Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Experimental Design
2.3. Hair Cortisol Concentrations (HCC)
2.4. Collection and Preparation of Placenta Samples
2.5. RNA Extraction
2.6. Protein Extraction
2.7. Relative Quantitative Reverse Transcriptase Polymerase Chain-Reaction (qRT-PCR)
2.8. Western Blotting (WB)
2.9. Statistical Analysis
3. Results
3.1. Prenatal Stress Influenced Gene Expression of Term-Placentas
3.2. Prenatal Stress Influence on Stress-Like Placental Protein Expression
3.3. Prenatal Stress Influences the Association of Placental HSD11B2 Gene Expression with Hair Cortisol Levels
3.4. Placental Sex Depicts Differences in the Gene Expression of HSD11B2
3.5. Offspring Birth Weight (BW) and Placental Gene Expression
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Money, K.M.; Barke, T.L.; Serezani, A.; Gannon, M.; Garbett, K.A.; Aronoff, D.M.; Mirnics, K. Gestational diabetes exacerbates maternal immune activation effects in the developing brain. Mol. Psychiatry 2018, 23, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Beversdorf, D.Q.; Manning, S.E.; Hillier, A.; Anderson, S.L.; Nordgren, R.E.; Walters, S.E.; Nagaraja, H.N.; Cooley, W.C.; Gaelic, S.E.; Bauman, M.L. Timing of prenatal stressors and autism. J. Autism Dev. Disord. 2005, 35, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Black, S.R.; Goldstein, B.L.; Klein, D.N. Parental depression moderates the relationships of cortisol and testosterone with children’s symptoms. J. Affect. Disord. 2019, 251, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Sydsjo, G.; Agnafors, S.; Bladh, M.; Josefsson, A. Anxiety in women - a Swedish national three-generational cohort study. BMC Psychiatry 2018, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josefsson, A.; Vikstrom, J.; Bladh, M.; Sydsjo, G. Major depressive disorder in women and risk for future generations: Population-based three-generation study. BJPsych open 2019, 5, e8. [Google Scholar] [CrossRef]
- Lilliecreutz, C.; Laren, J.; Sydsjo, G.; Josefsson, A. Effect of maternal stress during pregnancy on the risk for preterm birth. BMC Pregnancy Childbirth 2016, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Emack, J.; Kostaki, A.; Walker, C.-D.; Matthews, S.G. Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring. Horm. Behav. 2008, 54, 514–520. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Guldin, M.-B.; Vedsted, P.; Vestergaard, M. Increased utilisation of primary healthcare in persons exposed to severe stress in prenatal life: A national population-based study in Denmark. BMJ Open 2015, 5, e005657. [Google Scholar] [CrossRef] [Green Version]
- Grizenko, N.; Shayan, Y.R.; Polotskaia, A.; Ter-Stepanian, M.; Joober, R. Relation of maternal stress during pregnancy to symptom severity and response to treatment in children with ADHD. J. Psychiatry Neurosci. 2008, 33, 10–16. [Google Scholar]
- Gerardin, P.; Wendland, J.; Bodeau, N.; Galin, A.; Bialobos, S.; Tordjman, S.; Mazet, P.; Darbois, Y.; Nizard, J.; Dommergues, M.; et al. Depression during pregnancy: Is the developmental impact earlier in boys? A prospective case-control study. J. Clin. Psychiatry 2011, 72, 378–387. [Google Scholar] [CrossRef]
- Huttunen, M.O.; Niskanen, P. Prenatal loss of father and psychiatric disorders. Arch. Gen. Psychiatry 1978, 35, 429–431. [Google Scholar] [CrossRef]
- Gao, Y.; Hyttel, P.; Hall, V.J. Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development. Mol. Reprod. Dev. 2010, 77, 540–549. [Google Scholar] [CrossRef]
