Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Methods
2.1. Identification and Sequence Analysis of Protein Disulfide Isomerase (PDI) Genes
2.2. Phylogenetic and Conserved Motif Analysis of the PDI Gene Family in Tomato
2.3. Chromosomal Locations, Gene Duplication, and Microsynteny Analysis of the PDI Gene Family
2.4. Preparation of Plant Materials, Treatments, and Sampling
2.5. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (PCR)
3. Results
3.1. In Silico Identification of PDI Genes in Tomato
3.2. Phylogenetic and Domain Analysis
3.3. Exon and Intron Distribution and Conserved Motif Analysis
3.4. Chromosomal Position, Gene Duplication, and Microsynteny Analysis
3.5. Analysis of Stress- and Hormone-Responsive Cis-Elements in the Promoter Regions of SlPDI Genes
3.6. Expression Analysis of Tomato PDI Genes in Various Organs
3.7. Expression Profiling of Tomato PDI Genes under Various Abiotic Stresses and Phytohormone Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tu, B.P.; Ho-Schleyer, S.C.; Travers, K.J.; Weissman, J.S. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 2000, 290, 1571–1574. [Google Scholar] [CrossRef]
- Wedemeyer, W.J.; Welker, E.; Narayan, M.; Scheraga, H.A. Disulfide bonds and protein folding. Biochemistry 2000, 39, 4207–4216. [Google Scholar] [CrossRef] [PubMed]
- Hayano, T.; Hirose, M.; Kikuchi, M. Protein disulfide isomerase. Biochim. Biophys. Acta 2004, 1699, 35–44. [Google Scholar]
- Hayano, T.; Hirose, M.; Kikuchi, M. Protein disulfide isomerase mutant lacking its isomerase activity accelerates folding in the cell. FEBS Lett. 1995, 377, 505–511. [Google Scholar] [PubMed] [Green Version]
- Venetianer, P.; Straub, F.B. The enzymatic reactivation of reduced ribonuclease. Biochim. Biophys. Acta 1963, 67, 166–168. [Google Scholar] [CrossRef]
- Kanai, S.; Toh, H.; Hayano, T.; Kikuchi, M. Molecular evolution of the domain structures of protein disulfide isomerases. J. Mol. Evol. 1998, 47, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, K.; Kondoh, A.; Stumpp, M.T.; Hisabori, T. Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. USA 2001, 98, 11224–11229. [Google Scholar] [CrossRef] [Green Version]
- Jacquot, J.P.; Gelhaye, E.; Rouhier, N.; Corbier, C.; Didierjean, C.; Aubry, A. Thioredoxins and related proteins in photosynthetic organisms: Molecular basis for thiol dependent regulation. Biochem. Pharm. 2002, 64, 1065–1069. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Gong, Q.H.; Parkison, C.; Robinson, E.A.; Appella, E.; Merlino, G.T.; Pastan, I. The nucleotide sequence of a human cellular thyroid hormone binding protein present in endoplasmic reticulum. J. Biol. Chem. 1987, 262, 11221–11227. [Google Scholar]
- Lahav, J.; Gofer-Dadosh, N.; Luboshitz, J.; Hess, O.; Shaklai, M. Protein disulfide isomerase mediates integrin-dependent adhesion. FEBS Lett. 2000, 475, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Rigobello, M.P.; Donella-Deana, A.; Cesaro, L.; Bindoli, A. Distribution of protein disulphide isomerase in rat liver mitochondria. Biochem. J. 2001, 356, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Turano, C.; Coppari, S.; Altieri, F.; Ferraro, A. Proteins of the PDI family: Unpredicted non-ER locations and functions. J. Cell Physiol. 