Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Primary Open-Angle Glaucoma
3.1.1. European Descent
3.1.2. African Descent
3.1.3. Asian Descent
3.1.4. Middle Eastern Descent
3.1.5. Latin American Descent
3.2. Primary Angle-Closure Glaucoma
3.2.1. Asian Descent
3.2.2. European Descent
3.2.3. Middle Eastern Descent
3.2.4. Latin American Descent and African Descent
3.3. Exfoliation (Pseudoexfoliation) Glaucoma
3.3.1. European Descent
3.3.2. African Descent
3.3.3. Asian Descent
3.3.4. Middle Eastern Descent
3.3.5. Latin American Descent
3.4. Key Pathways and Limitations for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABCC5 | ATP binding cassette subfamily C member 5 |
ACD | anterior chamber depth |
AD | African descent |
ADAGES | African Descent and Glaucoma Evaluation Study |
AUC | area under the curve |
BMP | bone morphogenic protein |
CCT | central corneal thickness |
CI | confidence interval |
CGSC | Chinese Glaucoma Study Consortium |
DPM | dolichol phosphate mannose |
ED | European descent |
ECM | extracellular matrix |
eNOS | endothelial nitric oxide synthase |
GERA | Genetic Epidemiology Research in Adult Health and Aging |
GLAUGEN | Glaucoma Genes and Environment |
GST | glutathione S-transferase |
GWAS | genome-wide association studies |
HGF | hepatocyte growth factor |
HSP70 | heat-shock protein 70 |
HTG | high tension glaucoma |
IOP | intraocular pressure |
LAD | Latin American descent |
LAZ | long anterior zonules |
LOXL1 | lysyl oxidase-like 1 |
MAF | minor allele frequency |
ME | Middle Eastern |
MFRP | membrane type frizzled related protein |
NEIGHBOR | National Eye Institute Glaucoma Human Genetics Collaboration |
NOS3 | nitric oxide synthase gene |
NTG | normal tension glaucoma |
OR | odds ratio |
PACG | primary angle closure glaucoma |
PIC | plateau iris configuration |
POAG | Primary open-angle glaucoma |
PRS | polygenic risk scoring |
RF | Risk factor |
RNFL | retinal nerve fiber layer |
SD | standard deviation |
SNPs | single nucleotide polymorphisms |
TGF-β | transforming growth factor beta |
VCDR | vertical cup-disc ratio |
WES | whole exome sequencing |
XFG | exfoliation glaucoma |
XFS | exfoliation (pseudoexfoliation) syndrome |
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.V.; Ervin, A.M.; Friedman, D.S.; Jampel, H.D.; Hawkins, B.S.; Vollenweider, D.; Chelladurai, Y.; Ward, D.; Suarez-Cuervo, C.; Robinson, K.A. Comparative effectiveness of treatments for open-angle glaucoma: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013, 158, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Huck, A.; Harris, A.; Siesky, B.; Kim, N.; Muchnik, M.; Kanakamedala, P.; Amireskandari, A.; Abrams-Tobe, L. Vascular considerations in glaucoma patients of African and European descent. Acta Ophthalmol. 2014, 92, e336–e340. [Google Scholar] [CrossRef] [Green Version]
- Kanakamedala, P.; Harris, A.; Siesky, B.; Tyring, A.; Muchnik, M.; Eckert, G.; Abrams Tobe, L. Optic nerve head morphology in glaucoma patients of African descent is strongly correlated to retinal blood flow. Br. J. Ophthalmol. 2014, 98, 1551–1554. [Google Scholar] [CrossRef] [Green Version]
- Siesky, B.; Harris, A.; Carr, J.; Verticchio Vercellin, A.; Hussain, R.M.; Parekh Hembree, P.; Wentz, S.; Isaacs, M.; Eckert, G.; Moore, N.A. Reductions in Retrobulbar and Retinal Capillary Blood Flow Strongly Correlate with Changes in Optic Nerve Head and Retinal Morphology Over 4 Years in Open-angle Glaucoma Patients of African Descent Compared with Patients of European Descent. J. Glaucomaa 2016, 25, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Siesky, B.; Harris, A.; Racette, L.; Abassi, R.; Chandrasekhar, K.; Tobe, L.A.; Behzadi, J.; Eckert, G.; Amireskandari, A.; Muchnik, M. Differences in ocular blood flow in glaucoma between patients of African and European descent. J. Glaucoma 2015, 24, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Youngblood, H.; Hauser, M.A.; Liu, Y. Update on the genetics of primary open-angle glaucoma. Exp. Eye Res. 2019, 188, 107795. [Google Scholar] [CrossRef]
- Wang, J.; Yusufu, M.; Khor, C.C.; Aung, T.; Wang, N. The genetics of angle closure glaucoma. Exp. Eye Res. 2019, 189, 107835. [Google Scholar] [CrossRef]
- Challa, P. Genetics of pseudoexfoliation syndrome. Curr. Opin. Ophthalmol. 2009, 20, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Aboobakar, I.F.; Allingham, R.R. Genetics of exfoliation syndrome and glaucoma. Int. Ophthalmol. Clin. 2014, 54, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Wilensky, J.T.; Gandhi, N.; Pan, T. Racial influences in open-angle glaucoma. Ann. Ophthalmol. 1978, 10, 1398–1402. [Google Scholar] [PubMed]
- Racette, L.; Wilson, M.R.; Zangwill, L.M.; Weinreb, R.N.; Sample, P.A. Primary open-angle glaucoma in blacks: A review. Surv. Ophthalmol. 2003, 48, 295–313. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Sommer, A.; Katz, J.; Royall, R.M.; Quigley, H.A.; Javitt, J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991, 266, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Richardson, T.M.; Hertzmark, E.; Grant, W.M. Race as a risk factor for progressive glaucomatous damage. Ann. Ophthalmol. 1985, 17, 653–659. [Google Scholar]
- Qu, W.; Li, Y.; Song, W.; Zhou, X.; Kang, Y.; Yan, L.; Sui, H.; Yuan, H. Prevalence and risk factors for angle-closure disease in a rural Northeast China population: A population-based survey in Bin County, Harbin. Acta Ophthalmol. 2011, 89, e515–e520. [Google Scholar] [CrossRef]
- Sihota, R.; Agarwal, H.C. Profile of the subtypes of angle closure glaucoma in a tertiary hospital in north India. Indian J. Ophthalmol. 1998, 46, 25–29. [Google Scholar]
- Das, J.; Bhomaj, S.; Chaudhuri, Z.; Sharma, P.; Negi, A.; Dasgupta, A. Profile of glaucoma in a major eye hospital in north India. Indian J. Ophthalmol. 2001, 49, 25–30. [Google Scholar]
- Foster, P.J.; Baasanhu, J.; Alsbirk, P.H.; Munkhbayar, D.; Uranchimeg, D.; Johnson, G.J. Glaucoma in Mongolia: A Population-Based Survey in Hövsgöl Province, Northern Mongolia. Arch. Ophthalmol. 1996, 114, 1235–1241. [Google Scholar] [CrossRef]
- Arkell, S.M.; Lightman, D.A.; Sommer, A.; Taylor, H.R.; Korshin, O.M.; Tielsch, J.M. The Prevalence of Glaucoma Among Eskimos of Northwest Alaska. Arch. Ophthalmol. 1987, 105, 482–485. [Google Scholar] [CrossRef]
- Alsbirk, P.H. Anterior chamber depth and primary angle-closure glaucoma. I. An epidemiologic study in Greenland Eskimos. Acta Ophthalmol. (Copenh) 1975, 53, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Casson, R.J.; Newland, H.S.; Muecke, J.; McGovern, S.; Abraham, L.; Shein, W.K.; Selva, D.; Aung, T. Prevalence of glaucoma in rural Myanmar: The Meiktila Eye Study. Br. J. Ophthalmol. 2007, 91, 710–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.Y.; Wong, T.Y.; Foster, P.J.; Loo, J.L.; Rosman, M.; Loon, S.C.; Wong, W.L.; Saw, S.M.; Aung, T. The prevalence and types of glaucoma in malay people: The Singapore Malay eye study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3846–3851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakata, K.; Sakata, L.M.; Sakata, V.M.; Santini, C.; Hopker, L.M.; Bernardes, R.; Yabumoto, C.; Moreira, A.T. Prevalence of glaucoma in a South brazilian population: Projeto Glaucoma. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4974–4979. [Google Scholar] [CrossRef] [PubMed]
- Day, A.C.; Baio, G.; Gazzard, G.; Bunce, C.; Azuara-Blanco, A.; Munoz, B.; Friedman, D.S.; Foster, P.J. The prevalence of primary angle closure glaucoma in European derived populations: A systematic review. Br. J. Ophthalmol. 2012, 96, 1162–1167. [Google Scholar] [CrossRef]
- Budenz, D.L.; Barton, K.; Whiteside-de Vos, J.; Schiffman, J.; Bandi, J.; Nolan, W.; Herndon, L.; Kim, H.; Hay-Smith, G.; Tielsch, J.M.; et al. Prevalence of Glaucoma in an Urban West African Population: The Tema Eye Survey. JAMA Ophthalmol. 2013, 131, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, L.R.; Kang, J.H.; Fan, B.; Levkovitch-Verbin, H.; Wiggs, J.L. LOXL1 Polymorphisms: Genetic Biomarkers that Presage Environmental Determinants of Exfoliation Syndrome. J. Glaucoma 2018, 27 (Suppl. 1), S20–S23. [Google Scholar] [CrossRef]
- Khawaja, A.P.; Viswanathan, A.C. Are we ready for genetic testing for primary open-angle glaucoma? Eye (Lond.) 2018, 32, 877–883. [Google Scholar] [CrossRef]
- Taylor, K.D.; Guo, X.; Zangwill, L.M.; Liebmann, J.M.; Girkin, C.A.; Feldman, R.M.; Dubiner, H.; Hai, Y.; Samuels, B.C.; Panarelli, J.F.; et al. Genetic Architecture of Primary Open-Angle Glaucoma in Individuals of African Descent: The African Descent and Glaucoma Evaluation Study III. Ophthalmology 2019, 126, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Xie, X.; Yang, D.; Xian, J.; Li, Y.; Ren, R.; Peng, X.; Jonas, J.B.; Weinreb, R.N. Orbital cerebrospinal fluid space in glaucoma: The Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology 2012, 119, 2065–2073. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Jonas, J.B.; Tian, G.; Zhen, Y.; Ma, K.; Li, S.; Wang, H.; Li, B.; Zhang, X.; Wang, N. Cerebrospinal fluid pressure in glaucoma: A prospective study. Ophthalmology 2010, 117, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M. Genome-wide association studies: The good, the bad and the ugly. Clin. Med. (Lond.) 2014, 14, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Cooke Bailey, J.N. Progress, Not Perfection: Intraocular Pressure Genetic Risk Score Stratifies Clinically Relevant Primary Open-Angle Glaucoma Outcomes. Ophthalmology 2020, 127, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Igo, R.P., Jr.; Cooke Bailey, J.N. Genetic risk scores in complex eye disorders. In Genetics and Genomics of Eye Disease: Advancing to Precision Medicine; Gao, X.R., Ed.; Elsevier: New York, NY, USA, 2020; pp. 259–275. [Google Scholar]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The Missing Diversity in Human Genetic Studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Gharahkhani, P.; Burdon, K.P.; Fogarty, R.; Sharma, S.; Hewitt, A.W.; Martin, S.; Law, M.H.; Cremin, K.; Bailey, J.N.C.; Loomis, S.J.; et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat. Genet. 2014, 46, 1120–1125. [Google Scholar] [CrossRef]
