New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System
Abstract
:1. Introduction
2. Overview of SNARE Function
3. The Yeast Minimal Endomembrane System
3.1. Candidate PM to TGN SNAREs
3.2. TGN and PVE SNAREs
3.3. PVE to Vacuole SNAREs
3.4. Intra-Golgi SNAREs
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, M.; Burd, C.G. Retrograde trafficking and quality control of yeast synaptobrevin, Snc1, are conferred by its transmembrane domain. Mol. Biol. Cell 2019, 30, 1729–1742. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; Fink, G.R. Yeast: An experimental organism for modern biology. Science 1988, 240, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.R.; Dietrich, F.S.; Fisk, D.G.; Binkley, G.; Balakrishnan, R.; Costanzo, M.C.; Dwight, S.S.; Hitz, B.C.; Karra, K.; Nash, R.S.; et al. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. Genes Genome Genet. 2014, 4, 389–398. [Google Scholar]
- Mohammadi, S.; Saberidokht, B.; Subramaniam, S.; Grama, A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst. Biol. 2015, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, S.; Bonifacino, B.S.G. The Mechanisms of Vesicle Budding and Fusion. Cell 2004, 116, 153–166. [Google Scholar]
- Lu, R.; Drubin, D.G.; Sun, Y. Clathrin-mediated endocytosis in budding yeast at a glance. J. Cell Sci. 2016, 129, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Boettner, D.R.; Chi, R.J.; Lemmon, S.K. Lessons from yeast for clathrin-mediated endocytosis. Nat. Cell Biol. 2011, 14, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.J.; Harrison, M.S.; Burd, C.G. Biogenesis of endosome-derived transport carriers. Cell. Mol. Life Sci. 2015, 72, 3441–3455. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Burd, C.G. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2020, 21, 45–59. [Google Scholar] [CrossRef]
- Delic, M.; Valli, M.; Graf, A.B.; Pfeffer, M.; Mattanovich, D.; Gasser, B. The secretory pathway: Exploring yeast diversity. FEMS Microbiol. Rev. 2013, 37, 872–914. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, M.A.; Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 2008, 9, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Verhage, M.; Sørensen, J.B. Vesicle Docking in Regulated Exocytosis. Traffic 2008, 9, 1414–1424. [Google Scholar] [CrossRef]
- Bianka, L.; Grosshans, D.O.; Novick, P. Rabs and their effectors: Achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 2006, 103, 11821–11827. [Google Scholar]
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 2005, 1744, 120–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic 2017, 18, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Crump, C.M.; Thomas, G. Trans-Golgi network sorting. Cell. Mol. Life Sci. 2001, 58, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, S.K.; Traub, L.M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin Cell Biol. 2000, 12, 457–466. [Google Scholar] [CrossRef]
- Feyder, S.; De Craene, J.O.; Bar, S.; Bertazzi, D.L.; Friant, S. Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int. J. Mol. Sci. 2015, 16, 1509–1525. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Zemelman, B.V.; McNew, J.A.; Westermann, B.; Gmachl, M.; Parlati, F.; Söllner, T.H.; Rothman, J.E. SNAREpins: Minimal Machinery for Membrane Fusion. Cell 1998, 92, 759–772. [Google Scholar] [CrossRef] [Green Version]
- Scales, S.J.; Yoo, B.Y.; Scheller, R.H. The ionic layer is required for efficient dissociation of the SNARE complex by a-SNAP and NSF. Proc. Natl. Acad. Sci. USA 2001, 98, 14262–14267. [Google Scholar] [CrossRef] [Green Version]
- Söllner, T.; Bennett, M.K.; Whiteheart, S.W.; Scheller, R.H.; Rothman, J.E. A Protein Assembly-Disassembly Pathway In Vitro That May Correspond to Sequential Steps of Synaptic Vesicle Docking, Activation, and Fusion. Cell 1993, 75, 409–418. [Google Scholar] [CrossRef]