2002, 193, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Trebitsh, T.; Meiri, E.; Ostersetzer, O.; Adam, Z.; Danon, A. The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids Chlamydomonas Reinhardtii chloroplasts. J. Biol. Chem. 2001, 276, 4564–4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, D.M.; Söling, H.D. The protein disulphide-isomerase family: Unraveling a string of folds. Biochem. J. 1999, 339, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.; Benezra, R. Two isoforms of protein disulfide isomerase alter the dimerization status of E2A proteins by a redox mechanism. J. Biol. Chem. 1999, 274, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, C.W.; Cemažar, M.; Heras, B.; Martin, J.L.; Craik, D.J. Protein disulfide isomerase: The structure of oxidative folding. Trends. Biochem. Sci. 2006, 31, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kemmink, J.; Darby, N.J.; Dijkstra, K.; Nilges, M.; Creighton, T.E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr. Biol. 1997, 7, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Klappa, P.; Ruddock, L.W.; Darby, N.J.; Freedman, R.B. The b′ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998, 17, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Denecke, J.; De Rycke, R.; Botterman, J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 1992, 11, 2345–2355. [Google Scholar] [CrossRef]
- Lucero, H.A.; Kaminer, B. The role of calcium on the activity of ER calcistorin/protein disulfide isomerase and the significance of the Cterminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J. Biol. Chem. 1999, 274, 3243–3251. [Google Scholar] [CrossRef] [Green Version]
- Houston, N.L.; Fan, C.; Schulze, J.M.; Jung, R.; Boston, R.S. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol. 2005, 137, 762–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayum, M.A.; Park, J.I.; Nath, U.K.; Saha, G.; Biswas, M.K.; Kim, H.T.; Nou, I.S. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. 2017, 18, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.P.; Christopher, D.A. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genom. 2008, 280, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.P.; Christopher, D.A. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 2008, 20, 2205–2220. [Google Scholar]
- Wang, H.; Boavida, L.C.; Ron, M.; McCormick, S. Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis Thaliana. Plant Cell 2008, 20, 3300–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Wang, Y.; Liu, X.; Jiang, L.; Ren, Y.; Liu, F.; Peng, C.; Li, J.; Jin, X.; Wu, F.; et al. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J. Exp. Bot. 2012, 3, 121–130. [Google Scholar] [CrossRef]
- Takemoto, Y.; Coughlan, S.J.; Okita, T.W.; Satoh, H.; Ogawa, M.; Kumamaru, T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol. 2002, 128, 1212–1222. [Google Scholar] [CrossRef] [Green Version]
- D’Aloisio, E.; Paolacci, A.R.; Dhanapal, A.P.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. The protein disulfide isomerase gene family in bread wheat (T. Aestivum L.). BMC Plant Biol. 2010, 10, 101. [Google Scholar]
- Li, C.P.; Larkins, B.A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol. Biol. 1996, 30, 873–882. [Google Scholar] [CrossRef]
- Iwasaki, K.; Kamauchi, S.; Wadahama, H.; Ishimoto, M.; Kawada, T.; Urade, R. Molecular cloning and characterization of soybean protein disulfide isomerase family proteins with nonclassic active center motifs. FEBS J. 2009, 276, 4130–4141. [Google Scholar] [CrossRef]
- Wai, A.H.; Naing, A.H.; Lee, D.J.; Kim, C.K.; Chung, M.Y. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnol. Rep. 2020, 14, 515–537. [Google Scholar] [CrossRef]
- Chauhan, H.; Khurana, N.; Tyagi, A.K.; Khurana, J.P.; Khurana, P. Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol. Biol. 2011, 75, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Luo, N.; He, M.; Chen, G.; Zhu, J.; Yin, G.; Li, X.; Hu, Y.; Li, J.; Yan, Y. Molecular characterization and expression profiling of the protein disulfide Isomerase gene family in Brachypodiumdistachyon L. PLoS ONE 2014, 9, 94704. [Google Scholar]