- Bailey, J.N.; Loomis, S.J.; Kang, J.H.; Allingham, R.R.; Gharahkhani, P.; Khor, C.C.; Burdon, K.P.; Aschard, H.; Chasman, D.I.; Igo, R.P., Jr.; et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat. Genet. 2016, 48, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Thorleifsson, G.; Walters, G.B.; Hewitt, A.W.; Masson, G.; Helgason, A.; DeWan, A.; Sigurdsson, A.; Jonasdottir, A.; Gudjonsson, S.A.; Magnusson, K.P.; et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat. Genet. 2010, 42, 906–909. [Google Scholar] [CrossRef] [Green Version]
- Burdon, K.P.; Macgregor, S.; Hewitt, A.W.; Sharma, S.; Chidlow, G.; Mills, R.A.; Danoy, P.; Casson, R.; Viswanathan, A.C.; Liu, J.Z.; et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat. Genet. 2011, 43, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Wiggs, J.L.; Yaspan, B.L.; Hauser, M.A.; Kang, J.H.; Allingham, R.R.; Olson, L.M.; Abdrabou, W.; Fan, B.J.; Wang, D.Y.; Brodeur, W.; et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012, 8, e1002654. [Google Scholar] [CrossRef] [Green Version]
- Springelkamp, H.; Iglesias, A.I.; Cuellar-Partida, G.; Amin, N.; Burdon, K.P.; van Leeuwen, E.M.; Gharahkhani, P.; Mishra, A.; van der Lee, S.J.; Hewitt, A.W.; et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 2015, 24, 2689–2699. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.; Gong, B.; et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef]
- Hysi, P.G.; Cheng, C.Y.; Springelkamp, H.; Macgregor, S.; Bailey, J.N.C.; Wojciechowski, R.; Vitart, V.; Nag, A.; Hewitt, A.W.; Höhn, R.; et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 2014, 46, 1126–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choquet, H.; Paylakhi, S.; Kneeland, S.C.; Thai, K.K.; Hoffmann, T.J.; Yin, J.; Kvale, M.N.; Banda, Y.; Tolman, N.G.; Williams, P.A.; et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat. Commun. 2018, 9, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, A.I.; Mishra, A.; Vitart, V.; Bykhovskaya, Y.; Höhn, R.; Springelkamp, H.; Cuellar-Partida, G.; Gharahkhani, P.; Bailey, J.N.C.; Willoughby, C.E.; et al. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nat. Commun. 2018, 9, 1864. [Google Scholar] [CrossRef] [PubMed]
- Shiga, Y.; Akiyama, M.; Nishiguchi, K.M.; Sato, K.; Shimozawa, N.; Takahashi, A.; Momozawa, Y.; Hirata, M.; Matsuda, K.; Yamaji, T.; et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum. Mol. Genet. 2018, 27, 1486–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, M.A.; Allingham, R.R.; Aung, T.; Van Der Heide, C.J.; Taylor, K.D.; Rotter, J.I.; Wang, S.H.J.; Bonnemaijer, P.W.M.; Williams, S.E.; Abdullahi, S.M.; et al. Association of Genetic Variants with Primary Open-Angle Glaucoma among Individuals with African Ancestry. JAMA 2019, 322, 1682–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.Y.; Rong, S.S.; Wu, Z.; Huang, C.; Matsushita, K.; Ng, T.K.; Leung, C.K.S.; Kawashima, R.; Usui, S.; Tam, P.O.S.; et al. Association of the CAV1-CAV2 locus with normal-tension glaucoma in Chinese and Japanese. Clin. Exp. Ophthalmol. 2020, 48, 658–665. [Google Scholar] [CrossRef]
- Osman, W.; Takahashi, A.; Kubo, M.; Nakamura, Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum. Mol. Genet. 2012, 21, 2836–2842. [Google Scholar] [CrossRef]
- Wiggs, J.L.; Hauser, M.A.; Abdrabou, W.; Allingham, R.R.; Budenz, D.L.; Delbono, E.; Friedman, D.S.; Kang, J.H.; Gaasterland, D.; Gaasterland, T.; et al. The NEIGHBOR consortium primary open-angle glaucoma genome-wide association study: Rationale, study design, and clinical variables. J. Glaucoma 2013, 22, 517–525. [Google Scholar] [CrossRef]
- Burdon, K.P.; Awadalla, M.S.; Mitchell, P.; Wang, J.J.; White, A.; Keane, M.C.; Souzeau, E.; Graham, S.L.; Goldberg, I.; Healey, P.R.; et al. DNA methylation at the 9p21 glaucoma susceptibility locus is associated with normal-tension glaucoma. Ophthalmic Genet. 2018, 39, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnemaijer, P.W.M.; Iglesias, A.I.; Nadkarni, G.N.; Sanyiwa, A.J.; Hassan, H.G.; Cook, C.; Group, G.S.; Simcoe, M.; Taylor, K.D.; Schurmann, C.; et al. Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum. Genet. 2018, 137, 847–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamoto, M.; Kaburaki, T.; Mabuchi, A.; Araie, M.; Amano, S.; Aihara, M.; Tomidokoro, A.; Iwase, A.; Mabuchi, F.; Kashiwagi, K.; et al. Common variants on chromosome 9p21 are associated with normal tension glaucoma. PLoS ONE 2012, 7, e40107. [Google Scholar] [CrossRef] [Green Version]
- Nunes, H.F.; Ananina, G.; Costa, V.P.; Zanchin, N.I.T.; de Vasconcellos, J.P.C.; de Melo, M.B. Investigation of CAV1/CAV2 rs4236601 and CDKN2B-AS1 rs2157719 in primary open-angle glaucoma patients from Brazil. Ophthalmic Genet. 2018, 39, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Meguro, A.; Inoko, H.; Ota, M.; Mizuki, N.; Bahram, S. Genome-wide association study of normal tension glaucoma: Common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology 2010, 117, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Magalhães da Silva, T.; Rocha, A.V.; Lacchini, R.; Marques, C.R.; Silva, E.S.; Tanus-Santos, J.E.; Rios-Santos, F. Association of polymorphisms of endothelial nitric oxide synthase (eNOS) gene with the risk of primary open angle glaucoma in a Brazilian population. Gene 2012, 502, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Ayub, H.; Khan, M.I.; Micheal, S.; Akhtar, F.; Ajmal, M.; Shafique, S.; Ali, S.H.; den Hollander, A.I.; Ahmed, A.; Qamar, R. Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol. Vis. 2010, 16, 18–25. [Google Scholar]
- Oliveira, M.B.; de Vasconcellos, J.P.C.; Ananina, G.; Costa, V.P.; de Melo, M.B. Association between IL1A and IL1B polymorphisms and primary open angle glaucoma in a Brazilian population. Exp. Biol Med. (Maywood) 2018, 243, 1083–1091. [Google Scholar] [CrossRef]
- Suh, W.; Won, H.H.; Kee, C. The Association of Single-Nucleotide Polymorphisms in the MMP-9 Gene with Normal Tension Glaucoma and Primary Open-Angle Glaucoma. Curr. Eye Res. 2018, 43, 534–538. [Google Scholar] [CrossRef]
- Suh, W.; Kim, S.; Ki, C.S.; Kee, C. Toll-like receptor 4 gene polymorphisms do not associate with normal tension glaucoma in a Korean population. Mol. Vis. 2011, 17, 2343–2348. [Google Scholar]
- Nakano, M.; Ikeda, Y.; Taniguchi, T.; Yagi, T.; Fuwa, M.; Omi, N.; Tokuda, Y.; Tanaka, M.; Yoshii, K.; Kageyama, M.; et al. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc. Natl. Acad. Sci. USA 2009, 106, 12838–12842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondkar, A.A.; Azad, T.A.; Almobarak, F.A.; Kalantan, H.; Sultan, T.; Alsabaani, N.A.; Al-Obeidan, S.A.; Abu-Amero, K.K. Polymorphism rs10483727 in the SIX1/SIX6 Gene Locus Is a Risk Factor for Primary Open Angle Glaucoma in a Saudi Cohort. Genet. Test. Mol. Biomark. 2018, 22, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Fingert, J.H.; Robin, A.L.; Stone, J.L.; Roos, B.R.; Davis, L.K.; Scheetz, T.E.; Bennett, S.R.; Wassink, T.H.; Kwon, Y.H.; Alward, W.L.; et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 2011, 20, 2482–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Allingham, R.R.; Nakano, M.; Jia, L.; Chen, Y.; Ikeda, Y.; Mani, B.; Chen, L.J.; Kee, C.; Garway-Heath, D.F.; et al. A common variant near TGFβR3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 2015, 24, 3880–3892. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Partida, J.; Alvarado Castillo, B.; Martinez-Rizo, A.B.; Rosales-Diaz, R.; Velazquez-Fernandez, J.B.; Santos, A. Association of single-nucleotide polymorphisms in non-coding regions of the TLR4 gene with primary open angle glaucoma in a Mexican population. Ophthalmic Genet. 2017, 38, 325–329. [Google Scholar] [CrossRef]
- Navarro-Partida, J.; Martinez-Rizo, A.B.; Ramirez-Barrera, P.; Velazquez-Fernandez, J.B.; Mondragon-Jaimes, V.A.; Santos-Garcia, A.; Benites-Godinez, V. Association of Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile with the risk of primary open angle glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 995–1001. [Google Scholar] [CrossRef]
- MacGregor, S.; Ong, J.-S.; An, J.; Han, X.; Zhou, T.; Siggs, O.M.; Law, M.H.; Souzeau, E.; Sharma, S.; Lynn, D.J.; et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat. Genet. 2018, 50, 1067–1071. [Google Scholar] [CrossRef]
- Khawaja, A.P.; Cooke Bailey, J.N.; Wareham, N.J.; Scott, R.A.; Simcoe, M.; Igo, R.P., Jr.; Song, Y.E.; Wojciechowski, R.; Cheng, C.-Y.; Khaw, P.T.; et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat. Genet. 2018, 50, 778–782. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Agrawal, A.; Cole, J.W.; Hansel, N.N.; Barnes, K.C.; Beaty, T.H.; Bennett, S.N.; Bierut, L.J.; Boerwinkle, E.; Doheny, K.F.; et al. The Gene, Environment Association Studies consortium (GENEVA): Maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet. Epidemiol. 2010, 34, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Fan, B.J.; Bailey, J.C.; Igo, R.P., Jr.; Kang, J.H.; Boumenna, T.; Brilliant, M.H.; Budenz, D.L.; Fingert, J.H.; Gaasterland, T.; Gaasterland, D.; et al. Association of a Primary Open-Angle Glaucoma Genetic Risk Score with Earlier Age at Diagnosis. JAMA Ophthalmol. 2019, 137, 1190–1194. [Google Scholar] [CrossRef]
- Gao, X.R.; Huang, H.; Kim, H. Polygenic Risk Score Is Associated with Intraocular Pressure and Improves Glaucoma Prediction in the UK Biobank Cohort. Transl. Vis. Sci. Technol. 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qassim, A.; Souzeau, E.; Siggs, O.M.; Hassall, M.M.; Han, X.; Griffiths, H.L.; Frost, N.A.; Vallabh, N.A.; Kirwan, J.F.; Menon, G.; et al. An Intraocular Pressure Polygenic Risk Score Stratifies Multiple Primary Open-Angle Glaucoma Parameters Including Treatment Intensity. Ophthalmology 2020, 127, 901–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanon-Moreno, V.; Ortega-Azorin, C.; Asensio-Marquez, E.M.; Garcia-Medina, J.J.; Pinazo-Duran, M.D.; Coltell, O.; Ordovas, J.M.; Corella, D. A Multi-Locus Genetic Risk Score for Primary Open-Angle Glaucoma (POAG) Variants Is Associated with POAG Risk in a Mediterranean Population: Inverse Correlations with Plasma Vitamin C and E Concentrations. Int. J. Mol. Sci. 2017, 18, 2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Zode, G.; Kasetti, R.B.; Ran, F.A.; Yan, W.; Sharma, T.P.; Bugge, K.; Searby, C.C.; Fingert, J.H.; Zhang, F.; et al. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc. Natl. Acad. Sci. USA 2017, 114, 11199–11204. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, T.; Child, A.; Hitchings, R.; Brice, G.; Miller, L.; Coca-Prados, M.; Héon, E.; Krupin, T.; Ritch, R.; Kreutzer, D.; et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002, 295, 1077–1079. [Google Scholar] [CrossRef]