- Burri, L.; Lithgow, T. A Complete Set of SNAREs in Yeast. Traffic 2004, 5, 45–52. [Google Scholar] [CrossRef]
- Day, K.J.; Casler, J.C.; Glick, B.S. Budding Yeast Has a Minimal Endomembrane System. Dev. Cell 2018, 44, 56–72.e4. [Google Scholar] [CrossRef] [PubMed]
- Paumet, F.; Rahimian, V.; Rothman, J.E. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc. Natl. Acad. Sci. USA 2004, 101, 3376–3380. [Google Scholar] [CrossRef] [Green Version]
- McNew, J.A.; Sogaard, M.; Lampen, N.M.; Machida, S.; Ye, R.R.; Lacomis, L.; Tempst, P.; Rothman, J.E.; Söllner, T.H. Ytk6, a prenylated SNARE essential for ER-golgi transport. J. Biol. Chem. 1997, 272, 17776–17783. [Google Scholar] [CrossRef] [Green Version]
- Neiman, A.M.; Katz, L.; Brennwald, P.J. Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae. Genetics 2000, 155, 1643–1655. [Google Scholar] [PubMed]
- Yoon, T.Y.; Munson, M. SNARE complex assembly and disassembly. Curr. Biol. 2018, 28, R397–R401. [Google Scholar] [CrossRef] [Green Version]
- Kienle, N.; Kloepper, T.H.; Fasshauer, D. Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evol. Biol. 2009, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Manca, F.; Pincet, F.; Truskinovsky, L.; Rothman, J.E.; Foret, L.; Caruel, M. SNARE machinery is optimized for ultrafast fusion. Proc. Natl. Acad. Sci. USA 2019, 116, 2435–2442. [Google Scholar] [CrossRef] [Green Version]
- Hohl, M.; Parlati, F.; Wimmer, C.; Rothman, J.E.; Söllner, T.H.; Engelhardt, H. Arrangement of subunits in 20s particles consiting og NSF, SNAPs, and SNARE complexes. Mol. Cell 1998, 2, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T. The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities. J. Biol. Chem. 2008, 283, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prescianotto-Baschong, C.; Riezman, H. Morphology of the Yeast Endocytic Pathway. Mol. Biol. Cell 1998, 9, 173–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, J.; Lewis, B.J.N.; Precianotto-Baschong, C.; Riezman, H.; Pelham, H.R. Specific Retrieval of the Exocytic SNARE Snc1p from Early Yeast Endosomes. Mol. Biol. Cell 2000, 11, 23–38. [Google Scholar]
- Thomas, A.; Vida, S.D.E. A New Vital Stain for Visualizing Vacuolar Membrane Dynamics and Endocytosis in Yeast. J. Cell Biol. 1995, 128, 779–792. [Google Scholar]
- Zhu, J.; Zhang, Z.T.; Tang, S.W.; Zhao, B.S.; Li, H.; Song, J.Z.; Li, D.; Xie, Z. A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae). mBio 2019, 10. [Google Scholar] [CrossRef]
- Holthius, J.C.; Nichpls, B.J.; Dhruvakumar, S.; Pelham, H.R. Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J. 1998, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Coe John, G.S.; Lim Anthony, C.B.; Xu, J.; Hong, W. A Role for Tlg1p in the Transport of Proteins within the Golgi Apparatus of Saccharomyces cerevisiae. J. Cell Biol. 1999, 10, 2407–2423. [Google Scholar]
- Abeliovich, H.; Grote, E.; Novick, P.; Ferro-Novick, S. Tlg2p, a Yeast Syntaxin Homolog That Resides on the Golgi and Endocytic Structures. J. Cell Biol. 1998, 273, 11719–11727. [Google Scholar] [CrossRef] [Green Version]
- von Mollard, G.F.; Nothwehr, S.F.; Stevens, T.H. The Yeast v-SNARE Vti1p Mediates Two Vesicle Transport Pathways through Interactions with the t-SNAREs Sed5p and Pep12p. J. Cell Biol. 1997, 137, 1511–1524. [Google Scholar] [CrossRef]
- Becherer, K.A.; Rieder, S.E.; Emr, S.D.; Jones, E.W. Novel syntaxin homologue, pep12, required for sorting of lumenal hydrolases to lysosome-like vacuole in yeast. Mol. Biol. Cell 1996, 7, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.J.; Pelham, H.R.B. A new yeast endosomal SNARE related to mammalian syntaxin 8. Traffic 2002, 3, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Jones, E.W. Pth1/Vam3p Is the Syntaxin Homolog at the Vacuolar Membrane of Saccharomyces cerevisae Required for the Delivery of Vacuolar Hydrolases. Genetics 1998, 148, 85–98. [Google Scholar] [PubMed]