- Ellman, L.M.; Schetter, C.D.; Hobel, C.J.; Chicz-Demet, A.; Glynn, L.M.; Sandman, C.A. Timing of fetal exposure to stress hormones: Effects on newborn physical and neuromuscular maturation. Dev. Psychobiol. 2008, 50, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Spiga, F.; Zhao, Z.; Lightman, S.L. Prolonged treatment with the synthetic glucocorticoid methylprednisolone affects adrenal steroidogenic function and response to inflammatory stress in the rat. Brain. Behav. Immun. 2020. [Google Scholar] [CrossRef]
- Florio, P.; Severi, F.M.; Ciarmela, P.; Fiore, G.; Calonaci, G.; Merola, A.; De Felice, C.; Palumbo, M.; Petraglia, F. Placental stress factors and maternal-fetal adaptive response: The corticotropin-releasing factor family. Endocrine 2002, 19, 91–102. [Google Scholar] [CrossRef]
- Sandman, C.A.; Glynn, L.; Wadhwa, P.D.; Chicz-DeMet, A.; Porto, M.; Garite, T. Maternal hypothalamic-pituitary-adrenal disregulation during the third trimester influences human fetal responses. Dev. Neurosci. 2003, 25, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Nicholson, R.C.; King, B.; Chan, E.C.; Fitter, J.T.; Smith, R. Corticotropin-releasing hormone gene expression in primary placental cells is modulated by cyclic adenosine 3′,5′-monophosphate. J. Clin. Endocrinol. Metab. 2000, 85, 1239–1244. [Google Scholar] [CrossRef]
- Vannuccini, S.; Bocchi, C.; Severi, F.M.; Challis, J.R.; Petraglia, F. Endocrinology of human parturition. Ann. Endocrinol. 2016, 77, 105–113. [Google Scholar] [CrossRef]
- Sandman, C.A. Prenatal CRH: An integrating signal of fetal distress. Dev. Psychopathol. 2018, 30, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Ghaemmaghami, P.; Dainese, S.M.; La Marca, R.; Zimmermann, R.; Ehlert, U. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome. Dev. Psychobiol. 2014, 56, 734–747. [Google Scholar] [CrossRef]
- Benediktsson, R.; Calder, A.A.; Edwards, C.R.; Seckl, J.R. Placental 11 beta-hydroxysteroid dehydrogenase: A key regulator of fetal glucocorticoid exposure. Clin. Endocrinol. 1997, 46, 161–166. [Google Scholar] [CrossRef]
- Seckl, J.R.; Meaney, M.J. Glucocorticoid programming. Ann. N. Y. Acad. Sci. 2004, 1032, 63–84. [Google Scholar] [CrossRef]
- Howerton, C.L.; Morgan, C.P.; Fischer, D.B.; Bale, T.L. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc. Natl. Acad. Sci. USA 2013, 110, 5169–5174. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Rubertsson, C.; Borjesson, K.; Berglund, A.; Josefsson, A.; Sydsjo, G. The Swedish validation of Edinburgh Postnatal Depression Scale (EPDS) during pregnancy. Nord. J. Psychiatry 2011, 65, 414–418. [Google Scholar] [CrossRef]
- Josefsson, A.; Berg, G.; Nordin, C.; Sydsjö, G. Prevalence of depressive symptoms in late pregnancy and postpartum. Acta Obstet. Gynecol. Scand. 2001, 80, 251–255. [Google Scholar] [CrossRef]
- Harris, B.; Huckle, P.; Thomas, R.; Johns, S.; Fung, H. The use of rating scales to identify post-natal depression. Br. J. Psychiatry 1989, 154, 813–817. [Google Scholar] [CrossRef]
- Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 2000, 107, 5–12. [Google Scholar] [CrossRef]
- Morelius, E.; Nelson, N.; Theodorsson, E. Salivary cortisol and administration of concentrated oral glucose in newborn infants: Improved detection limit and smaller sample volumes without glucose interference. Scand. J. Clin. Lab. Invest. 2004, 64, 113–118. [Google Scholar] [CrossRef]