- Fingert, J.H.; Robin, A.L.; Scheetz, T.E.; Kwon, Y.H.; Liebmann, J.M.; Ritch, R.; Alward, W.L. Tank-Binding Kinase 1 (TBK1) Gene and Open-Angle Glaucomas (An American Ophthalmol. ogical Society Thesis). Tans. Am. Ophthalmol. Soc. 2016, 114, T6. [Google Scholar]
- Micheal, S.; Saksens, N.T.M.; Hogewind, B.F.; Khan, M.I.; Hoyng, C.B.; den Hollander, A.I. Identification of TP53BP2 as a Novel Candidate Gene for Primary Open Angle Glaucoma by Whole Exome Sequencing in a Large Multiplex Family. Mol. Neurobiol. 2018, 55, 1387–1395. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.; Gramer, E.; Müller-Myhsok, B.; Pasutto, F.; Reinthal, E.; Wissinger, B.; Weisschuh, N. Evaluation of nine candidate genes in patients with normal tension glaucoma: A case control study. BMC Med. Genet. 2009, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.K.; Burdon, K.P.; Fitzgerald, J.T.; Zhou, T.; Fogarty, R.; Souzeau, E.; Landers, J.; Mills, R.A.; Casson, R.J.; Ridge, B.; et al. Genetic Association at the 9p21 Glaucoma Locus Contributes to Sex Bias in Normal-Tension Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3416–3421. [Google Scholar] [CrossRef] [Green Version]
- Wróbel-Dudzińska, D.; Kosior-Jarecka, E.; Łukasik, U.; Kocki, J.; Witczak, A.; Mosiewicz, J.; Żarnowski, T. Risk Factors in Normal-Tension Glaucoma and High-Tension Glaucoma in relation to Polymorphisms of Endothelin-1 Gene and Endothelin-1 Receptor Type a Gene. J. Ophthalmol. 2015, 2015, 368792. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Fränkl, S.A.; Flammer, J.; Grieshaber, M.C.; Hollo, G.; Teuchner, B.; Haefeli, W.E. No difference in genotype frequencies of polymorphisms of the nitric oxide pathway between Caucasian normal and high tension glaucoma patients. Mol. Vis. 2012, 18, 2174–2181. [Google Scholar] [PubMed]
- Kosior-Jarecka, E.; Łukasik, U.; Wróbel-Dudzińska, D.; Kocki, J.; Bartosińska, J.; Witczak, A.; Chodorowska, G.; Mosiewicz, J.; Żarnowski, T. Risk Factors for Normal and High-Tension Glaucoma in Poland in Connection with Polymorphisms of the Endothelial Nitric Oxide Synthase Gene. PLoS ONE 2016, 11, e0147540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Łukasik, U.; Aung, T.; Khor, C.C.; Kocki, J.; Żarnowski, T. Plasma endothelin-1 and single nucleotide polymorphisms of endothelin-1 and endothelin type A receptor genes as risk factors for normal tension glaucoma. Mol. Vis. 2016, 22, 1256–1266. [Google Scholar]
- Cao, D.; Jiao, X.; Liu, X.; Hennis, A.; Leske, M.C.; Nemesure, B.; Hejtmancik, J.F. CDKN2B polymorphism is associated with primary open-angle glaucoma (POAG) in the Afro-Caribbean population of Barbados, West Indies. PLoS ONE 2012, 7, e39278. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hauser, M.A.; Akafo, S.K.; Qin, X.; Miura, S.; Gibson, J.R.; Wheeler, J.; Gaasterland, D.E.; Challa, P.; Herndon, L.W.; et al. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Investig. Opthhalmol. Vis. Sci. 2013, 54, 6248–6254. [Google Scholar] [CrossRef]
- Williams, S.E.; Carmichael, T.R.; Allingham, R.R.; Hauser, M.; Ramsay, M. The genetics of POAG in black South Africans: A candidate gene association study. Sci. Rep. 2015, 5, 8378. [Google Scholar] [CrossRef]
- Sample, P.A.; Girkin, C.A.; Zangwill, L.M.; Jain, S.; Racette, L.; Becerra, L.M.; Weinreb, R.N.; Medeiros, F.A.; Wilson, M.R.; De León-Ortega, J.; et al. The African Descent and Glaucoma Evaluation Study (ADAGES): Design and baseline data. Arch. Ophthalmol. 2009, 127, 1136–1145. [Google Scholar] [CrossRef] [Green Version]
- Zangwill, L.M.; Ayyagari, R.; Liebmann, J.M.; Girkin, C.A.; Feldman, R.; Dubiner, H.; Dirkes, K.A.; Holmann, M.; Williams-Steppe, E.; Hammel, N.; et al. The African Descent and Glaucoma Evaluation Study (ADAGES) III: Contribution of Genotype to Glaucoma Phenotype in African Americans: Study Design and Baseline Data. Ophthalmology 2019, 126, 156–170. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, H.; Duan, X.; Li, L.; Wang, H.; Wu, J.; Hu, J.; Cao, K.; Zhao, A.; Liang, J.; et al. The Chinese Glaucoma Study Consortium for Patients with Glaucoma: Design, Rationale and Baseline Patient Characteristics. J. Glaucoma 2019, 28, 974–978. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Lack of correlation between S1 RNA binding domain 1 SNP rs3213787/rs11884064 and normal-tension glaucoma in a population from the Republic of Korea. Medicine (Baltimore) 2020, 99, e20066. [Google Scholar] [CrossRef]
- Shi, D.; Funayama, T.; Mashima, Y.; Takano, Y.; Shimizu, A.; Yamamoto, K.; Mengkegale, M.; Miyazawa, A.; Yasuda, N.; Fukuchi, T.; et al. Association of HK2 and NCK2 with normal tension glaucoma in the Japanese population. PLoS ONE 2013, 8, e54115. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Association of HK2 and NCK2 with normal-tension glaucoma in a population from the Republic of Korea. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2717–2721. [Google Scholar] [CrossRef]
- Lee, J.S.; Jeoung, J.W.; Oh, S.; Kim, D.M.; Ahn, J.H.; Kim, M.J.; Seong, M.W.; Park, S.S.; Kim, J.Y. No association between POU4F1, POU4F2, ISL1 polymorphisms and normal-tension glaucoma. Ophtalmic. Genet. 2020, 41, 427–431. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, Y.C.; Lee, M.Y.; Shin, H.Y. Lack of Correlation between ASB10 and Normal-tension Glaucoma in a Population from the Republic of Korea. Curr. Eye Res. 2020, 45, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Yasumura, R.; Meguro, A.; Ota, M.; Nomura, E.; Uemoto, R.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; et al. Investigation of the association between SLC1A3 gene polymorphisms and normal tension glaucoma. Mol. Vis. 2011, 17, 792–796. [Google Scholar] [PubMed]
- Nakamura, J.; Meguro, A.; Ota, M.; Nomura, E.; Nishide, T.; Kashiwagi, K.; Mabuchi, F.; Iijima, H.; Kawase, K.; Yamamoto, T.; et al. Association of toll-like receptor 2 gene polymorphisms with normal tension glaucoma. Mol. Vis. 2009, 15, 2905–2910. [Google Scholar] [PubMed]
- Tham, Y.C.; Liao, J.; Vithana, E.N.; Khor, C.C.; Teo, Y.Y.; Tai, E.S.; Wong, T.Y.; Aung, T.; Cheng, C.Y. Aggregate Effects of Intraocular Pressure and Cup-to-Disc Ratio Genetic Variants on Glaucoma in a Multiethnic Asian Population. Ophthalmology 2015, 122, 1149–1157. [Google Scholar] [CrossRef]
- Mabuchi, F.; Mabuchi, N.; Sakurada, Y.; Yoneyama, S.; Kashiwagi, K.; Iijima, H.; Yamagata, Z.; Takamoto, M.; Aihara, M.; Iwata, T.; et al. Additive effects of genetic variants associated with intraocular pressure in primary open-angle glaucoma. PLoS ONE 2017, 12, e0183709. [Google Scholar] [CrossRef]
- Lu, Y.; Vitart, V.; Burdon, K.P.; Khor, C.C.; Bykhovskaya, Y.; Mirshahi, A.; Hewitt, A.W.; Koehn, D.; Hysi, P.G.; Ramdas, W.D.; et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat. Genet. 2013, 45, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wang, W.; Zhou, M.; Chen, S.; Zhang, X. Association of glutathione S-transferase polymorphisms (GSTM1 and GSTT1) with primary open-angle glaucoma: An evidence-based meta-analysis. Gene 2013, 526, 80–86. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, Y.; Yin, J.; Huang, Z. Are glutathione S-transferase polymorphisms (GSTM1, GSTT1) associated with primary open angle glaucoma? A meta-analysis. Gene 2013, 527, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Eid, T.M.; el-Hawary, I.; el-Menawy, W. Prevalence of glaucoma types and legal blindness from glaucoma in the western region of Saudi Arabia: A hospital-based study. Int. Ophthalmol. 2009, 29, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Tadmouri, G.O.; Nair, P.; Obeid, T.; Al Ali, M.T.; Al Khaja, N.; Hamamy, H.A. Consanguinity and reproductive health among Arabs. Reprod Health 2009, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamoto, M.; Araie, M. Genetics of primary open angle glaucoma. Jpn. J. Opthalmol. 2014, 58, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kondkar, A.A.; Azad, T.A.; Almobarak, F.A.; Abu-Amero, K.K.; Al-Obeidan, S.A. Polymorphism rs7961953 in TMTC2 gene is not associated with primary open-angle glaucoma in a Saudi cohort. Ophthalmic. Genet. 2019, 40, 74–76. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Azad, T.A.; Almobarak, F.A.; Kalantan, H.; Sultan, T.; Al-Obeidan, S.A.; Abu-Amero, K.K. Polymorphism rs11656696 in GAS7 Is Not Associated with Primary Open Angle Glaucoma in a Saudi Cohort. Genet. Test. Mol. Biomark. 2017, 21, 754–758. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Sultan, T.; Almobarak, F.A.; Kalantan, H.; Abu-Amero, K.K.; Al-Obeidan, S.A. Plexin domain containing 2 (PLXDC2) gene polymorphism rs7081455 may not influence POAG risk in a Saudi cohort. BMC Res. Notes 2018, 11, 733. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Edward, N.B.; Kalantan, H.; Al-Kharashi, A.S.; Altuwaijri, S.; Mohamed, G.; Sultan, T.; Azad, T.A.; Abu-Amero, K.K. Lack of association between polymorphism rs540782 and primary open angle glaucoma in Saudi patients. J. Negat. Results Biomed. 2017, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Abu-Amero, K.K.; Kondkar, A.A.; Mousa, A.; Almobarak, F.A.; Alawad, A.; Altuwaijri, S.; Sultan, T.; Azad, T.A.; Al-Obeidan, S.A. Analysis of Cyclin-Dependent Kinase Inhibitor-2B rs1063192 Polymorphism in Saudi Patients with Primary Open-Angle Glaucoma. Genet. Test. Mol. Biomark. 2016, 20, 637–641. [Google Scholar] [CrossRef]