- Faheem, M.; Li, Y.; Arshad, M.; Jiangyue, C.; Jia, Z.; Wang, Z.; Xiao, J.; Wang, H.; Cao, A.; Xing, L.; et al. A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, X.; Li, R.; Yuan, L.; Dai, Y.; Wang, X. Identification and functional analysis of a protein disulfide isomerase (AtPDI1) in Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 913. [Google Scholar] [CrossRef]
- Poole, R.L. The TAIR database. Methods Mol. Biol. 2007, 406, 179–212. [Google Scholar]
- Mueller, L.A.; Solow, T.H.; Taylor, N.; Skwarecki, B.; Buels, R.; Binns, J.; Lin, C.; Wright, M.H.; Ahrens, R.; Wang, Y.; et al. The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol. 2005, 138, 1310–1317. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Palmer, E.; Freeman, T. Investigation into the use of C-and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp. Funct. Genom. 2004, 5, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Jiangtao, C.; Yingzhen, K.; Qian, W.; Yuhe, S.; Daping, G.; Jing, L.; Guanshan, L. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Zhongguo Yi Chuan Xue Hui Bian Ji 2015, 37, 91–97. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Kong, X.; Lv, W.; Jiang, S.; Zhang, D.; Cai, G.; Pan, J.; Li, D. Genomewide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom. 2013, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986, 3, 418–426. [Google Scholar]
- Nekrutenko, A.; Makova, K.D.; Li, W.H. The KA/KS ratio test for assessing the protein-coding potential of genomic regions: An empirical and simulation study. Genome Res. 2002, 12, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.A.; Haubold, B.; Mitchell-Olds, T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 2000, 17, 1483–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Khatun, K.; Nath, U.K.; Robin, A.H.K.; Park, J.I.; Lee, D.J.; Kim, M.B.; Kim, C.K.; Lim, K.B.; Nou, I.S.; Chung, M.Y. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. BMC Genom. 2017, 18, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatun, K.; Robin, A.H.K.; Park, J.I.; Nath, U.K.; Kim, C.K.; Lim, K.B.; Nou, I.S.; Chung, M.Y. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int. J. Mol. Sci. 2017, 18, 1056. [Google Scholar] [CrossRef] [Green Version]
- Khatun, K.; Robin, A.H.K.; Park, J.I.; Kim, C.K.; Lim, K.B.; Kim, M.B.; Lee, D.J.; Nou, I.S.; Chung, M.Y. Genome-wide identification, characterization and expression profiling of ADF family genes in Solanum lycopersicum L. Genes 2016, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Khatun, K.; Robin, A.H.K.; Park, J.I.; Ahmed, N.U.; Kim, C.K.; Lim, K.B.; Kim, M.B.; Lee, D.J.; Nou, I.S.; Chung, M.Y. Genome-wide identification, characterization and expression profiling of LIM family genes in Solanum lycopersicum L. Plant Physiol. Biochem. 2016, 108, 177–190. [Google Scholar] [CrossRef]
- Khatun, K.; Nath, U.K.; Park, J.I.; Kim, C.K.; Nou, I.S.; Chung, M.Y. Expression Profiling of the CSDP Transcription Factor Gene Family Points to Roles in Organ Development and Abiotic Stress Response in Tomato (Solanum lycopersicum L.). Plant Mol. Biol. Rep. 2018, 36, 273–283. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.K.; Wardhan, V.; Singh, D.; Chakraborty, S.; Chakraborty, N. Genome-wide identification of the Alba gene family in plants and stress-responsive expression of the rice Alba genes. Genes 2018, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Balestrini, R.; Gómez-Ariza, J.; Lanfranco, L.; Bonfante, P. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol. Plant Microbe Interact. 2007, 20, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Jiang, H.; Zhou, L.; Deng, L.; Lin, Y.; Peng, X.; Yan, H.; Cheng, B. Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 2014, 533, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutinas, N.; Pepelyankov, G.; Lichev, V. Flower induction and flower bud development in apple and sweet cherry. Biotechnol. Biotechnol. Equip. 2010, 24, 1549–1558. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 2007, 10, 283–289. [Google Scholar] [CrossRef]
- Lemaire-Chamley, M.; Petit, J.; Garcia, V.; Just, D.; Baldet, P.; Germain, V.; Rothan, C. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 2005, 139, 750–769. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.X.; Howell, S.H. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 2010, 22, 2930–2942. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 244–252. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Liu, C.; Luo, J.; Yan, X.; Ai, A.; Cai, Y.; Xie, H.; Ding, X.; Peng, X. Over-expression of a protein disulfide isomerase gene from Methanothermobacter thermautotrophicus, enhances heat stress tolerance in rice. Gene 2019, 684, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ueda, A.; Ozaki, K.; Inada, M.; Takamatsu, A.; Takahe, T. Analysis of heat-stress responsive genes in Aneurolepidium chinense leaves by differential display. Plant Prod. Sci. 2002, 5, 229–235. [Google Scholar] [CrossRef]
- Çakır Aydemir, B.; Yüksel Özmen, C.; Kibar, U.; Mutaf, F.; Büyük, P.B.; Bakır, M.; Ergül, A. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE 2020, 15, e0236424. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Niu, C.Y.; Yang, C.R.; Jinn, T.L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Bassil, E.; Hamilton, J.S.; Inupakutika, M.A.; Zandalinas, S.I.; Tripathy, D.; Luo, Y.; Dion, E.; Fukui, G.; Kumazaki, A.; et al. ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 2016, 11, e0147625. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Locus Name | ORF (bp) | Chrom. (Strand) | No. of Introns | Proteins | Subcellular Localization | ||
---|---|---|---|---|---|---|---|---|
Length (aa) | MW (kDa) | PI | ||||||
SlPDI1-1 | Solyc06g060290 | 1557 | C06 (−strand) | 9 | 438 | 58.11 | 5.02 | Endoplasmic reticulum |
SlPDI1-2 | Solyc05g018700 | 1185 | C05 (−strand) | 10 | 496 | 44.47 | 5.10 | Endoplasmic reticulum |
SlPDI1-3 | Solyc06g005940 | 1500 | C06 (−strand) | 9 | 499 | 55.74 | 5.18 | Endoplasmic reticulum |
SlPDI1-4 | Solyc05g056400 | 1590 | C05 (+strand) | 9 | 537 | 59.01 | 4.96 | Endoplasmic reticulum |
SlPDI2-1 | Solyc04g049450 | 1692 | C04 (+strand) | 11 | 563 | 63.10 | 4.65 | Endoplasmic reticulum |
SlPDI2-2 | Solyc06g075210 | 1644 | C06 (+strand) | 11 | 554 | 61.66 | 4.91 | Endoplasmic reticulum |
SlPDI2-3 | Solyc11g069400 | 1743 | C11 (−strand) | 11 | 580 | 64.58 | 4.49 | Endoplasmic reticulum |
SlPDI3-1 | Solyc03g120720 | 1617 | C03 (+strand) | 11 | 538 | 60.68 | 4.81 | Endoplasmic reticulum |
SlPDI4-1 | Solyc01g100320 | 1080 | C01 (−strand) | 10 | 359 | 39.45 | 5.43 | Endoplasmic reticulum |
SlPDI5-1 | Solyc07g049450 | 1299 | C07 (−strand) | 8 | 432 | 47.07 | 5.58 | Extracellular |
SlPDI6-1 | Solyc11g069690 | 450 | C11 (+strand) | 3 | 125 | 16.92 | 4.83 | Extracellular |
SlPDI7-1 | Solyc06g065320 | 1329 | C06 (+strand) | 4 | 326 | 49.69 | 5.20 | Plasma membrane |
SlPDI7-2 | Solyc11g019920 | 1308 | C11 (+strand) | 4 | 435 | 49.30 | 5.09 | Plasma membrane |
SlPDI8-1 | Solyc07g064250 | 1446 | C07 (−strand) | 14 | 481 | 53.98 | 6.62 | Plasma membrane |