- Karlén, J.; Ludvigsson, J.; Frostell, A.; Theodorsson, E.; Faresjö, T. Cortisol in hair measured in young adults - a biomarker of major life stressors? BMC Clin. Pathol. 2011, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Rodriguez, M.; Vicente-Carrillo, A.; Rodriguez-Martinez, H. Hyaluronan improves neither the long-term storage nor the cryosurvival of liquid-stored CD44-bearing AI boar spermatozoa. J. Reprod. Dev. 2018, 64, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bale, T.L.; Vale, W.W. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 525–557. [Google Scholar] [CrossRef]
- Tan, H.; Zhong, P.; Yan, Z. Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. J. Neurosci. 2004, 24, 5000–5008. [Google Scholar] [CrossRef] [Green Version]
- Black, P.H. Central nervous system-immune system interactions: Psychoneuroendocrinology of stress and its immune consequences. Antimicrob. Agents Chemother. 1994, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Morrow, L.E.; McClellan, J.L.; Conn, C.A.; Kluger, M.J. Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. Am. J. Physiol. 1993, 264, R1010-6. [Google Scholar] [CrossRef]
- Bronson, S.L.; Bale, T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 2014, 155, 2635–2646. [Google Scholar] [CrossRef] [Green Version]
- Monk, C.; Feng, T.; Lee, S.; Krupska, I.; Champagne, F.A.; Tycko, B. Distress During Pregnancy: Epigenetic Regulation of Placenta Glucocorticoid-Related Genes and Fetal Neurobehavior. Am. J. Psychiatry 2016, 173, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowski, M.; Zelazowski, P.; Dohler, K.; Stepien, H. Effects of two neuropeptides, somatoliberin (GRF) and corticoliberin (CRF), on human lymphocyte natural killer activity. Brain. Behav. Immun. 1988, 2, 50–56. [Google Scholar] [CrossRef]
- Karalis, K.; Crofford, L.; Wilder, R.L.; Chrousos, G.P. Glucocorticoid and/or glucocorticoid antagonist effects in inflammatory disease-susceptible Lewis rats and inflammatory disease-resistant Fischer rats. Endocrinology 1995, 136, 3107–3112. [Google Scholar] [CrossRef]
- Karalis, K.; Muglia, L.J.; Bae, D.; Hilderbrand, H.; Majzoub, J.A. CRH and the immune system. J. Neuroimmunol. 1997, 72, 131–136. [Google Scholar] [CrossRef]
- You, X.; Liu, J.; Xu, C.; Liu, W.; Zhu, X.; Li, Y.; Sun, Q.; Gu, H.; Ni, X. Corticotropin-releasing hormone (CRH) promotes inflammation in human pregnant myometrium: The evidence of CRH initiating parturition? J. Clin. Endocrinol. Metab. 2014, 99, E199–E208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrells, S.F.; Sapolsky, R.M. An inflammatory review of glucocorticoid actions in the CNS. Brain. Behav. Immun. 2007, 21, 259–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilezikjian, L.M.; Vale, W.W. Regulation of ACTH secretion from corticotrophs: The interaction of vasopressin and CRF. Ann. N. Y. Acad. Sci. 1987, 512, 85–96. [Google Scholar] [CrossRef]
- Faucher, D.J.; Laptook, A.R.; Parker, C.R.; Porter, J.C.; Rosenfeld, C.R. Increased fetal secretion of ACTH and cortisol by arginine vasopressin. Am. J. Physiol. 1988, 254, R410-6. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 2016, 12, 168–176. [Google Scholar] [CrossRef]
- Evers, K.S.; Wellmann, S. Arginine Vasopressin and Copeptin in Perinatology. Front. Pediatr. 2016, 4, 75. [Google Scholar] [CrossRef] [Green Version]
- Chard, T.; Hudson, C.N.; Edwards, C.R.; Boyd, N.R. Release of oxytocin and vasopressin by the human foetus during labour. Nature 1971, 234, 352–354. [Google Scholar] [CrossRef]