- Narooie-Nejad, M.; Rasouli, A.; Mousavi, M.; Rohani, M.R. Study of MYOC Gene Mutation in POAG Patients in Zahedan, Iran. Clin. Lab. 2017, 63, 1283–1291. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Azad, T.A.; Sultan, T.; Osman, E.A.; Almobarak, F.A.; Al-Obeidan, S.A. Association of endothelial nitric oxide synthase (NOS3) gene polymorphisms with primary open-angle glaucoma in a Saudi cohort. PLoS ONE 2020, 15, e0227417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Xing, Y.Q.; Chen, Z.; Ma, X.C.; Lu, Q. Association between interleukin-10 genetic polymorphisms and risk of primary open angle glaucoma in a Chinese Han population: A case-control study. Int. J. Ophthalmol. 2019, 12, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Fakhraie, G.; Parvini, F.; Ghanavi, J.; Saif, S.; Farnia, P. Association of IL-10 gene promoter polymorphisms with susceptibility to pseudoexfoliation syndrome, pseudoexfoliative and primary open-angle glaucoma. BMC Med. Genet. 2020, 21, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurster, P.; Harris, A.; Gonzalez, A.C.; Adjei, S.; Verticchio Vercellin, A.; Mathew, S.; Lang, M.; Eikenberry, J.; Siesky, B. Risk Factors for Open-angle Glaucoma in Persons of Latin American Descent. J. Glaucoma 2020, 29, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.; Ying-Lai, M.; Francis, B.A.; Nguyen, B.B.; Deneen, J.; Wilson, M.R.; Azen, S.P. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: The Los Angeles Latino Eye Study. Ophthalmology 2004, 111, 1439–1448. [Google Scholar] [CrossRef]
- Quigley, H.A.; West, S.K.; Rodriguez, J.; Munoz, B.; Klein, R.; Snyder, R. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch. Ophthalmol. 2001, 119, 1819–1826. [Google Scholar] [CrossRef] [Green Version]
- Kapetanakis, V.V.; Chan, M.P.; Foster, P.J.; Cook, D.G.; Owen, C.G.; Rudnicka, A.R. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and meta-analysis. Br. J. Ophthalmol. 2016, 100, 86–93. [Google Scholar] [CrossRef]
- Buentello-Volante, B.; Elizondo-Olascoaga, C.; Miranda-Duarte, A.; Guadarrama-Vallejo, D.; Cabral-Macias, J.; Zenteno, J.C. Association study of multiple gene polymorphisms with the risk of adult-onset primary open-angle glaucoma in a Mexican population. Exp. Eye Res. 2013, 107, 59–64. [Google Scholar] [CrossRef]
- Rocha, A.V.; Talbot, T.; Magalhães da Silva, T.; Almeida, M.C.; Menezes, C.A.; Di Pietro, G.; Rios-Santos, F. Is the GSTM1 null polymorphism a risk factor in primary open angle glaucoma? Mol. Vis. 2011, 17, 1679–1686. [Google Scholar]
- Silva, C.T.; Costa, N.B.; Silva, K.S.; Silva, R.E.; Moura, K.K. Association between primary open angle glaucoma and genetic polymorphisms GSTM1/GSTT1 in patients from Goiânia Central-West Region of Brazil. Genet. Mol. Res. 2014, 13, 8870–8875. [Google Scholar] [CrossRef]
- McDonald, K.K.; Abramson, K.; Beltran, M.A.; Ramirez, M.G.; Alvarez, M.; Ventura, A.; Santiago-Turla, C.; Schmidt, S.; Hauser, M.A.; Allingham, R.R. Myocilin and optineurin coding variants in Hispanics of Mexican descent with POAG. J. Hum. Genet. 2010, 55, 697–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza-Reinoso, V.; Patil, T.S.; Guevara-Fujita, M.L.; Fernández, S.; Vargas, E.; Castillo-Herrera, W.; Perez-Grossmann, R.; Lizaraso-Caparó, F.; Richards, J.E.; Fujita, R. Novel and known MYOC exon 3 mutations in an admixed Peruvian primary open-angle glaucoma population. Mol. Vis. 2012, 18, 2067–2075. [Google Scholar] [PubMed]
- Guevara-Fujita, M.L.; Perez-Grossmann, R.A.; Estrada-Cuzcano, A.; Pawar, H.; Vargas, E.; Richards, J.E.; Fujita, R. Recurrent Myocilin Asn480Lys glaucoma causative mutation arises de novo in a family of Andean descent. J. Glaucoma 2008, 17, 67–72. [Google Scholar] [CrossRef]
- Nannini, D.R.; Torres, M.; Chen, Y.I.; Taylor, K.D.; Rotter, J.I.; Varma, R.; Gao, X. A Genome-Wide Association Study of Vertical Cup-Disc Ratio in a Latino Population. Investig. Ophthalmol. Vis. Sci. 2017, 58, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dai, Y.; Chen, Y.; Yu, D.Y.; Cringle, S.J.; Chen, J.; Kong, X.; Wang, X.; Jiang, C. Primary angle closure glaucoma: What we know and what we don’t know. Prog. Retin. Eye Res. 2017, 57, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Shastry, B.S. Genetic susceptibility to primary angle closure glaucoma (PACG). Discov. Med. 2013, 15, 17–22. [Google Scholar] [PubMed]
- Nongpiur, M.E.; Ku, J.Y.; Aung, T. Angle closure glaucoma: A mechanistic review. Curr. Opin. Ophthalmol. 2011, 22, 96–101. [Google Scholar] [CrossRef]
- Alsbirk, F.H. Anatomical risk factors in primary angle-closure glaucoma. Int. Ophthalmol. 1992, 16, 265–272. [Google Scholar] [CrossRef]
- Chan, E.W.; Li, X.; Tham, Y.C.; Liao, J.; Wong, T.Y.; Aung, T.; Cheng, C.Y. Glaucoma in Asia: Regional prevalence variations and future projections. Br. J. Ophthalmol. 2016, 100, 78–85. [Google Scholar] [CrossRef]
- Lee, R.Y.; Huang, G.; Porco, T.C.; Chen, Y.C.; He, M.; Lin, S.C. Differences in iris thickness among African Americans, Caucasian Americans, Hispanic Americans, Chinese Americans, and Filipino-Americans. J. Glaucoma 2013, 22, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Casson, R.J. Anterior chamber depth and primary angle-closure glaucoma: An evolutionary perspective. Clin. Exp. Ophthalmol. 2008, 36, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Nolan, W.P.; Machin, D.; Seah, S.K.; Baasanhu, J.; Khaw, P.T.; Johnson, G.J.; Foster, P.J. Anterior chamber depth and the risk of primary angle closure in 2 East Asian populations. Arch. Ophthalmol. 2005, 123, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Friedman, D.S.; Zhou, Q.; Yang, X.H.; Sun, L.P.; Guo, L.; Chang, D.S.; Lian, L.; Wang, N.L. Prevalence and characteristics of primary angle-closure diseases in a rural adult Chinese population: The Handan Eye Study. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8672–8679. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.R. Genetic principles in primary angle-closure glaucoma. Zhonghua Yan Ke Za Zhi 1985, 21, 95–101. [Google Scholar]
- Amerasinghe, N.; Zhang, J.; Thalamuthu, A.; He, M.; Vithana, E.N.; Viswanathan, A.; Wong, T.Y.; Foster, P.J.; Aung, T. The heritability and sibling risk of angle closure in Asians. Ophthalmology 2011, 118, 480–485. [Google Scholar] [CrossRef]
- Wang, I.J.; Chiang, T.H.; Shih, Y.F.; Lu, S.C.; Lin, L.L.; Shieh, J.W.; Wang, T.H.; Samples, J.R.; Hung, P.T. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol. Vis. 2006, 12, 1223–1232. [Google Scholar]
- Vranka, J.A.; Kelley, M.J.; Acott, T.S.; Keller, K.E. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp. Eye Res. 2015, 133, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Guo, X.; Liu, X.; Cao, D.; Jia, X.; Xiao, X.; Li, S.; Fang, S.; Zhang, Q. Association of the single nucleotide polymorphisms in the extracellular matrix metalloprotease-9 gene with PACG in southern China. Mol. Vis. 2009, 15, 1412–1417. [Google Scholar]
- Awadalla, M.S.; Burdon, K.P.; Kuot, A.; Hewitt, A.W.; Craig, J.E. Matrix metalloproteinase-9 genetic variation and primary angle closure glaucoma in a Caucasian population. Mol. Vis. 2011, 17, 1420–1424. [Google Scholar]
- Awadalla, M.S.; Thapa, S.S.; Burdon, K.P.; Hewitt, A.W.; Craig, J.E. The association of hepatocyte growth factor (HGF) gene with primary angle closure glaucoma in the Nepalese population. Mol. Vis. 2011, 17, 2248–2254. [Google Scholar]
- Nongpiur, M.E.; Khor, C.C.; Jia, H.; Cornes, B.K.; Chen, L.J.; Qiao, C.; Nair, K.S.; Cheng, C.Y.; Xu, L.; George, R.; et al. ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLoS Genet. 2014, 10, e1004089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.Y.; Ma, L.; Tam, P.O.S.; Pang, C.P.; Tham, C.C.; Chen, L.J. Genetic Association of the PARL-ABCC5-HTR3D-HTR3C Locus with Primary Angle-Closure Glaucoma in Chinese. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4384–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khor, C.C.; Do, T.; Jia, H.; Nakano, M.; George, R.; Abu-Amero, K.; Duvesh, R.; Chen, L.J.; Li, Z.; Nongpiur, M.E.; et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 2016, 48, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Vithana, E.N.; Khor, C.-C.; Qiao, C.; Nongpiur, M.E.; George, R.; Chen, L.-J.; Do, T.; Abu-Amero, K.; Huang, C.K.; Low, S.; et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 2012, 44, 1142–1146. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, X.; Wang, L.; Hughes, G.; Qian, S.; Sun, X. Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3797–3802. [Google Scholar] [CrossRef] [Green Version]
- Awadalla, M.S.; Thapa, S.S.; Hewitt, A.W.; Burdon, K.P.; Craig, J.E. Association of genetic variants with primary angle closure glaucoma in two different populations. PLoS ONE 2013, 8, e67903. [Google Scholar] [CrossRef] [Green Version]
- Duvesh, R.; Verma, A.; Venkatesh, R.; Kavitha, S.; Ramulu, P.Y.; Wojciechowski, R.; Sundaresan, P. Association study in a South Indian population supports rs1015213 as a risk factor for primary angle closure. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5624–5628. [Google Scholar] [CrossRef]
- Liu, C.; Nongpiur, M.E.; Cheng, C.Y.; Khor, C.C.; Yu, M.; Husain, R.; Ho, C.L.; Wong, T.T.; Boey, P.Y.; Perera, S.; et al. Evaluation of Primary Angle-Closure Glaucoma Susceptibility Loci for Estimating Angle Closure Disease Severity. Ophthalmology 2020. [Google Scholar] [CrossRef]
- Nongpiur, M.E.; Khor, C.C.; Cheng, C.Y.; Husain, R.; Boey, P.Y.; Chew, A.; Ho, C.L.; Wong, T.T.; Perera, S.; Wong, T.Y.; et al. Integration of Genetic and Biometric Risk Factors for Detection of Primary Angle Closure Glaucoma. Am. J. Ophthalmol. 2019, 208, 160–165. [Google Scholar] [CrossRef]
- Sun, W.; Xiao, X.; Li, S.; Ouyang, J.; Li, X.; Jia, X.; Liu, X.; Zhang, Q. Rare variants in novel and known genes associated with primary angle closure glaucoma based on whole exome sequencing of 549 probands. J. Genet. Genom. 2019, 46, 353–357. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Sultan, T.; Azad, T.A.; Osman, E.A.; Almobarak, F.A.; Al-Obeidan, S.A. Association analysis of polymorphisms rs12997 in ACVR1 and rs1043784 in BMP6 genes involved in bone morphogenic protein signaling pathway in primary angle-closure and pseudoexfoliation glaucoma patients of Saudi origin. BMC Med. Genet. 2020, 21, 145. [Google Scholar] [CrossRef]