SlPDI9-1 | Solyc04g007610 | 1545 | C04 (−strand) | 11 | 514 | 57.66 | 7.76 | Extracellular |
SlPDI10-1 | Solyc04g074240 | 972 | C04 (−strand) | 3 | 323 | 35.56 | 8.74 | Plasma membrane |
SlPDI11-1 | Solyc03g031620 | 885 | C03 (−strand) | 4 | 456 | 50.82 | 6.78 | Chloroplast |
SlPDI11-2 | Solyc02g080640 | 1044 | C02 (+strand) | 3 | 461 | 48.20 | 6.08 | Chloroplast |
SlPDI11-3 | Solyc02g032860 | 660 | C02 (+strand) | 4 | 456 | 50.70 | 6.40 | Chloroplast |
Name | Signal Peptide | Trans-Membrane | Domain Organization | Active Site Motif | Conserved Charge Pair Sequence | Conserved Arginine | C-Terminal Signal |
---|---|---|---|---|---|---|---|
SlPDI1-1 | No | No | a-b-a’ | CGHC, CGHC | E56-K90, E399-K432 | R130 | -RCYC |
SlPDI1-2 | 1-17 | No | a-b-a’ | CGYC, CRYC | Q44-K78, E387-K420 | R118, R457 | -KDEL |
SlPDI1-3 | 1-23 | No | a-b-a’ | CGHC, CGHC | E50-K84, E393-K426 | R124 | -FRGL |
SlPDI1-4 | 1-21 | 512-534 | a-b-a’-t | CGHC, CGHC | E49-K83, E392-K425 | R123, R462 | -ISCN |
SlPDI2-1 | 1-24 | No | a-b-b’-a’ | CGHC, CGHC | E105-K137, E444-K477 | R173, R515 | -KDEL |
SlPDI2-2 | 1-27 | No | a-b-a’ | NGYC, CRQC | E102-K134, E443-K476 | R170, P514 | -RDEL |
SlPDI2-3 | 1-26 | No | a-b-b’-a’ | CGHC, CGHC | E121-K153, E460-K493 | R189, R531 | -KDEL |
SlPDI3-1 | 1-29 | No | a-c-b-a’ | CARS, CITC | L103-K137, E444-R477 | F173, S514 | -RDEL |
SlPDI4-1 | No | No | a°-a-D | CGHC, CGHC | E47-K80, E166-N199 | R118, R237 | -ATFA |
SlPDI5-1 | 1-22 | No | a°-a-b | CGHC, CGHC | E52-A83, E180-H211 | R120, R249 | -KDEL |
SlPDI6-1 | No | No | a | CKHC | K51-Q84 | R121 | -TERY |
SlPDI7-1 | No | No | a-c-b | CGHC | D18-K52 | R88 | -TETY |
SlPDI7-2 | 1-25 | 378-400 | a-b-t | CGHC | D57-K91 | R127 | -EKID |
SlPDI8-1 | No | No | e-a-f | CYWS | N164-K203 | R249 | -GKNF |
SlPDI9-1 | 1-22 | 478-500 | a-g-t | CPAC | E71-R109 | Q147 | -RSWN |
SlPDI10-1 | 1-22 | No | a | CPFS | L92-I123 | R159 | -SSTH |
SlPDI11-1 | No | No | h-a’ | CRFC | V370-R404 | R443 | -NALR |
SlPDI11-2 | No | No | h-a’ | CQFC | V375-R409 | R448 | -NALR |
SlPDI11-3 | No | No | h-a’ | CQFC | V370-R404 | R443 | -NALR |
Duplicated Gene Pairs | Ka | Ks | Ka/Ks | Duplication Type | Types of Selection | Time (MYA) |
---|---|---|---|---|---|---|
SlPDI2-2/SlPDI2-3 | 0.197166 | 0.868192 | 0.227099 | Segmental | Purifying selection | 28.94 |
SlPDI11-1/SlPDI11-2 | 0.095269 | 0.62544 | 0.152323 | Segmental | Purifying selection | 20.85 |
SlPDI11-2/SlPDI11-3 | 0.072036 | 0.628726 | 0.114574 | Segmental | Purifying selection | 20.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wai, A.H.; Waseem, M.; Khan, A.B.M.M.M.; Nath, U.K.; Lee, D.J.; Kim, S.T.; Kim, C.K.; Chung, M.Y. Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato (Solanum lycopersicum L.). Genes 2021, 12, 23. https://doi.org/10.3390/genes12010023
Wai AH, Waseem M, Khan ABMMM, Nath UK, Lee DJ, Kim ST, Kim CK, Chung MY. Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato (Solanum lycopersicum L.). Genes. 2021; 12(1):23. https://doi.org/10.3390/genes12010023
Chicago/Turabian StyleWai, Antt Htet, Muhammad Waseem, A B M Mahbub Morshed Khan, Ujjal Kumar Nath, Do Jin Lee, Sang Tae Kim, Chang Kil Kim, and Mi Young Chung. 2021. "Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato (Solanum lycopersicum L.)" Genes 12, no. 1: 23. https://doi.org/10.3390/genes12010023
APA StyleWai, A. H., Waseem, M., Khan, A. B. M. M. M., Nath, U. K., Lee, D. J., Kim, S. T., Kim, C. K., & Chung, M. Y. (2021). Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato (Solanum lycopersicum L.). Genes, 12(1), 23. https://doi.org/10.3390/genes12010023