A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern—The Case of the Critically Endangered European Mink Mustela lutreola L., 1761
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, R.J.; El Mousadik, A.; Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 1998, 12, 844–855. [Google Scholar] [CrossRef]
- Lindblom, L. Sample size and haplotype richness in population samples of the lichen-forming ascomycete Xanthoria parietina. Lichenologist 2009, 41, 529–535. [Google Scholar] [CrossRef]
- Skorupski, J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes 2020, 11, 1332. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Fernández-Manjarrés, J.; Morand-Prieur, M.E.; Frascaria-Lacoste, N. What sampling is needed for reliable estimates of genetic diversity in Fraxinus excelsior L. (Oleaceae)? Ann. For. Sci. 2008, 65, 403. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Lim, C.; Park, S.H.; Kim, W.G.; Sareein, N.; Bae, Y.J. Genetic and Morphologic Variation in a Potential Mosquito Biocontrol Agent, Hydrochara Affinis (Coleoptera: Hydrophilidae). Sustainability 2020, 12, 5481. [Google Scholar] [CrossRef]
- Dincă, V.; Dapporto, L.; Somervuo, P.; Vodă, R.; Cuvelier, S.; Gascoigne-Pees, M.; Huemer, P.; Mutanen, M.; Hebert, P.D.N.; Vila, R. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Ely, B.; Stoner, D.S.; Alvarado Bremer, J.R.; Dean, J.M.; Addis, P.; Cau, A.; Thelen, E.J.; Jones, W.J.; Black, D.E.; Smith, L.; et al. Analysis of nuclear ldhA gene and mtDNA control region sequences of Atlantic northern bluefin tuna populations. Mar. Biotechnol. 2002, 4, 583–588. [Google Scholar] [CrossRef]
- Hobas, S.; Gaggiotti, O.; ConGRESS Consortium; Bertorelle, G. Sample planning optimization tool for conservation and population genetics (SPOTG): A software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 2013, 4, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Nazareno, A.G.; Bemmels, J.B.; Dick, C.W.; Lohmann, L.G. Minimum sample sizes for population genomics: An empirical study from an Amazonian plant species. Mol. Ecol. Resour. 2017, 17, 1136–1147. [Google Scholar] [CrossRef]
- Baverstock, P.R.; Moritz, C. Project design. In Molecular Systematics; Hillis, D.M., Moritz, C., Mable, B.K., Eds.; Sinauer: Sunderland, MA, USA, 1996; pp. 17–27. [Google Scholar]
- Fung, T.; Keenan, K. Confidence intervals for population allele frequencies: The general case of sampling from a finite diploid population of any size. PLoS ONE 2014, 9, e85925. [Google Scholar] [CrossRef]
- Zahl, S. Jackknifing an index of diversity. Ecology 1977, 58, 907–913. [Google Scholar] [CrossRef]
- Good, I.J. The population frequencies of species and the estimation of population parameters. Biometrika 1953, 40, 237–264. [Google Scholar] [CrossRef]
- Bashalkhanov, S.; Pandey, M.; Rajora, O.P. A simple method for estimating genetic diversity in large populations from finite sample sizes. BMC Genet. 2009, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopiński, M. Shannon diversity index: A call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies. PeerJ 2020, 8, e9391. [Google Scholar] [CrossRef]
- Weir, B.S. Genetic Analysis II: Methods for Discrete Population Genetic Data; Sinauer: Sunderland, MA, USA, 1996. [Google Scholar]
- Karp, A.; Isaac, P.G.; Ingram, D.S. Molecular Tools for Screening Biodiversity: Plants and Animals; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Pruett, C.; Winker, K. The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia. J. Avian Biol. 2008, 39, 252–256. [Google Scholar] [CrossRef]
- Hale, M.; Burg, T.; Steeves, T. Sampling from microsatellite-based population genetic studies: 25 to 30 individuals is enough to accurately estimate allele frequencies. PLoS ONE 2012, 7, e45170. [Google Scholar] [CrossRef]
- Li, H.; Qu, W.; Obrycki, J.J.; Meng, L.; Zhou, X.; Chu, D.; Li, B. Optimizing Sample Size for Population Genomic Study in a Global Invasive Lady Beetle, Harmonia Axyridis. Insects 2020, 11, 290. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Nazareno, A.G.; Jump, A.S. Species-genetic diversity correlations in habitat fragmentation can be biased by small sample sizes. Mol. Ecol. 2012, 21, 2847–2849. [Google Scholar] [CrossRef]
- Willing, E.M.; Dreyer, C.; Van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarely require large sample sizes when using many SNP markers. PLoS ONE 2012, 7, e42649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maran, T.; Skumatov, D.; Gomez, A.; Põdra, M.; Abramov, A.V.; Dinets, V. Mustela lutreola. IUCN Red List. Threat. Species 2016, e.T14018A45199861. [Google Scholar] [CrossRef]
- Maran, T. European mink: Setting of goal for conservation and Estonian case study. Galemys 2003, 15, 1–11. [Google Scholar]