- Awadalla, M.S.; Burdon, K.P.; Thapa, S.S.; Hewitt, A.W.; Craig, J.E. A cross-ethnicity investigation of genes previously implicated in primary angle closure glaucoma. Mol. Vis. 2012, 18, 2247–2254. [Google Scholar] [PubMed]
- Yousefian, A.; Shokoohi-Rad, S.; Abbaszadegan, M.R.; Rad, D.M.; Zargari, S.; Milanizadeh, S.; Morovatdar, N.; Daneshvar, R. Primary Angle Closure Glaucoma-associated Genetic Polymorphisms in Northeast Iran. J. Ophthalmic. Vis. Res. 2020, 15, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Micheal, S.; Yousaf, S.; Khan, M.I.; Akhtar, F.; Islam, F.; Khan, W.A.; den Hollander, A.I.; Qamar, R.; Ahmed, A. Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population. Mol. Vis. 2013, 19, 441–447. [Google Scholar] [PubMed]
- Waseem, N.H.; Low, S.; Shah, A.Z.; Avisetti, D.; Ostergaard, P.; Simpson, M.; Niemiec, K.A.; Martin-Martin, B.; Aldehlawi, H.; Usman, S.; et al. Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma. PLoS Genet. 2020, 16, e1008721. [Google Scholar] [CrossRef] [PubMed]
- Faucher, M.; Anctil, J.L.; Rodrigue, M.A.; Duchesne, A.; Bergeron, D.; Blondeau, P.; Côté, G.; Dubois, S.; Bergeron, J.; Arseneault, R.; et al. Founder TIGR/myocilin mutations for glaucoma in the Québec population. Hum. Mol. Genet. 2002, 11, 2077–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahram, D.F.; Alward, W.L.; Kuehn, M.H. The genetic mechanisms of primary angle closure glaucoma. Eye (Lond.) 2015, 29, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Khandekar, R.; Jaffer, M.A.; Al Raisi, A.; Zutshi, R.; Mahabaleshwar, M.; Shah, R.; Choudhury, A.H. Oman Eye Study 2005: Prevalence and determinants of glaucoma. East. Mediterr Health J. 2008, 14, 1349–1359. [Google Scholar]
- Alzuhairy, S.; Alalola, F.S.; AlAkeel, H.A.; Alayed, D.M.; Al-Harbi, I.M.; Al-Shetwi, M.M.; Al-Nasser, M.A.; AlJurayfani, H.; Mousa, A. Profile and management outcomes of glaucoma cases at Qassim University Hospital. Int. J. Health Sci. 2018, 12, 20–24. [Google Scholar]
- Yazdani, S.; Akbarian, S.; Pakravan, M.; Afrouzifar, M. Prevalence of angle closure in siblings of patients with primary angle-closure glaucoma. J. Glaucoma 2015, 24, 149–153. [Google Scholar] [CrossRef]
- Al-Dabbagh, N.; Al-Shahrani, H.; Al-Dohayan, N.; Mustafa, M.; Arfin, M.; Al-Asmari, A.K. The SPARC-related modular calcium binding protein 2 (SMOC2) gene polymorphism in primary glaucoma: A case-control study. Clin. Ophthalmol. 2017, 11, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Amero, K.K.; Azad, T.A.; Mousa, A.; Osman, E.A.; Sultan, T.; Al-Obeidan, S.A. Association of SOD2 Mutation (c.47T > C) with Various Primary Angle Closure Glaucoma Clinical Indices. Ophthalmic. Genet. 2015, 36, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Amero, K.K.; Azad, T.A.; Mousa, A.; Osman, E.A.; Sultan, T.; Al-Obeidan, S.A. A catalase promoter variant rs1001179 is associated with visual acuity but not with primary angle closure glaucoma in Saudi patients. BMC Med. Genet. 2013, 14, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safa, F.K.; Shahsavari, G.; Miraftabi, A. Is the GSTM1 null polymorphism a risk factor for primary angle-closure glaucoma among Iranian population? Acta Med. Iran. 2015, 53, 112–116. [Google Scholar]
- Abu-Amero, K.K.; Morales, J.; Mohamed, G.H.; Osman, M.N.; Bosley, T.M. Glutathione S-transferase M1 and T1 polymorphisms in Arab glaucoma patients. Mol. Vis. 2008, 14, 425–430. [Google Scholar]
- Suri, F.; Yazdani, S.; Chapi, M.; Safari, I.; Rasooli, P.; Daftarian, N.; Jafarinasab, M.R.; Ghasemi Firouzabadi, S.; Alehabib, E.; Darvish, H.; et al. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum. Mol. Genet. 2018, 27, 3772–3786. [Google Scholar] [CrossRef]
- Ashaye, A.; Ashaolu, O.; Komolafe, O.; Ajayi, B.G.; Olawoye, O.; Olusanya, B.; Adeoti, C. Prevalence and types of glaucoma among an indigenous African population in southwestern Nigeria. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7410–7416. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.K.; Ayyagari, R.; Moroi, S.E. Possible association between long anterior lens zonules and plateau iris configuration. J. Glaucoma 2008, 17, 393–396. [Google Scholar] [CrossRef]
- Olawoye, O.O.; Ashaye, A.O.; Teng, C.C.; Liebmann, J.M.; Ritch, R.; Ajayi, B.G. Exfoliation syndrome in Nigeria. Middle East. Afr. J. Ophthalmol. 2012, 19, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.; Whigham, B.T.; Liu, Y.; Carmichael, T.R.; Qin, X.; Schmidt, S.; Ramsay, M.; Hauser, M.A.; Allingham, R.R. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Mol. Vis. 2010, 16, 705–712. [Google Scholar]
- Schlötzer-Schrehardt, U.; Naumann, G.O. Ocular and systemic pseudoexfoliation syndrome. Am. J. Ophthalmol. 2006, 141, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Thorleifsson, G.; Magnusson, K.P.; Sulem, P.; Walters, G.B.; Gudbjartsson, D.F.; Stefansson, H.; Jonsson, T.; Jonasdottir, A.; Jonasdottir, A.; Stefansdottir, G.; et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007, 317, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Schmidt, S.; Qin, X.; Gibson, J.; Hutchins, K.; Santiago-Turla, C.; Wiggs, J.L.; Budenz, D.L.; Akafo, S.; Challa, P.; et al. Lack of association between LOXL1 variants and primary open-angle glaucoma in three different populations. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3465–3468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Amero, K.K.; Osman, E.A.; Azad, M.T.; Allingham, R.R.; Hauser, M.A.; Al-Obeidan, S.A. Lack of association between LOXL1 gene polymorphisms and primary open angle glaucoma in the Saudi Arabian population. Ophthalmic. Genet. 2012, 33, 130–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.F.; Chiang, S.W.; Chen, L.J.; Tam, P.O.; Jia, L.Y.; Leung, D.Y.; Geng, Y.Q.; Tham, C.C.; Lam, D.S.; Ritch, R.; et al. Evaluation of LOXL1 polymorphisms in primary open-angle glaucoma in southern and northern Chinese. Mol. Vis. 2008, 14, 2381–2389. [Google Scholar] [PubMed]
- Bernstein, A.M.; Ritch, R.; Wolosin, J.M. LOXL1 folding in exfoliation glaucoma. Adv. Protein Chem. Struct. Biol. 2019, 118, 273–288. [Google Scholar] [CrossRef]
- Li, G.; Schmitt, H.; Johnson, W.M.; Lee, C.; Navarro, I.; Cui, J.; Fleming, T.; Gomez-Caraballo, M.; Elliott, M.H.; Sherwood, J.M.; et al. Integral role for lysyl oxidase-like-1 in conventional outflow tissue function and behavior. FASEB J. 2020, 34, 10762–10777. [Google Scholar] [CrossRef]
- Aung, T.; Ozaki, M.; Lee, M.C.; Schlötzer-Schrehardt, U.; Thorleifsson, G.; Mizoguchi, T.; Igo, R.P., Jr.; Haripriya, A.; Williams, S.E.; Astakhov, Y.S.; et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat. Genet. 2017, 49, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xie, T.; Zhu, G.; Chen, X. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in the Uygur population. Zhonghua Yan Ke Za Zhi 2014, 50, 126–132. [Google Scholar]
- Aung, T.; Ozaki, M.; Mizoguchi, T.; Allingham, R.R.; Li, Z.; Haripriya, A.; Nakano, S.; Uebe, S.; Harder, J.M.; Chan, A.S.; et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat. Genet. 2015, 47, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Pandav, S.S.; Chakma, P.; Khera, A.; Chugh, N.; Gupta, P.C.; Thattaruthody, F.; Seth, N.G.; Raj, S.; Kaushik, S.; Khullar, M.; et al. Lack of association between lysyl oxidase-like 1 polymorphism in pseudoexfoliation syndrome and pseudoexfoliation glaucoma in North Indian population. Eur. J. Ophthalmol. 2019, 29, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Ikeda, Y.; Tokuda, Y.; Fuwa, M.; Ueno, M.; Imai, K.; Sato, R.; Omi, N.; Adachi, H.; Kageyama, M.; et al. Novel common variants and susceptible haplotype for exfoliation glaucoma specific to Asian population. Sci. Rep. 2014, 4, 5340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Amero, K.K.; Osman, E.A.; Dewedar, A.S.; Schmidt, S.; Allingham, R.R.; Al-Obeidan, S.A. Analysis of LOXL1 polymorphisms in a Saudi Arabian population with pseudoexfoliation glaucoma. Mol. Vis. 2010, 16, 2805–2810. [Google Scholar] [PubMed]
- Asfuroglu, M.; Cavdarli, B.; Koz, O.G.; Yarangumeli, A.A.; Ozdemir, E.Y. Association of Lysyl Oxidase-Like 1 Gene Polymorphism in Turkish Patients with Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. J. Glaucoma 2017, 26, e54–e57. [Google Scholar] [CrossRef] [PubMed]
- Guadarrama-Vallejo, D.; Miranda-Duarte, A.; Zenteno, J.C. The T allele of lysyl oxidase-like 1 rs41435250 is a novel risk factor for pseudoexfoliation syndrome and pseudoexfoliation glaucoma independently and through intragenic epistatic interaction. Mol. Vis. 2013, 19, 1937–1944. [Google Scholar] [PubMed]
- Jaimes, M.; Rivera-Parra, D.; Miranda-Duarte, A.; Valdés, G.; Zenteno, J.C. Prevalence of high-risk alleles in the LOXL1 gene and its association with pseudoexfoliation syndrome and exfoliation glaucoma in a Latin American population. Ophthalmic Genet. 2012, 33, 12–17. [Google Scholar] [CrossRef]
- Danford, I.D.; Verkuil, L.D.; Choi, D.J.; Collins, D.W.; Gudiseva, H.V.; Uyhazi, K.E.; Lau, M.K.; Kanu, L.N.; Grant, G.R.; Chavali, V.R.M.; et al. Characterizing the “POAGome”: A bioinformatics-driven approach to primary open-angle glaucoma. Prog. Retin. Eye Res. 2017, 58, 89–114. [Google Scholar] [CrossRef] [Green Version]
- Lantukh, V.V.; Piatin, M.M. Features of ocular pathology among the indigenous inhabitants of Chukotka. Vestn. Oftalmol. 1982, 4, 18–20. [Google Scholar]
- Topouzis, F.; Wilson, M.R.; Harris, A.; Anastasopoulos, E.; Yu, F.; Mavroudis, L.; Pappas, T.; Koskosas, A.; Coleman, A.L. Prevalence of open-angle glaucoma in Greece: The Thessaloniki Eye Study. Am. J. Ophthalmol. 2007, 144, 511–519. [Google Scholar] [CrossRef]
- Arnarsson, A.; Damji, K.F.; Sverrisson, T.; Sasaki, H.; Jonasson, F. Pseudoexfoliation in the Reykjavik Eye Study: Prevalence and related Ophthalmol. ogical variables. Acta Ophthalmol. Scand. 2007, 85, 822–827. [Google Scholar] [CrossRef]