- Oosterbaan, H.P.; Swaab, D.F. Amniotic oxytocin and vasopressin in relation to human fetal development and labour. Early Hum. Dev. 1989, 19, 253–262. [Google Scholar] [CrossRef]
- Smith, J.; Halse, K.G.; Damm, P.; Lindegaard, M.L.; Amer-Wahlin, I.; Hertel, S.; Johansen, M.; Mathiesen, E.R.; Nielsen, L.B.; Goetze, J.P. Copeptin and MR-proADM in umbilical cord plasma reflect perinatal stress in neonates born to mothers with diabetes and MR-proANP reflects maternal diabetes. Biomark. Med. 2013, 7, 139–146. [Google Scholar] [CrossRef]
- Sandgren, J.A.; Deng, G.; Linggonegoro, D.W.; Scroggins, S.M.; Perschbacher, K.J.; Nair, A.R.; Nishimura, T.E.; Zhang, S.Y.; Agbor, L.N.; Wu, J.; et al. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI insight 2018, 3. [Google Scholar] [CrossRef]
- Scroggins, S.M.; Santillan, D.A.; Lund, J.M.; Sandgren, J.A.; Krotz, L.K.; Hamilton, W.S.; Devor, E.J.; Davis, H.A.; Pierce, G.L.; Gibson-Corley, K.N.; et al. Elevated vasopressin in pregnant mice induces T-helper subset alterations consistent with human preeclampsia. Clin. Sci. 2018, 132, 419–436. [Google Scholar] [CrossRef]
- Staud, F.; Mazancova, K.; Miksik, I.; Pavek, P.; Fendrich, Z.; Pacha, J. Corticosterone transfer and metabolism in the dually perfused rat placenta: Effect of 11beta-hydroxysteroid dehydrogenase type 2. Placenta 2006, 27, 171–180. [Google Scholar] [CrossRef]
- Sarkar, S.; Tsai, S.W.; Nguyen, T.T.; Plevyak, M.; Padbury, J.F.; Rubin, L.P. Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by catecholamines via alpha-adrenergic signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1966-74. [Google Scholar] [CrossRef]
- Conradt, E.; Lester, B.M.; Appleton, A.A.; Armstrong, D.A.; Marsit, C.J. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 2013, 8, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Marsit, C.J.; Maccani, M.A.; Padbury, J.F.; Lester, B.M. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 2012, 7, e33794. [Google Scholar] [CrossRef] [Green Version]
- Barke, T.L.; Money, K.M.; Du, L.; Serezani, A.; Gannon, M.; Mirnics, K.; Aronoff, D.M. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta 2019, 78, 1–9. [Google Scholar] [CrossRef]
- Wilcoxon, J.S.; Schwartz, J.; Aird, F.; Redei, E.E. Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E31–E39. [Google Scholar] [CrossRef] [Green Version]
- Murphy, V.E.; Gibson, P.G.; Giles, W.B.; Zakar, T.; Smith, R.; Bisits, A.M.; Kessell, C.G.; Clifton, V.L. Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med. 2003, 168, 1317–1323. [Google Scholar] [CrossRef]
- Sheikh, J.I.; Leskin, G.A.; Klein, D.F. Gender differences in panic disorder: Findings from the National Comorbidity Survey. Am. J. Psychiatry 2002, 159, 55–58. [Google Scholar] [CrossRef]
- Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.-U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res. 2012, 21, 169–184. [Google Scholar] [CrossRef]
- Breslau, N. Gender differences in trauma and posttraumatic stress disorder. J. Gend. Specif. Med. 2002, 5, 34–40. [Google Scholar]
