RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application
Abstract
:1. Introduction
2. Theory
2.1. Backtracking from External Memory
2.2. Increased Memory Efficiency by Reduced Redundancy
2.3. Performance Analysis and Implementation
2.4. New Options in RNALfold
3. Application: Scanning Genomes for “Hyper-Stable” RNA Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFE | Minimum free energy (secondary structure) |
miRNA | microRNA |
ncRNA | Non-coding RNA |
MEA | Maximum expected accuracy (secondary structure) |
TLA | Three letter acronym |
References
- Doshi, K.; Cannone, J.; Cobaugh, C.; Gutell, R. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinform. 2004, 5, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, J.R.P.; Meyer, I.M. CoFold: An RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 2013, 41, e102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amman, F.; Bernhart, S.H.; Doose, G.; Hofacker, I.L.; Qin, J.; Stadler, P.F.; The Students of the Bioinformatics II Lab Class 2013; Will, S. The Trouble with Long-Range Base Pairs in RNA Folding. In Advances in Bioinformatics and Computational Biology, 8th BSB; Setubal, J.C., Almeida, N.F., Eds.; Lect. Notes Comp. Sci.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8213, pp. 1–11. [Google Scholar] [CrossRef]
- Hofacker, I.L.; Priwitzer, B.; Stadler, P.F. Prediction of Locally Stable RNA Secondary Structures for Genome-Wide Surveys. Bioinformatics 2004, 20, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiryu, H.; Kin, T.; Asai, K. Rfold: An exact algorithm for computing local base pairing probabilities. Bioinformatics 2008, 24, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.J.; Daniel, M.; Möhl, M.; Joshua, J.N.; Brown, C.M.; Backofen, R. Global or local? Predicting secondary structure and accessibility in mRNAs. Nucleic Acids Res. 2012, 40, 5215–5226. [Google Scholar] [CrossRef] [Green Version]
- Hofacker, I.L.; Fontana, W.; Stadler, P.F.; Bonhoeffer, L.S.; Tacker, M.; Schuster, P. Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem. 1994, 125, 167–188. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Turner, D.H.; Mathews, D.H. NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucl. Acids Res. 2010, 38, D280–D282. [Google Scholar] [CrossRef]
- Do, C.; Woods, D.; Batzoglou, S. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 2006, 22, e90–e98. [Google Scholar] [CrossRef]
- Lu, Z.J.; Gloor, J.W.; Mathews, D.H. Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 2009, 15, 1805–1813. [Google Scholar] [CrossRef] [Green Version]
- Bernhart, S.; Hofacker, I.L.; Stadler, P.F. Local RNA Base Pairing Probabilities in Large Sequences. Bioinformatics 2006, 22, 614–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussinov, R.; Piecznik, G.; Griggs, J.R.; Kleitman, D.J. Algorithms for Loop Matching. SIAM J. Appl. Math. 1978, 35, 68–82. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, C.Y.; Lawrence, C.E. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 2005, 11, 1157–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, M.; Kiryu, H.; Sato, K.; Mituyama, T.; Asai, K. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 2009, 25, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Sato, K.; Asai, K. Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinform. 2010, 11, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, R.; Hofacker, I.L.; Stadler, P.F. RNA Folding with Hard and Soft Constraints. Algorithms Mol. Biol. 2016, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Le, S.Y.; Maizel, J.V., Jr. A method for assessing the statistical significance of RNA folding. J. Theor. Biol. 1989, 138, 495–510. [Google Scholar] [CrossRef]
- Rivas, E.; Eddy, S.R. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 2000, 16, 583–605. [Google Scholar] [CrossRef] [Green Version]
- Clote, P.; Ferré, F.; Kranakis, E.; Krizanc, D. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 2005, 11, 578–591. [Google Scholar] [CrossRef] [Green Version]
- Freyhult, E.; Gardner, P.P.; Moulton, V. A comparison of RNA folding measures. BMC Bioinform. 2005, 6, 241. [Google Scholar] [CrossRef]
- Washietl, S.; Hofacker, I.L.; Stadler, P.F. Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 2005, 102, 2454–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, A.R.; Findeiß, S.; Washietl, S.; Hofacker, I.L.; Stadler, P.F. RNAz 2.0: Improved noncoding RNA detection. Pac. Symp. Biocomput. 2010, 15, 69–79. [Google Scholar] [CrossRef]
- Klein, R.J.; Misulovin, Z.; Eddy, S.R. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl. Acad. Sci. USA 2002, 99, 7542–7547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Anderson, J.; Gillespie, J.; Mayne, M. uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts. BMC Bioinform. 2008, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Ciesiolka, A.; Jazurek, M.; Drazkowska, K.; Krzyzosiak, W.J. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front. Cell. Neurosci. 2017, 11, 97. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, R.; Stadler, P.F. RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application. Genes 2021, 12, 14. https://doi.org/10.3390/genes12010014
Lorenz R, Stadler PF. RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application. Genes. 2021; 12(1):14. https://doi.org/10.3390/genes12010014
Chicago/Turabian StyleLorenz, Ronny, and Peter F. Stadler. 2021. "RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application" Genes 12, no. 1: 14. https://doi.org/10.3390/genes12010014
APA StyleLorenz, R., & Stadler, P. F. (2021). RNA Secondary Structures with Limited Base Pair Span: Exact Backtracking and an Application. Genes, 12(1), 14. https://doi.org/10.3390/genes12010014