- Topouzis, F.; Founti, P.; Yu, F.; Wilson, M.R.; Coleman, A.L. Twelve-Year Incidence and Baseline Risk Factors for Pseudoexfoliation: The Thessaloniki Eye Study (An American Ophthalmological Society Thesis). Am. J. Ophthalmol. 2019, 206, 192–214. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.J.; Pasquale, L.R.; Rhee, D.; Li, T.; Haines, J.L.; Wiggs, J.L. LOXL1 promoter haplotypes are associated with exfoliation syndrome in a U.S. Caucasian population. Investig. Ophthalmol. Vis. Sci 2011, 52, 2372–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J.D.; Pasquale, L.R.; Talwar, N.; Kim, D.S.; Reed, D.M.; Nan, B.; Kang, J.H.; Wiggs, J.L.; Richards, J.E. Geographic and climatic factors associated with exfoliation syndrome. Arch. Ophtalmol. 2011, 129, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.H.; Loomis, S.; Wiggs, J.L.; Stein, J.D.; Pasquale, L.R. Demographic and geographic features of exfoliation glaucoma in 2 United States-based prospective cohorts. Ophthalmology 2012, 119, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquale, L.R.; Jiwani, A.Z.; Zehavi-Dorin, T.; Majd, A.; Rhee, D.J.; Chen, T.; Turalba, A.; Shen, L.; Brauner, S.; Grosskreutz, C.; et al. Solar exposure and residential geographic history in relation to exfoliation syndrome in the United States and Israel. JAMA Ophthalmol. 2014, 132, 1439–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingert, J.H.; Alward, W.L.; Kwon, Y.H.; Wang, K.; Streb, L.M.; Sheffield, V.C.; Stone, E.M. LOXL1 mutations are associated with exfoliation syndrome in patients from the midwestern United States. Am. J. Ophthalmol. 2007, 144, 974–975. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, A.W.; Sharma, S.; Burdon, K.P.; Wang, J.J.; Baird, P.N.; Dimasi, D.P.; Mackey, D.A.; Mitchell, P.; Craig, J.E. Ancestral LOXL1 variants are associated with pseudoexfoliation in Caucasian Australians but with markedly lower penetrance than in Nordic people. Hum. Mol. Genet. 2008, 17, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Cashwell, L.F., Jr.; Shields, M.B. Exfoliation syndrome. Prevalence in a southeastern United States population. Arch. Ophthalmol. 1988, 106, 335–336. [Google Scholar] [CrossRef]
- Ball, S.F. Exfoliation syndrome prevalence in the glaucoma population of South Louisiana. Acta Ophthalmol. Suppl. 1988, 184, 93–98. [Google Scholar] [CrossRef]
- Herndon, L.W.; Challa, P.; Ababio-Danso, B.; Boateng, J.O.; Broomer, B.; Ridenhour, P.; Allingham, R.R. Survey of glaucoma in an eye clinic in Ghana, West Africa. J. Glaucoma 2002, 11, 421–425. [Google Scholar] [CrossRef]
- Ntim-Amponsah, C.T.; Amoaku, W.M.; Ofosu-Amaah, S.; Ewusi, R.K.; Idirisuriya-Khair, R.; Nyatepe-Coo, E.; Adu-Darko, M. Prevalence of glaucoma in an African population. Eye (Lond.) 2004, 18, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Rotchford, A.P.; Johnson, G.J. Glaucoma in Zulus: A population-based cross-sectional survey in a rural district in South Africa. Arch. Ophthalmol. 2002, 120, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotchford, A.P.; Kirwan, J.F.; Muller, M.A.; Johnson, G.J.; Roux, P. Temba glaucoma study: A population-based cross-sectional survey in urban South Africa. Ophthalmology 2003, 110, 376–382. [Google Scholar] [CrossRef]
- Tenkir, A.; Solomon, B.; Deribew, A. Glaucoma subtypes in Ethiopian clinic patients. J. Glaucoma 2013, 22, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Giorgis, A.T.; Mulugeta, A.; Aga, A.; Deyassa, N. The spectrum of glaucoma presentation at Menelik II Hospital, Addis Ababa. Ethiop. Med. J. 2012, 50, 259–264. [Google Scholar]
- Rautenbach, R.M.; Bardien, S.; Harvey, J.; Ziskind, A. An investigation into LOXL1 variants in black South African individuals with exfoliation syndrome. Arch. Ophthalmol. 2011, 129, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Hauser, M.A.; Aboobakar, I.F.; Liu, Y.; Miura, S.; Whigham, B.T.; Challa, P.; Wheeler, J.; Williams, A.; Santiago-Turla, C.; Qin, X.; et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum. Mol. Genet. 2015, 24, 6552–6563. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.; Ding, J.; Wang, N.; Teng, C.C.; de Moraes, G.V.; Jonas, J.B.; Ritch, R. Clinical Signs and Characteristics of Exfoliation Syndrome and Exfoliative Glaucoma in Northern China. Asia-Pac. J. Ophthalmol. (Phila.) 2015, 4, 86–88. [Google Scholar] [CrossRef]
- Kuleshova, O.N.; Pichikova, E.A.; Lasareva, A.K.; Aydagulova, S.V.; Dulidova, V.V.; Egorova, E.V.; Chernykh, V.V. Multi-level analysis of the prevalence of pseudoexfoliative syndrome and pseudoexfoliative glaucoma. Vestn. Ophthalmol. 2017, 133, 47–54. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ho, S.L.; Thalamuthu, A.; Venkatraman, A.; Venkataraman, D.; Pek, D.C.; Aung, T.; Vithana, E.N. Association of LOXL1 polymorphisms with pseudoexfoliation in the Chinese. Mol. Vis. 2009, 15, 1120–1126. [Google Scholar]
- Chen, L.; Jia, L.; Wang, N.; Tang, G.; Zhang, C.; Fan, S.; Liu, W.; Meng, H.; Zeng, W.; Liu, N.; et al. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in a Chinese population. Mol. Vis. 2009, 15, 2349–2357. [Google Scholar] [PubMed]
- Chen, L.; Wang, N.L.; Rong, S.S.; Huang, L.N.; Cheng, H.B. Association analysis between LOXL1 gene and exfoliation syndrome. Zhonghua Yan Ke Za Zhi 2017, 53, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Jiang, Y.; Jing, Q.; Li, D.; Maimaiti, T.; Kasimu, D.; Lu, Y. LOXL1 Hypermethylation in Pseudoexfoliation Syndrome in the Uighur Population. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5838–5843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayinu, X.C. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in the Uygur population. Mol. Vis. 2011, 17, 1734–1744. [Google Scholar]
- Ma, Y.N.; Xie, T.Y.; Chen, X.Y. Multiple Gene Polymorphisms Associated with Exfoliation Syndrome in the Uygur Population. J. Ophthalmol. 2019, 2019, 9687823. [Google Scholar] [CrossRef]
- Ramprasad, V.L.; George, R.; Soumittra, N.; Sharmila, F.; Vijaya, L.; Kumaramanickavel, G. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Mol. Vis. 2008, 14, 318–322. [Google Scholar]
- Pasutto, F.; Zenkel, M.; Hoja, U.; Berner, D.; Uebe, S.; Ferrazzi, F.; Schödel, J.; Liravi, P.; Ozaki, M.; Paoli, D.; et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat. Commun. 2017, 8, 15466. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Imai, K.; Matsuda, A.; Ikeda, Y.; Naruse, S.; Hitora-Takeshita, H.; Nakano, M.; Taniguchi, T.; Omi, N.; Tashiro, K.; et al. LOXL1 genetic polymorphisms are associated with exfoliation glaucoma in the Japanese population. Mol. Vis. 2008, 14, 1037–1040. [Google Scholar]
- Sagong, M.; Gu, B.Y.; Cha, S.C. Association of lysyl oxidase-like 1 gene polymorphisms with exfoliation syndrome in Koreans. Mol. Vis. 2011, 17, 2808–2817. [Google Scholar]
- Ozaki, M.; Lee, K.Y.; Vithana, E.N.; Yong, V.H.; Thalamuthu, A.; Mizoguchi, T.; Venkatraman, A.; Aung, T. Association of LOXL1 gene polymorphisms with pseudoexfoliation in the Japanese. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3976–3980. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, H.; Gotoh, N.; Ueda, Y.; Nakanishi, H.; Yoshimura, N. Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. Am. J. Ophthalmol. 2008, 145, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, F.; Sakurada, Y.; Kashiwagi, K.; Yamagata, Z.; Iijima, H.; Tsukahara, S. Lysyl oxidase-like 1 gene polymorphisms in Japanese patients with primary open angle glaucoma and exfoliation syndrome. Mol. Vis. 2008, 14, 1303–1308. [Google Scholar] [PubMed]
- Takano, Y.; Shi, D.; Shimizu, A.; Funayama, T.; Mashima, Y.; Yasuda, N.; Fukuchi, T.; Abe, H.; Ideta, H.; Zheng, X.; et al. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. Am. J. Ophthalmol. 2012, 154, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Shazly, T.A.; Farrag, A.N.; Kamel, A.; Al-Hussaini, A.K. Prevalence of pseudoexfoliation syndrome and pseudoexfoliation glaucoma in Upper Egypt. BMC Ophthalmol. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kılıç, R.; Karagöz, N.; Çetin, A.B.; Çakmak, Y.; Sezer, H.; Özay, Y.; Çomçalı, S.; Dursun, A. The prevalence of exfoliation syndrome in Turkey. Acta Ophthalmol. 2016, 94, e105–e108. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.Q.; Arain, T.M.; Ahad, M.A. The prevalence of pseudoexfoliation syndrome in Pakistan. Hospital based study. BMC Ophthalmol. 2006, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Kasım, B.; İrkeç, M.; Alikaşifoğlu, M.; Orhan, M.; Mocan, M.C.; Aktaş, D. Association of LOXL1 gene polymorphisms with exfoliation syndrome/glaucoma and primary open angle glaucoma in a Turkish population. Mol. Vis. 2013, 19, 114–120. [Google Scholar]
- Micheal, S.; Khan, M.I.; Akhtar, F.; Ali, M.; Ahmed, A.; den Hollander, A.I.; Qamar, R. Role of Lysyl oxidase-like 1 gene polymorphisms in Pakistani patients with pseudoexfoliative glaucoma. Mol. Vis. 2012, 18, 1040–1044. [Google Scholar]
- Yilmaz, S.G.; Palamar, M.; Onay, H.; Ilim, O.; Aykut, A.; Ozkinay, F.F.; Yagci, A. LOXL1 gene analysis in Turkish patients with exfoliation glaucoma. Int Ophthalmol. 2016, 36, 629–635. [Google Scholar] [CrossRef]
- Khan, M.I.; Micheal, S.; Akhtar, F.; Ahmed, W.; Ijaz, B.; Ahmed, A.; Qamar, R. The association of glutathione S-transferase GSTT1 and GSTM1 gene polymorphism with pseudoexfoliative glaucoma in a Pakistani population. Mol. Vis. 2010, 16, 2146–2152. [Google Scholar]
- Yilmaz, A.; Tamer, L.; Ates, N.A.; Yildirim, O.; Yildirim, H.; Atik, U. Is GST gene polymorphism a risk factor in developing exfoliation syndrome? Curr. Eye Res. 2005, 30, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Konstas, A.G.P.; Ringvold, A. Epidemiology of Exfoliation Syndrome. J. Glaucoma 2018, 27 (Suppl. 1), S4–S11. [Google Scholar] [CrossRef] [PubMed]
- Learner, S.P.C.; Scaricaciottoli, D.; Basualdo, S. Prevalence of Exfoliation Syndrome and Exfoliative Glaucoma in Buenos Aires, Argentina. Investig. Ophthalmol. 2007, 48, 4338. [Google Scholar]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Grinde, K.E.; Qi, Q.; Thornton, T.A.; Liu, S.; Shadyab, A.H.; Chan, K.H.K.; Reiner, A.P.; Sofer, T. Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. Genet. Epidemiol. 2019, 43, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Coram, M.A.; Fang, H.; Candille, S.I.; Assimes, T.L.; Tang, H. Leveraging Multi-ethnic Evidence for Risk Assessment of Quantitative Traits in Minority Populations. Am. J. Hum. Genet. 2017, 101, 218–226. [Google Scholar] [CrossRef]
