.48G | 96.58 | 92.12 | 54.20 |
M8S-2 | 56,144,980 | 53,234,338 | 7.99G | 96.41 | 91.80 | 54.21 |
M8S-3 | 51,435,032 | 48,911,326 | 7.34G | 96.54 | 92.06 | 53.52 |
F8S-1 | 52,731,880 | 49,998,426 | 7.50G | 96.79 | 92.51 | 54.28 |
F8S-2 | 52,558,780 | 49,491,048 | 7.42G | 96.82 | 92.55 | 54.40 |
F8S-3 | 65,234,778 | 60,733,042 | 9.11G | 96.55 | 92.10 | 53.89 |
Term ID | Functional Description | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
GO:0032940 | Secretion by cell | 4 | 0.0020300 | SNCG, ARNTL, MICAL3, STYK1 |
GO:1903530 | Regulation of secretion by cell | 3 | 0.0065730 | SNCG, ARNTL, STKY1 |
GO:0051046 | Regulation of secretion | 3 | 0.0080530 | SNCG, ARNTL, STKY1 |
Term ID | Functional Description | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
GO:0035914 | Skeletal muscle cell differentiation | 3 | 0.0090062 | ARNTL, EGR1, NR4A1 |
GO:0051302 | Regulation of cell division | 4 | 0.0099481 | PLK1, CXCR5, CDC20, TTK, RACGAP1 |
GO:1902850 | Microtubule cytoskeleton organization involved in mitosis | 4 | 0.0005303 | PLK1, CDC20, RACGAP1, ENSGALG00000039964 (ID) |
GO:0007049 | Cell cycle | 10 | 0.0485280 | DNA2, ARNTL, PLK1, CXCR5GINS1, CDC20, TTK, CCNB3, RACGAP1, ENSGALG00000039964 (ID) |
Term ID | Functional Description | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
GO:1902532 | Negative regulation of intracellular signal transduction | 3 | 0.0016997 | DUSP8, MYOC, DDIT4 |
GO:0048638 | Regulation of developmental growth | 2 | 0.0049708 | HOPX, ARX |
GO:0019222 | Regulation of metabolic process | 12 | 0.0071640 | ALDH1A2, DUSP8, HOPX, PRMT8, DCUN1D5, ARX, MYOC, TDRKH, DDIT4, ENSGALG00000016826 (ID), ENSGALG00000024470 (ID), ENSGALG00000026776 (ID) |
GO:0048639 | Positive regulation of developmental growth | 2 | 0.0148180 | HOPX, ARX |
Term ID | Functional Description | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
GO:0008285 | Negative regulation of cell proliferation | 6 | 0.0000196 | WNT9A, MYOD1, GDF8, PLXNB3, CDKN1A, DPT |
GO:2000291 | Regulation of myoblast proliferation | 2 | 0.0001083 | GDF8, MYOD1 |
GO:0008283 | Cell proliferation | 8 | 0.0002199 | WNT9A, MYOD1, GDF8, PLXNB3, CDKN1A, CDH2, FKBP1B, DPT |
GO:2000026 | Regulation of multicellular organismal development | 8 | 0.0002504 | SEMA7A, WNT9A, CDH2, MYOD1, PLXNB3, GDF8, ARHGDIB, FKBP1B |
GO:0003012 | Muscle system process | 4 | 0.0003995 | KCNJ2, MYOD1, FKBP1B, GDF8 |
GO:0045595 | Regulation of cell differentiation | 7 | 0.0007171 | SEMA7A, WNT9A, CDH2, MYOD1, PLXNB3, GDF8, FKBP1B |
KEGG-Pathway | Signal Path | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
gga05168 | Herpes simplex infection | 2 | 0.00780496 | ARNEL, PER3 |
KEGG-Pathway | Signal Path | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
gga00100 | Steroid biosynthesis | 6 | 5.59 × 10−8 | LSS, DHCR7, DHCR24, NSDHL, CYP51A1, SQLE |
gga04110 | Cell cycle | 8 | 1.77 × 10−6 | MCM2, PLK1, CDC20, MCM5, TTK, MCM3, CCNB3, MYC |
gga03030 | DNA replication | 4 | 0.00028685 | MCM2, MCM3, MCM5, DNA2 |
gga03010 | Ribosome | 3 | 0.03040881 | MRPL17, RPL22L1, ENSGALG00000040263 (ID) |
KEGG-Pathway | Signal Path | Number of Genes | p-Value | Gene Name |
---|---|---|---|---|
gga04115 | p53 signaling pathway | 2 | 0.00323550 | COP1, CDKN1A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Wu, P.; Shen, M.; He, M.; Chen, L.; Qiu, C.; Shi, H.; Zhang, T.; Wang, J.; Xie, K.; et al. Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes 2019, 10, 539. https://doi.org/10.3390/genes10070539
Chen F, Wu P, Shen M, He M, Chen L, Qiu C, Shi H, Zhang T, Wang J, Xie K, et al. Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes. 2019; 10(7):539. https://doi.org/10.3390/genes10070539
Chicago/Turabian StyleChen, Fuxiang, Pengfei Wu, Manman Shen, Mingliang He, Lan Chen, Cong Qiu, Huiqiang Shi, Tao Zhang, Jiahong Wang, Kaizhou Xie, and et al. 2019. "Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken" Genes 10, no. 7: 539. https://doi.org/10.3390/genes10070539
APA StyleChen, F., Wu, P., Shen, M., He, M., Chen, L., Qiu, C., Shi, H., Zhang, T., Wang, J., Xie, K., Dai, G., Wang, J., & Zhang, G. (2019). Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes, 10(7), 539. https://doi.org/10.3390/genes10070539