- Palagini, L.; Moretto, U.; Novi, M.; Masci, I.; Caruso, D.; Drake, C.L.; Riemann, D. Lack of Resilience Is Related to Stress-Related Sleep Reactivity, Hyperarousal, and Emotion Dysregulation in Insomnia Disorder. J. Clin. sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2018, 14, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Plante, D.T.; Landsness, E.C.; Peterson, M.J.; Goldstein, M.R.; Riedner, B.A.; Wanger, T.; Guokas, J.J.; Tononi, G.; Benca, R.M. Sex-related differences in sleep slow wave activity in major depressive disorder: A high-density EEG investigation. BMC Psychiatry 2012, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res. 2017, 95, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, I.; Mellman, T.A. Gender differences in sleep during the aftermath of trauma and the development of posttraumatic stress disorder. Behav. Sleep Med. 2012, 10, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Bangasser, D.A.; Eck, S.R.; Telenson, A.M.; Salvatore, M. Sex differences in stress regulation of arousal and cognition. Physiol. Behav. 2018, 187, 42–50. [Google Scholar] [CrossRef]
Index | Controls | ||
---|---|---|---|
Mean/SD | Mean/SD | p-Value | |
Maternal age | 29.5/4.9 | 28.5/4.2 | 0.483 |
BMI | 26.4/4.7 | 26.6/5.3 | 0.891 |
Gestational age | 39.6/1.2 | 40.0/1.1 | 0.312 |
n (%) | n (%) | ||
Ethnicity | 0.665 | ||
Swedish | 21 (91.3) | 19 (82.6) | |
Non-Swedish | 2 (8.7) | 4 (17.4) | |
Parity | NA | ||
Primi | 8 (34.8) | 8 (34.8) | |
Multi | 15 (65.2) | 15 (65.2) | |
Delivery mode | 1.000 | ||
PN | 20 (87.0) | 21 (91.3) | |
CS or Instrumental | 3 (13.0) | 2 (8.7) | |
Gender of the child | 0.227 | ||
Girl | 16 (69.6) | 12 (52.2) | |
Boy | 7 (30.4) | 11 (47.8) |
Gene Name | Primers (5′-3′) | Accession No | Amplicon Size (bp) |
---|---|---|---|
CRH | F:GAGAGAGGGAGAGAGCCTATAC R:TGACCAAGGACTGGAAAGATG | NC_00008.11 | 320 |
OGT | F:GGCTGACCAGTTAGAGAAGAATAG R:TGCCTGGAATAGACTGCATAAG | NC_000023.11 | 260 |
HSD11B2 | F:TGCTTCAAGACAGAGTCAGTG R:GGCATCTACAACTGGGGTGA | NC_000016.10 | 183 |
GAPDH | F:GGAAGGTGAAGGTCGGAGTC R:GAGGGATCTCGCTCCTGGAA | NC_000012.11 | 244 |
AVP | Bio-Rad ID: qHsaCED0021009 | NC_000020.10 | 78 |
NR3C1 | Bio-Rad ID: qHsaCEP0050768 | NT_029289.11 | 118 |
AVP | HSD11B2 | OGT | NR3C1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | Control | All | Index | Control | All | Index | Control | All | Index | Control | All | |
CRH | Rho = 0.29 | Rho = 0.79 | Rho = 0.6 | Rho = −0.23 | Rho = 0.45 | Rho = 0.2 | Rho = −0.36 | Rho = −0.38 | Rho = −0.46 | Rho = −0.09 | Rho = 0.23 | Rho = 0.12 |
p = 0.3 | p < 0.001 | p < 0.001 | p = 0.31 | p = 0.03 | p = 0.22 | p = 0.12 | p = 0.09 | p = 0.003 | p = 0.75 | p = 0.37 | p = 0.52 | |
n = 15 | n = 20 | n = 35 | n = 21 | n = 22 | n = 43 | n = 19 | n = 20 | n = 39 | n = 14 | n = 16 | n = 30 | |
AVP | Rho = 0.08 | Rho = 0.6 | Rho = 0.56 | Rho = −0.16 | Rho = −0.41 | Rho = −0.33 | Rho = 0.007 | Rho = 0.56 | Rho = 0.36 | |||
p = 0.76 | p = 0.005 | p < 0.001 | p = 0.57 | p = 0.09 | p = 0.06 | p = 0.98 | p = 0.03 | p = 0.07 | ||||
n = 15 | n = 20 | n = 35 | n = 15 | n = 18 | n = 33 | n = 12 | n = 15 | n = 27 | ||||
HSD11B2 | Rho = 0.29 | Rho = 0.09 | Rho = 0.11 | Rho = 0.12 | Rho = 0.34 | Rho = 0.28 | ||||||
p = 0.21 | p = 0.69 | p = 0.5 | p = 0.64 | p = 0.2 | p = 0.12 | |||||||
n = 20 | n = 21 | n = 41 | n = 16 | n = 16 | n = 32 | |||||||
OGT | Rho = 0.09 | Rho = 0.009 | Rho = 0.008 | |||||||||
p = 0.73 | p = 0.97 | p = 0.96 | ||||||||||
n = 15 | n = 16 | n = 31 |
GROUP | CORTISOL MEASUREMENTS | CRH | OGT | HSD11B2 | AVP | NR3C1 |
---|---|---|---|---|---|---|
Index | Week 24–25 of pregnancy | Rho = 0.37 | Rho = 0.2 | Rho = 0.021 | Rho = −0.35 | Rho = 0.31 |
p = 0.09 | p = 0.38 | p = 0.92 | p = 0.19 | p = 0.24 | ||
n =21 | n = 20 | n = 23 | n = 15 | n = 16 | ||
Parturition | Rho = 0.34 | Rho = 0.02 | Rho = 0.54 | Rho = 0.37 | Rho = 0.29 | |