- Igo, R.P., Jr.; Kinzy, T.G.; Cooke Bailey, J.N. Genetic Risk Scores. Curr Protoc Hum. Genet. 2019, 104, e95. [Google Scholar] [CrossRef]
- Guidoboni, G.; Chong, R.S.; Marazzi, N.; Chee, M.L.; Wellington, J.; Lichtenegger, E.; Cheng, C.-Y.; Harris, A. A mechanism-driven algorithm for Artificial Intelligence in Ophthalmology: Understanding glaucoma risk factors in the Singapore Eye Diseases Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 619. [Google Scholar]
- Seo, S.b.; Cho, H.-k. Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch’s membrane opening-minimum rim width and RNFL. Sci. Rep. 2020, 10, 19042. [Google Scholar] [CrossRef]
- Stagg, B.C.; Stein, J.D.; Medeiros, F.A.; Wirostko, B.; Crandall, A.; Hartnett, M.E.; Cummins, M.; Morris, A.; Hess, R.; Kawamoto, K. Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic. Ophthalmol. Glaucoma 2020. [Google Scholar] [CrossRef]
- Jeong, H.H.; Kim, S.Y.; Rousseaux, M.W.C.; Zoghbi, H.Y.; Liu, Z. Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Res. 2019, 29, 999–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | SNP/Genotype | Protein Product | Gene Function | Ethnicity | Reference |
---|---|---|---|---|---|
ABCA1 | rs2472493 | ATP Binding Cassette Subfamily A Member 1 | Molecular transport | European Descent | Gharahkhani et al., 2014 [37] |
ABCA1 | rs2487032 | ATP Binding Cassette Subfamily A Member 1 | Molecular transport | Asian Descent | Chen et al., 2014 [43] |
ABCA1 | rs2472493 | ATP Binding Cassette Subfamily A Member 1 | Molecular transport | Asian Descent | Hysi et al., 2014 [44] |
ABCA1 | rs2472493 | ATP Binding Cassette Subfamily A Member 1 | Molecular transport | Multi-Ethnic | Choquet et al., 2018 [45] |
ADAMTS8 | rs56009602 | ADAM Metallopeptidase with Thrombospondin Type 1 Motif 8 | Protein metabolism | Asian Descent | Iglesias et al., 2018 [46] |
AFAP1 | rs4619890 | Actin Filament Associated Protein 1 | Cross-linking actin filaments | European Descent | Gharahkhani et al., 2014 [37] |
AFAP1 | rs4619890 | Actin Filament Associated Protein 1 | Cross-linking actin filaments | Asian Descent | Shiga et al., 2018 [47] |
AFAP1 | rs59521811 | Actin Filament Associated Protein 1 | Cross-linking actin filaments | Multi-Ethnic | Choquet et al., 2018 [45] |
ANKH | rs76325372 | ANKH Inorganic Pyrophosphate Transport Regulator | Mediates control of pyrophosphate levels | Multi-Ethnic | Choquet et al., 2018 [45] |
ANKRD55-MAP3K1 | rs61275591 | Ankyrin repeat domain-55-Mitogen-activated protein kinase kinase kinase 1 | Expressed in ocular tissues | Asian Descent | Shiga et al., 2018 [47] |
APBB2 | rs59892895 | Amyloid-beta A4 precursor protein-binding family B member 2 | APP processing in retina and primary visual cortex | Middle Eastern | Hauser et al., 2018 [48] |
ARHGEF121 | rs58073046 | Rho Guanine Nucleotide Exchange Factor 12 | RhoA/RhoA kinase pathway and IOP regulation | European Descent | Springelkamp et al., 2015 [42] |
ATXN2 | rs7137828 | Ataxin 2 | Ataxin 2 production within cell cytoplasm | European Descent | Bailey et al., 2016 [38] |
C12ORF23 | rs1333037 | Transmembrane protein C12orf23 | Associated with growth and bone development | European Descent | Bailey et al., 2016 [38] |
CADM2 | rs34201102 | Cell Adhesion Molecule 2 | Regulated trans-synaptic cell adhesion | Multi-Ethnic | Choquet et al., 2018 [45] |
CAV1 | rs4236601 | Caveolin 1 | Expressed in eye development | European Descent | Thorleifsson et al., 2011 [39] |
CAV1 | rs10258482 | Caveolin 1 | Expressed in eye development | Asian Descent | Hysi et al., 2014 [44] |
CAV1-CAV2 | rs4236601 | Caveolin 1 | Expressed in eye development | Asian Descent | Lu et al., 2020 [49] |
CDKN1A | rs6913530 | Cyclin Dependent Kinase Inhibitor 1A | Regulates cell cycle progression | Multi-Ethnic | Choquet et al., 2018 [45] |
CDKN2A-CDKN2B | rs1063192 | Cyclin-dependent kinase 4 inhibitor B | Tumor suppressor genes | Asian Descent | Osman et al., 2012 [50] |
CDKN2B-AS11 | rs2157719 | Non-protein coding | Regulates CDKN2A and CDKN2B | European Descent | Wiggs et al., 2012 [51] |
CDKN2B-AS11 | rs4977756 | Non-protein coding | Regulates CDKN2A and CDKN2B | European Descent | Burdon et al., 2017 [52] |
CDKN2B-AS11 | rs1333037 | Non-protein coding | Regulates CDKN2A and CDKN2B | European Descent | Bailey et al., 2016 [38] |
CDKN2B-AS1 | rs79721419 | Non-protein coding | Regulates CDKN2A and CDKN2B | African Descent | Taylor et al., 2019 [29] |
CDKN2B-AS1 | rs10712703 | Non-protein coding | Regulates CDKN2A and CDKN2B | African Descent | Bonnemaijer et al., 2018 [53] |
CDKN2B-AS11 | rs523096 | Non-protein-coding | Regulates CDKN2A and CDKN2B | Asian Descent | Takamoto et al., 2012 [54] |
CDKN2B-AS1 | rs4977756 | Non-protein coding | Regulates CDKN2A and CDKN2B | Asian Descent | Shiga et al., 2018 [47] |
CDKN2B-AS1 | rs944800 | Non-protein coding | Regulates CDKN2A and CDKN2B | Asian Descent | Shiga et al., 2018 [47] |
CDKN2B-AS1 | rs2157719 | Non-protein coding | Regulates CDKN2A and CDKN2B | Latin American | Nunes et al., 2018 [55] |
CDKN2B-AS1 | rs10811645 | Non-protein coding | Regulates CDKN2A and CDKN2B | Multi-Ethnic | Choquet et al., 2018 [45] |
DGKG | rs9853115 | Diacylglycerol Kinase Gamma | Enzyme for lipid metabolism | Multi-Ethnic | Choquet et al., 2018 [45] |
ELOVL51 | rs735860 | Elongation of very long chain fatty acids protein 5 | Enzymatic function | Asian Descent | Meguro et al., 2010 [56] |
EN04 | rs185815146 | Enolase 4 | Glucose metabolism | African Descent | Taylor et al., 2019 [29] |
eNOS/NOS3 | T-786C | Nitric oxide synthase 3 | NO production | Latin American | da Silva et al., 2012 [57] |
eNOS/NOS3 | Glu298Asp | Nitric oxide synthase 3 | NO production | Latin American | da Silva et al., 2012 [57] |
eNOS/NOS3 | intron 4 VNTR repeat | Nitric oxide synthase 3 | NO production | Middle Eastern | Ayub et al., 2010 [58] |
EXOC2 | rs2073006 | Exocyst Complex Component 2 | Exocytic vesicle targeting | Multi-Ethnic | Choquet et al., 2018 [45] |
EXOC4 | rs141186647 | Exocyst Complex Component 4 | Exocytic vesicle targeting | African Descent | Bonnemaijer et al., 2018 [53] |
FMNL2 | rs56117902 | Formin Like 2 | Elongation of actin filaments | Multi-ethnic | Choquet et al., 2018 [45] |
FNDC3B | rs111698934 | Fibronectin Type III Domain Containing 3B | Regulates adipogenesis | African Descent | Taylor et al., 2019 [29] |
FNDC3B | rs7636836 | Fibronectin Type III Domain Containing 3B | Regulates adipogenesis | Asian Descent | Shiga et al., 2018 [47] |
FOXC1 | rs2745572 | Forkhead Box C1 | Transcription factor | European Descent | Bailey et al., 2016 [38] |
GAS7 | rs9897123 | Growth arrest-specific protein 7 | Neuronal development | European Descent | Bailey et al., 2016 [38] |
GAS7 | rs8080535 | Growth arrest-specific protein 7 | Neuronal development | African Descent | Taylor et al., 2019 [29] |
GAS7 | rs9913911 | Growth arrest-specific protein 7 | Neuronal development | Asian Descent | Hysi et al., 2014 [44] |
GMDS | rs11969985 | GDP-mannose 4,6 dehydratase | Protein modification and metabolism | European Descent | Gharahkhani et al., 2014 [37] |
HK21 | Rs678350 | Hexokinase 2 | Intracellular glucose metabolism | Asian Descent | Shiga et al., 2018 [47] |
HMGA2 | rs343093 | High-mobility group AT-hook 2 | Transcription factor | Asian Descent | Shiga et al., 2018 [47] |
IKZF2 | rs56335522 | IKAROS Family Zinc Finger 2 | Lymphocyte development | Mutli-Ethnic | Choquet et al., 2018 [45] |
IL1β | –31C/T | Interleukin 1 Beta | Pyrogenic activity | Latin American | Oliveira et al., 2018 [59] |
IL1β | –511C/T | Interleukin 1 Beta | Pyrogenic activity | Latin American | Oliveira et al., 2018 [59] |
LMX1β | rs10819187 | LIM Homeobox Transcription Factor 1 Beta | Transcription factor | Asian Descent | Shiga et al., 2018 [47] |
LMX1β | rs55770306 | LIM Homeobox Transcription Factor 1 Beta | Transcription factor | Multi-Ethnic | Choquet et al., 2018 [45] |
LOXL1 | rs1048661 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Asian Descent | Shiga et al., 2018 [47] |
LRP12/ZFPM2 | rs284491 | LDL Receptor Related Protein 12/Zinc Finger Protein | Endocytosis and neuron migration/transcriptional activation, regulation of apoptosis, lipid binding | European Descent | Bailey et al., 2016 [38] |
MEIS2 | rs28480457 | Meis Homeobox 2 | Transcription factor | Asian Descent | Shiga et al., 2018 [47] |
MMP91 | rs2274755 | Matrix metalloproteinase 9 | Regulates pathological remodeling processes | Asian Descent | Suh et al., 2018 [60] |
NCK21 | rs2033008 | NCK Adaptor Protein 2 | Regulates synaptic transmission | Asian Descent | Shi et al., 2011 [61] |
PDE7B | rs9494457 | Phosphodiesterase 7B | Downregulates cAMP and cGMP signaling | Latin American | Choquet et al., 2018 [45] |
PLXDC2 | rs7081455 | Plexin Domain Containing 2 | Cell surface binding to PEDF | Asian Descent | Nakano et al., 2009 [62] |
PMM2 | rs3785176 | Phosphomannomutase 2 | Glycosylation enzyme | Asian Descent | Chen et al., 2014 [43] |
SIX1/SIX61 | rs10483727 | Homeobox protein SIX1-SIX6 | Transcription factors | European Descent | Bailey et al., 2016 [38] |
SIX1/SIX61 | rs33912345 | Homeobox protein SIX1-SIX6 | Transcription factors | European Descent | Wiggs et al., 2012 [41] |
SIX1/SIX6 | rs10483727 | Homeobox protein SIX1-SIX6 | Transcription factors | Middle Eastern | Kondkar et al., 2018 [63] |
SIX1/SIX6 | rs35155027 | Homeobox protein SIX1-SIX6 | Transcription factors | Multi-Ethnic | Choquet et al., 2018 [45] |
SIX6 | rs10483727 | Homeobox protein SIX6 | Transcription factor | Asian Descent | Shiga et al., 2018 [47] |
SBRD11 | rs3213787 | S1 RNA Binding Domain 1 | Influences protein synthesis, growth, and apoptosis | Asian Descent | Meguro et al., 2010 [56] |
TBK11 | rs12227270 | N/A | Essential role in regulation of inflammatory response | African Descent | Fingert et al., 2011 [64] |
TGFβR3 | rs1192415 | Transforming growth factor (TGF)-β type III receptor | Binds TGF-β ligands | Asian Descent | Li et al., 2015 [65] |