- Davison, A.; Griffiths, H.I.; Brookes, R.C.; Maran, T.; Macdonald, D.W.; Sidorovich, V.E.; Kitchener, A.C.; Irizar, I.; Villate, I.; González-Esteban, J.; et al. Mitochondrial DNA and palaeontological evidence for the origins of endangered European mink, Mustela lutreola. Anim. Conserv. 2000, 3, 345–355. [Google Scholar] [CrossRef]
- Michaux, J.; Libois, R.; Davison, A.; Chevret, P.; Rosoux, R. Is the western population of the European mink, (Mustela lutreola), a distinct Management Unit for conservation? Biol. Conserv. 2004, 15, 357–367. [Google Scholar] [CrossRef]
- Michaux, J.; Hardy, O.; Justy, F.; Fournier, P.; Kranz, A.; Cabria, M.; Davison, A.; Rosoux, R.; Libois, R. Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the West European population. Mol. Ecol. 2005, 14, 2373–2388. [Google Scholar] [CrossRef]
- Korablev, M.P.; Korablev, P.N.; Korablev, N.P.; Tumanov, I.L. Polymorphism of the Endangered European Mink (Mustela lutreola, Carnivora, Mustelidae) Population in the Central Forest Reserve and Neighboring Areas. Biol. Bull. Russ. Acad. Sci. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Cabria, M.T.; Gonzalez, E.G.; Gomez-Moliner, B.J.; Michaux, J.R.; Skumatov, D.; Kranz, A.; Fournier, P.; Palazon, S.; Zardoya, R. Patterns of genetic variation in the endangered European mink (Mustela lutreola L., 1761). BMC Evol. Biol. 2015, 15, 141. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall: Hoboken, NJ, USA, 2010; pp. 1–944. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hill, M. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Harrington, L.A.; Põdra, M.; Gómez, A.; Maran, T. Raising awareness of the plight of the critically endangered European mink in Spain is not miscommunication: A response to Melero. Biodivers. Conserv. 2018, 27, 269–271. [Google Scholar] [CrossRef]
- Maran, T.; Fienieg, E.; Schad, K. Long-Term Management Plan for European Mink (Mustela lutreola) European Endangered Species Programme (EEP); Tallinn Zoo and European Association of Zoos: Tallinn, Estonia; Amsterdam, The Netherlands, 2017; pp. 1–46. [Google Scholar]
- Kiseleva, N.V. The Current State of the European Mink in Russia; Polish Society for Conservation Genetics LUTREOLA: Szczecin, Poland, 2018. [Google Scholar]
- Hellmann, J.J.; Fowler, G.W. Bias, precision and accuracy of four measures of species richness. Ecol. Appl. 1999, 9, 824–834. [Google Scholar] [CrossRef]
Author | Population | Number of Individuals | Number of Haplotypes | π | SD | h | SD | ||
---|---|---|---|---|---|---|---|---|---|
[27] | NE | 14 | 43 | 11 | 14 | 0.0197 | 0.0025 | 0.9780 | 0.0350 |
SE | 2 | 2 | 0.0039 | 0.0019 | 1.0000 | 0 | |||
W | 27 | 1 | 0 | 0 | 0 | 0 | |||
[28] | NE | 18 | 176 | 10 | 15 | 0.0120 | 0.0014 | 0.9390 | 0.0580 |
SE | 34 | 4 | 0.0012 | 0.0003 | 0.4690 | 0.0880 | |||
W | 124 | 1 | 0 | 0 | 0 | 0 | |||
[29] | NE | 11 | 11 | 8 | 8 | 0.0092 | 0.0055 | 0.9500 | 0.0540 |
[26] | NE | 30 | 37 | 4 | 6 | 0.0008 | 0.0002 | 0.2460 | 0.0720 |
W | 7 | 2 | 0.0024 | 0.0012 | 0.2640 | 0.1360 | |||
[30] | NE | 84 | 157 | 13 | 18 | 0.0040 | 0.0030 | 0.8620 | 0.0160 |
SE | 30 | 4 | 0.0019 | 0.0015 | 0.3520 | 0.0103 | |||
W | 43 | 1 | 0 | 0 | 0 | 0 |
Population | NE | SE | W |
---|---|---|---|
Number of individuals | 157 | 66 | 201 |
Number of haplotypes (haplotype richness) | 40 | 8 | 4 |
Shannon–Wiener index | 3.068 | 1.295 | 0.676 |
Standard deviation of Shannon–Wiener index | 0.09252 | 0.12501 | 0.05593 |
Degrees of freedom | 140 | 140 | 202 |
Level of statistical significance of difference between Shannon–Wiener index values | 0.000 * | 0.000 * | 0.000 * |
Direction of comparison | NE to W | SE to NE | W to SE |
Population | Extrapolated Shannon–Wiener Index | Standard Error | Lower 95% Confidence Limit | Upper 95% Confidence Limit |
---|---|---|---|---|
NE | 25.648 | 2.272 | 21.493 | 30.102 |
SE | 3.956 | 0.499 | 3.651 | 4.934 |
W | 1.982 | 0.115 | 1.966 | 2.207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupski, J.; Michaux, J.; Śmietana, P. A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern—The Case of the Critically Endangered European Mink Mustela lutreola L., 1761. Genes 2021, 12, 1555. https://doi.org/10.3390/genes12101555
Skorupski J, Michaux J, Śmietana P. A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern—The Case of the Critically Endangered European Mink Mustela lutreola L., 1761. Genes. 2021; 12(10):1555. https://doi.org/10.3390/genes12101555
Chicago/Turabian StyleSkorupski, Jakub, Johan Michaux, and Przemysław Śmietana. 2021. "A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern—The Case of the Critically Endangered European Mink Mustela lutreola L., 1761" Genes 12, no. 10: 1555. https://doi.org/10.3390/genes12101555
APA StyleSkorupski, J., Michaux, J., & Śmietana, P. (2021). A Meta-Analytical Investigation of the Gap between Measured and Predicted Inter-Population Genetic Diversity in Species of High Conservation Concern—The Case of the Critically Endangered European Mink Mustela lutreola L., 1761. Genes, 12(10), 1555. https://doi.org/10.3390/genes12101555