p = 0.12 | p = 0.99 | p = 0.007 | p = 0.17 | p = 0.27 | ||
n = 21 | n=20 | n = 23 | n = 15 | n = 16 | ||
8 weeks Postparturition | Rho = 0.45 | Rho = 0.09 | Rho = 0.29 | Rho = −0.12 | Rho = −0.24 | |
p = 0.06 | p = 0.72 | p = 0.22 | p = 0.68 | p = 0.27 | ||
n = 17 | n = 17 | n = 19 | n = 13 | n = 15 | ||
Control | Week 24–25 of pregnancy | Rho = −0.04 | Rho = −0.19 | Rho = −0.17 | Rho = 0.21 | Rho = 0.171 |
p = 0.84 | p = 0.4 | p = 0.44 | p = 0.36 | p = 0.52 | ||
n=22 | n = 21 | n = 23 | n = 20 | n = 16 | ||
Parturition | Rho = 0.03 | Rho = −0.08 | Rho = 0.03 | Rho = −0.017 | Rho = 0.46 | |
p = 0.88 | p = 0.7 | p = 0.87 | p = 0.94 | p = 0.06 | ||
n = 22 | n = 20 | n = 22 | n = 20 | n = 16 | ||
8 weeks Postparturition | Rho = −0.14 | Rho = −0.32 | Rho = −0.23 | Rho = −0.27 | Rho = −0.15 | |
p = 0.5 | p = 0.18 | p = 0.32 | p = 0.28 | p = 0.6 | ||
n = 19 | n = 19 | n = 20 | n = 17 | n = 14 | ||
All | Week 24–25 of pregnancy | Rho = 0.15 | Rho =- 0.05 | Rho = −0.006 | Rho = 0.019 | Rho = 0.24 |
p = 0.33 | p = 0.75 | p = 0.96 | p = 0.91 | p = 0.19 | ||
n = 43 | n = 41 | n = 46 | n = 35 | n = 32 | ||
Parturition | Rho = 0.17 | Rho = −0.09 | Rho = 0.28 | Rho = 0.044 | Rho = 0.4 | |
p = 0.25 | p = 0.57 | p = 0.054 | p = 0.8 | p = 0.023 | ||
n = 43 | n = 40 | n = 45 | n = 35 | n = 32 | ||
8 weeks Postparturition | Rho = 0.04 | Rho = −0.065 | Rho = 0.01 | Rho = −0.35 | Rho = −0.16 | |
p = 0.8 | p = 0.71 | p = 0.94 | p = 0.052 | p = 0.4 | ||
n = 36 | n = 36 | n = 39 | n = 30 | n = 29 | ||
Parturition | Rho = 0.28 | Rho = −0.05 | Rho = −0.11 | Rho = 0.08 | Rho = 0.26 | |
p = 0.07 | p = 0.74 | p = 0.45 | p = 0.65 | p = 0.16 | ||
n = 42 | n = 40 | n = 45 | n = 34 | n = 31 | ||
8 weeks Postparturition | Rho = 0.23 | Rho = −0.12 | Rho = 0.07 | Rho = −0.14 | Rho = 0.17 | |
p = 0.19 | p = 0.49 | p = 0.66 | p = 0.47 | p = 0.38 | ||
n = 31 | n = 32 | n = 34 | n = 27 | n = 26 |
BW | PLACENTAL GENE EXPRESSION LEVELS AT TERM | ||||
---|---|---|---|---|---|
CRH | OGT | HSD11B2 | AVP | NR3C1 | |
Index | Rho = −0.25 | Rho = −0.1 | Rho = −0.021 | Rho = −0.25 | Rho = −0.03 |
p = 0.28 | p = 0.67 | p = 0.93 | p = 0.37 | p = 0.92 | |
n = 21 | n = 20 | n = 23 | n = 15 | n = 16 | |
Control | Rho = −0.04 | Rho = 0.25 | Rho = 0.2 | Rho = 0.14 | Rho = −0.03 |
p = 0.87 | p = 0.91 | p = 0.36 | p = 0.57 | p = 0.91 | |
n = 22 | n = 21 | n = 23 | n = 20 | n = 16 | |
All | Rho = −0.18 | Rho = 0.01 | Rho = 0.042 | Rho = −0.11 | Rho = −0.03 |
p = 0.26 | p = 0.96 | p = 0.78 | p = 0.54 | p = 0.88 | |
n = 43 | n = 41 | n = 46 | n = 35 | n = 32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, C.A.; Marteinsdottir, I.; Josefsson, A.; Sydsjö, G.; Theodorsson, E.; Rodriguez-Martinez, H. Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes 2020, 11, 869. https://doi.org/10.3390/genes11080869
Martinez CA, Marteinsdottir I, Josefsson A, Sydsjö G, Theodorsson E, Rodriguez-Martinez H. Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes. 2020; 11(8):869. https://doi.org/10.3390/genes11080869
Chicago/Turabian StyleMartinez, Cristina A., Ina Marteinsdottir, Ann Josefsson, Gunilla Sydsjö, Elvar Theodorsson, and Heriberto Rodriguez-Martinez. 2020. "Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression" Genes 11, no. 8: 869. https://doi.org/10.3390/genes11080869
APA StyleMartinez, C. A., Marteinsdottir, I., Josefsson, A., Sydsjö, G., Theodorsson, E., & Rodriguez-Martinez, H. (2020). Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes, 11(8), 869. https://doi.org/10.3390/genes11080869