TLR4 | rs2149356 | Toll Like Receptor 4 | Intracellular signaling of inflammatory pathways | Latin American | Navarro-Partida et al., 2016 [66] |
TLR4 | Asp299Gly | Toll Like Receptor 4 | Intracellular signaling of inflammatory pathways | Latin American | Navarro-Partida et al., 2017 [67] |
TLR4 | Thr399Ile | Toll Like Receptor 4 | Intracellular signaling of inflammatory pathways | Latin American | Navarro-Partida et al., 2017 [67] |
TMCO1 | rs4656461 | Transmembrane And Coiled-Coil Domains 1 | Regulates balance of calcium ions | European Descent | Burdon et al., 2011 [40] |
TMCO1 | rs7555523 | Transmembrane And Coiled-Coil Domains 1 | Regulates balance of calcium ions | European Descent | Bailey et al., 2016 [38] |
TMCO1 | rs28504591 | Transmembrane And Coiled-Coil Domains 1 | Regulates balance of calcium ions | African Descent | Bonnemaijer et al., 2018 [53] |
TMCO1 | rs7555523 | Transmembrane And Coiled-Coil Domains 1 | Regulates balance of calcium ions | Asian Descent | Hysi et al., 2014 [44] |
TMCO1 | rs7524755 | Transmembrane And Coiled-Coil Domains 1 | Regulates balance of calcium ions | Multi-Ethnic | Choquet et al., 2018 [45] |
TMTC2 | rs7961953 | Transmembrane O-Mannosyltransferase Targeting Cadherins 2 | Calcium homeostasis | Asian Descent | Nakano et al., 2009 [62] |
TMTC2 | rs324794 | Transmembrane O-Mannosyltransferase Targeting Cadherins 2 | Calcium homeostasis | Multi-Ethnic | Choquet et al., 2018 [45] |
TXNRD2 | rs35934224 | Thioredoxin Reductase 2 | Mitochondrial radical oxygen species scavenging | European Descent | Bailey et al., 2016 [38] |
TXNRD2 | rs16984299 | Thioredoxin Reductase 2 | Mitochondrial radical oxygen species scavenging | African Descent | Bonnemaijer et al., 2018 [53] |
ZP4 | rs693421 | Zona Pellucida Glycoprotein 4 | Component of the zona pellucida | Asian Descent | Nakano et al., 2009 [62] |
Gene | SNP/Haplotype | Protein Product | Gene Function | Ethnicity | Citation |
---|---|---|---|---|---|
ABCC5 | rs1401999 | ATP binding cassette subfamily C member 5 | Transport across plasma membrane | Asian Descent | Nongpiur et al., 2014 [142] |
ACVR1 | rs12997 | Activin receptor type-1 protein | Bone morphogenic protein pathway signaling | Middle Eastern | Kondkar et al., 2020 [152] |
CALCRL | AATACAGAT | Calcitonin Receptor Like Receptor | Transmembrane domain receptor activity | European Descent | Awadalla et al., 2012 [153] |
CHAT | rs1258267 | Choline O-Acetyltransferase | Production of acetylcholine in presynaptic terminals | Multi-Ethnic | Khor et al., 2016 [144] |
CHAT | rs1258267 | Choline O-Acetyltransferase | Production of acetylcholine in presynaptic terminals | Middle Eastern | Yousefian et al., 2020 [154] |
COL11A1 | rs3753841 | Collagen Type XI Alpha 1 Chain | Produces component of type XI collagen | Asian Descent | Vithana et al., 2012 [145] |
COL11A1 | rs3753841 | Collagen Type XI Alpha 1 Chain | Produces component of type XI collagen | European Descent | Vithana et al., 2012 [145] |
DPM2-FAM102A | rs3739821 | Dolichol phosphate-mannose (DPM) biosynthesis regulatory protein—Family with sequence similarity 102 member A | Regulates synthesis of DPM-role in estrogen activation | Multi-Ethnic | Khor et al., 2016 [144] |
eNOS | Intron 4 VNTR repeat | Nitric oxide synthase 3 | NO production | Middle Eastern | Ayub et al., 2010 [58] |
EPDR1 | rs3816415 | Mammalian ependymin-related protein 1 | Transmembrane protein for calcium-dependent cell adhesion | Middle Eastern | Yousefian et al., 2020 [154] |
EPDR1 | rs3816415 | Mammalian ependymin-related protein 1 | Transmembrane protein for calcium-dependent cell adhesion | Multi-Ethnic | Khor et al., 2016 [144] |
FERMT2 | rs7494379 | Fermitin Family Member 2 | Cell adhesion | Middle Eastern | Yousefian et al., 2020 [154] |
FERMT2 | rs7494379 | Fermitin Family Member 2 | Cell adhesion | Multi-Ethnic | Khor et al., 2016 [144] |
GLIS3 | rs736893 | GLIS Family Zinc Finger 3 | Transcription factor | Middle Eastern | Yousefian et al., 2020 [154] |
GLIS3 | rs736893 | GLIS Family Zinc Finger 3 | Transcription factor | Multi-Ethnic | Khor et al., 2016 [144] |
HGF | rs5745718 | hepatocyte growth factor | Regulates cell growth | Asian Descent | Awadalla et al., 2011 [141] |
HGF | rs12536657 | hepatocyte growth factor | Regulates cell growth | Asian Descent | Awadalla et al., 2011 [141] |
HGF | rs12540393 | hepatocyte growth factor | Regulates cell growth | Asian Descent | Awadalla et al., 2011 [141] |
HGF | rs17427817 | hepatocyte growth factor | Regulates cell growth | Asian Descent | Awadalla et al., 2011 [141] |
HSP70 | G+190C polymorphism | heat-shock protein 70 | Protein folding processes | Middle Eastern | Ayub et al., 2010 [58] |
MMP9 | rs2250880 | Matrix metalloproteinase-9 | Regulates pathological remodeling processes | Asian Descent | Cong et al., 2009 [139] |
MMP9 | rs2664538 | Matrix metalloproteinase-9 | Regulates pathological remodeling processes | Asian Descent | Wang et al., 2006 [137] |
MMP9 | rs3818249 | Matrix metalloproteinase-9 | Regulates pathological remodeling processes | European Descent | Awadalla et al., 2011 [140] |
MMP9 | rs17576 | Matrix metalloproteinase-9 | Regulates pathological remodeling processes | European Descent | Awadalla et al., 2011 [140] |
MMP9 | rs17576 | Matrix metalloproteinase-9 | Regulates pathological remodeling processes | Middle Eastern Descent | Micheal et al., 2013 [155] |
PCMTD-ST18 | rs1015213 | Protein-L-Isoaspartate (D-Aspartate) O-Methyltransferase Domain Containing 1-suppression of tumorigenicity 18 | Protein repair/degradation – tumor suppressor | Asian Descent | Duvesh et al., 2013 [148] |
PLEKHA7 | rs11024102 | Pleckstrin homology domain-containing family A member 7 | Stabilizes E-cadherin junctions | Asian Descent | Vithana et al., 2012 [145] |
SMOC2 | rs13208776 | SPARC-related modular calcium binding protein 2 | Promotes matrix assembly | Middle Eastern | Al-Dabbagh et al., 2017 [161] |
SPATA13 | c.1432_1440del; p.478_480del | Spermatogenesis Associated Protein 13 | Regulates cell adhesion and migration | European Descent | Waseem et al., 2020 [156] |
Gene | SNP | Protein Product | Gene Function | Ethnicity | Citation |
---|---|---|---|---|---|
AGPAT1 | rs3130283 | 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha | Enzyme for lipid biosynthesis | Multi-Ethnic | Aung et al., 2017 [179] |
ATXN2 | rs7137828 | Ataxin 2 | Ataxin 2 production within cell cytoplasm | Asian Descent | Ma et al., 2019 [180] |
AVCR1 | rs12997 | Activin A receptor, type I | Bone and muscle growth and development | Middle Eastern | Kondkar et al., 2020 [152] |
CACNA1A | rs4926244 | Calcium Voltage-Gated Channel Subunit Alpha1 A | Calcium ion transport | Asian Descent | Aung et al., 2015 [181] |
LOXL1 | rs1048661 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | European Descent | Thorleifsson et al., 2007 [173] |
LOXL1 | rs3825942(G) | Lysyl Oxidase Like 1 | Connective tissue biogenesis | European Descent | Thorleifsson et al., 2007 [173] |
LOXL1 | rs2165241 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | European Descent | Thorleifsson et al., 2007 [173] |
LOXL1 | rs1048661 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | African Descent | Williams et al., 2010 [171] |
LOXL1 | rs3825942(A) | Lysyl Oxidase Like 1 | Connective tissue biogenesis | African Descent | Williams et al., 2010 [171] |
LOXL1 | rs3925942 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Asian Descent | Pandav et al., 2019 [182] |
LOXL1 | rs41435250 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Asian Descent | Ma et al., 2019 [180] |
LOXL11 | rs893818 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Asian Descent | Nakano et al., 2014 [183] |
LOXL1 | rs1048661(G) | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Middle Eastern | Abu-Amero et al., 2010 [184] |
LOXL1 | rs3825942(G) | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Middle Eastern | Abu-Amero et al., 2010 [184] |
LOXL1 | rs3825942(A) | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Middle Eastern | Asfuroglu et al., 2017 [185] |
LOXL1 | rs2165244 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Middle Eastern | Asfuroglu et al., 2017 [185] |
LOXL1 | rs41435250 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Latin American | Guadarrama-Valleji et al., 2013 [186] |
LOXL1 | rs1048661 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Latin American | Jaimes et al., 2012 [187] |
LOXL1 | rs216524 | Lysyl Oxidase Like 1 | Connective tissue biogenesis | Latin American | Takitani et al., 2018 [188] |
POMP | rs7329408 | Proteasome Maturation Protein | 20S proteasome formation | Multi-Ethnic | Aung et al., 2017 [179] |
RBMS3 | rs12490863 | RNA Binding Motif Single Stranded Interacting Protein 3 | Tumor suppressor | Multi-Ethnic | Aung et al., 2017 [179] |
SEMA6A | rs10072088 | Semaphorin 6A | Actin cytoskeleton reorganization and central nervous system development | Multi-Ethnic | Aung et al., 2017 [179] |
TBC1D211 | rs16934339 | TBC1 Domain Family Member 21 | Mitochondrial structure | Asian Descent | Nakano et al., 2014 [183] |
TMEM136 | rs11827818 | Transmembrane protein 136 | Unknown | Multi-Ethnic | Aung et al., 2017 [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukerman, R.; Harris, A.; Verticchio Vercellin, A.; Siesky, B.; Pasquale, L.R.; Ciulla, T.A. Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes 2021, 12, 55. https://doi.org/10.3390/genes12010055
Zukerman R, Harris A, Verticchio Vercellin A, Siesky B, Pasquale LR, Ciulla TA. Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes. 2021; 12(1):55. https://doi.org/10.3390/genes12010055
Chicago/Turabian StyleZukerman, Ryan, Alon Harris, Alice Verticchio Vercellin, Brent Siesky, Louis R. Pasquale, and Thomas A. Ciulla. 2021. "Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations" Genes 12, no. 1: 55. https://doi.org/10.3390/genes12010055
APA StyleZukerman, R., Harris, A., Verticchio Vercellin, A., Siesky, B., Pasquale, L. R., & Ciulla, T. A. (2021). Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes, 12(1), 55. https://doi.org/10.3390/genes12010055