- Nichols, B.J.; Ungermann, C.; Pelham, H.R.; Wickner, W.T.; Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 1997, 387, 199–202. [Google Scholar] [CrossRef]
- Stevens, T.; Esmon, B.; Schekman, R. Early Stages in the Yeast Secretory Pathway Are Required for Transport of Carboxypeptidase Y to the Vacuole. Cell 1982, 30, 439–448. [Google Scholar] [CrossRef]
- Sato, T.K.; Darsow, T.; Emr, S.D. Vam7p, a SNAP-25-Like Molecule, and Vam3p, a Syntaxin Homolog, Function Together in Yeast Vacuolar Protein Trafficking. Mol. Cell. Biol. 1998, 18, 5308–5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungermann, C.; Wickner, W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 1998, 17, 3269–3276. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.; Conradt, B.; Wickner, W.J. G-protein ligands inhibit in vitro reactions of vacuole inheritance. Mol. Cell. Biol. 1994, 126, 87–97. [Google Scholar] [CrossRef]
- Hardwick, K.G.; Pelham, H.R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. Mol. Cell. Biol. 1992, 119, 513–521. [Google Scholar] [CrossRef] [Green Version]
- David, K.; Banfield, M.J.L.; Pelham, H.R.B. A SNARE like protein required for traffic through the Golgi complex. Nature 1995, 375, 806–809. [Google Scholar]
- McNew, J.A.; Coe, J.G.; Sogaard, M.; Zemelmen, B.V.; Wimmer, C.; Hong, W.; Sollner, T.H. Gos1p, a saccharomyces SNARE involved in Golgi transport. FEBS Lett. 1998, 435, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Viotti, C.; Bubeck, J.; Stierhof, Y.-D.; Krebs, M.; Langhans, M.; van den Berg, W.; van Dongen, W.; Richter, S.; Geldner, N.; Takano, J.; et al. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 2010, 22, 1344–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendler, F.; Tooze, S. Syntaxin 6: The Promiscuous Behaviour of a SNARE Protein. Traffic 2001, 2, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, A.C.; Roche, P.A. SNAP-29 Is a Promiscuous Syntaxin-Binding SNARE. Biochem. Biophys. Res. Commun. 2001, 285, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gonzalez, L., Jr.; Prekeris, R.; Steegmaier, M.; Advani, R.J.; Scheller, R.H. SNARE Interactions Are Not Selective IMPLICATIONS FOR MEMBRANE FUSION SPECIFICITY. Mol. Cell. Biol. 1999, 274, 5649–5653. [Google Scholar]
- Tsui, M.M.; Banfield, D.K. Yeast Golgi SNARE interactions are promiscuous. J. Cell Sci. 2000, 113, 145–152. [Google Scholar]
- Furukawa, N.; Mima, J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci. Rep. 2014, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Flowerdew, S.E.; Burgoyne, R.D. A VAMP7/Vti1a complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels. Biochem. J. 2009, 418, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Ganley, I.G.; Espinosa, E.; Pfeffer, S.R. A syntaxin 10-SNARE complex distinguishes two distinct transport routes form endosomes to the trans-Golgi in human cells. J. Cell Sci. 2008, 180, 159–172. [Google Scholar]
- Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.E.; Collins, B.M.; McCoy, A.J.; Robinson, M.S.; Owen, D.J. A SNARE–adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nat. Lett. 2007, 450, 570–574. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Dulubova, I.; Min, S.-W.; Chen, X.; Rizo, J.; Südhof, T.C. Sly1 binds to Golgi and ER syntaxins via conserved N-terminal peptide motif. Dev. Cell 2002, 2, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Anna, P.; Newman, J.S.; Ferro-Novick, S. Members of a group of interacting yeast genes required for transport from the ER to the Golgi. Mol. Cell. Biol. 1990, 10, 3405–3414. [Google Scholar]
- Shim, J.; Newman, A.P.; Ferro-Novick, S. The BOS1 gene encodes an essential 27-kd putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol. 1991, 113, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Sweet, D.J.; Pelham, H.R. The S. cerevisiae SEC20 gene encodes a membrane glycoprotein sorted by the HDEL retrieval system. EMBO J. 1992, 11, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Burri, L.; Varlamov, O.; Doege, C.A.; Hofmann, K.; Beilharz, T.; Rothman, J.E.; Söllner, T.H.; Lithgow, T. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2003, 100, 9873–9877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, K.L.; Munson, M.; Miller, R.B.; Filip, T.J.; Fairman, R.; Hughson, F.M. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 1998, 5, 793–802. [Google Scholar] [CrossRef]
- Williams, D.C.; Novick, P.J. Analysis of SEC9 suppression reveals a relationship of SNARE function to cell physiology. PLoS ONE 2009, 4, e5449. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2001, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Frei, S.B.; Rahl, P.B.; Nussbaum, M.; Briggs, B.J.; Calero, M.; Janeczko, S.; Regan, A.D.; Chen, C.Z.; Barral, Y.; Whittaker, G.R.; et al. Bioinformatic and comparative localization of Rab proteins revelas functional insights into the uncharacterized GTPases Ypt10p and Ypt11p. Mol. Cell. Biol. 2006, 26, 7299–7317. [Google Scholar] [CrossRef] [Green Version]
- Sogaard, M.; Tani, K.; Ye, R.R.; Geromanos, S.; Tempst, P.; Kirchhausen, T.; Rotheman, J.E.; Sollner, T. A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 1994, 78, 937–948. [Google Scholar] [CrossRef]
- Schimmo, F.; Suzanne, I.; Pfeffer, S.R. Rab GTPases, directors of vesicle docking. J. Biol. Chem. 1998, 273, 22161–22164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grote, E.; Novick, P.J. Promiscuity in Rab-SNARE interactions. Mol. Biol. Cell 1999, 10, 4149–4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipatova, Z.; Hain, A.U.; Nazarko, V.Y.; Segev, N. Ypt/Rab GTPases: Principles learned from yeast. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulard, A.; Cremonesi, A.; Moes, S.; Schütz, F.; Jenö, P.; Hall, M.N. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 2010, 21, 3475–3486. [Google Scholar] [CrossRef] [Green Version]
- Swaney, D.L.; Beltrao, P.; Starita, L.; Guo, A.; Rush, J.; Fields, S.; Krogan, N.J.; Villén, J. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 2013, 10, 676–682. [Google Scholar] [CrossRef]
- Linial, M. SNARE Proteins—Why So Many, Why So Few? J. Neurochem. 1997, 69, 1781–1792. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Nishiki, T.; Omori, A.; Sekiguchi, M.; Kamata, Y.; Kozaki, S.; Takahashi, M. Phosphorylation of 25-kDa Synaptosome-associated Protein. J. Biol. Chem. 1996, 271, 14548–14553. [Google Scholar] [CrossRef] [Green Version]
- Marash, M.; Gerst, J.E. Phosphorylation of the autoinhibitory domain of the Sso t-SNAREs promotes binding of the Vsm1 SNARE regulator in yeast. Mol. Biol. Cell 2003, 14, 3114–3125. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grissom, J.H.; Segarra, V.A.; Chi, R.J. New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes 2020, 11, 899. https://doi.org/10.3390/genes11080899
Grissom JH, Segarra VA, Chi RJ. New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes. 2020; 11(8):899. https://doi.org/10.3390/genes11080899
Chicago/Turabian StyleGrissom, James H., Verónica A. Segarra, and Richard J. Chi. 2020. "New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System" Genes 11, no. 8: 899. https://doi.org/10.3390/genes11080899
APA StyleGrissom, J. H., Segarra, V. A., & Chi, R. J. (2020). New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes, 11(8), 899. https://doi.org/10.3390/genes11080899