Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. LDL Apheresis
2.3. Rheohemapheresis
2.4. Plasma Samples and Blood Analysis
2.5. Proteomic Analysis
2.6. Statistical Analyses
3. Results
3.1. Lipid Lowering Drugs Therapy—Only
3.2. Combined Long-Term LDL Apheresis/LLD Therapy
4. Discussion
4.1. Lipid Metabolism
4.2. Inflammation
4.3. Vascular Endothelium
4.4. Thromboembolism
4.5. Lipid-Protein Associations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrablik, M.; Tichý, L.; Freiberger, T.; Blaha, V.; Satny, M.; Hubacek, J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020, 11, 574474. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease. Eur. Heart J. 2013, 34, 3478–3490a. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenarro, A.; Etxebarria, A.; De Castro-Orós, I.; Stef, M.; Bea, A.M.; Palacios, L.; Mateo-Gallego, R.; Benito-Vicente, A.; Ostolaza, H.; Tejedor, T.; et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J. Clin. Endocrinol. Metab. 2016, 101, 2113–2121. [Google Scholar] [CrossRef] [Green Version]
- Creider, J.C.; Hegele, R.A. Clinical evaluation for genetic and secondary causes of dyslipidemia. In Clinical Lipidology: A Companion to Braunwald’s Heart Disease, 2nd ed.; Ballantyne, C.M., Ed.; Elsevier: Philadelphia, PA, USA, 2015; pp. 128–134. [Google Scholar]
- Rader, D.J.; Kathiresan, S. Disorders of lipoprotein metabolism. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J.L., Kasper, D.L., Longo, D.L., Fauci, A.S., Hauser, S.L., Loscalzo, J., Eds.; McGraw Hill: New York, NY, USA, 2018; pp. 2889–2902. [Google Scholar]
- Zhou, Q.; Liao, J.K. Pleiotropic Effects of Statins-Basic Research and Clinical Perspectives. Circ. J. 2010, 74, 818–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bambauer, R.; Bambauer, C.; Lehmann, B.; Latza, R.; Schiel, R. LDL-Apheresis: Technical and Clinical Aspects. Sci. World J. 2012, 2012, 314283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaha, V.; Bláha, M.; Lánská, M.; Solichová, D.; Krcmova, L.K.; Havel, E.; Vyroubal, P.; Zadak, Z.; Žák, P.; Sobotka, L. Lipoprotein Apheresis in the Treatment of Dyslipidemia–the Czech Republic Experience. Physiol. Res. 2017, 66, S91–S100. [Google Scholar] [CrossRef]
- Stefanutti, C. Lipoprotein Apheresis and PCSK9-Inhibitors. Impact on Atherogenic Lipoproteins and Anti-Inflammatory Mediators in Familial Hypercholesterolaemia. Curr. Pharm. Des. 2019, 24, 3634–3637. [Google Scholar] [CrossRef]
- Dlouha, D.; Blaha, M.; Blaha, V.; Fatorova, I.; Hubacek, J.A.; Stavek, P.; Lanska, V.; Parikova, A.; Pitha, J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017, 30, 128–134. [Google Scholar] [CrossRef]
- Blaha, V.; Blaha, M.; Solichová, D.; Krčmová, L.K.; Lánská, M.; Havel, E.; Vyroubal, P.; Zadák, Z.; Žák, P.; Sobotka, L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017, 30, 159–165. [Google Scholar] [CrossRef]
- Borberg, H.; Tauchert, M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006, 34, 41–49. [Google Scholar] [CrossRef]
- Yuasa, Y.; Osaki, T.; Makino, H.; Iwamoto, N.; Kishimoto, I.; Usami, M.; Minamino, N.; Harada-Shiba, M. Proteomic Analysis of Proteins Eliminated by Low-Density Lipoprotein Apheresis. Ther. Apher. Dial. 2013, 18, 93–102. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Solichova, D.; Melichar, B.; Blaha, V.; Klejna, M.; Vavrova, J.; Palicka, V.; Zadak, Z. Biochemical profile and survival in nonagenarians. Clin. Biochem. 2001, 34, 563–569. [Google Scholar] [CrossRef]
- Kroon, A.A.; Hof, M.A.V.; Demacker, P.N.; Stalenhoef, A.F. The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels. Atherosclerosis 2000, 152, 519–526. [Google Scholar] [CrossRef]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, M.; Eriksson, A.; Tran, B.; Assarsson, E.; Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011, 39, e102. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, D.; Ashish, K.; Hajra, A.; Qureshi, A.; Ghosh, R.K. Cardiovascular Outcomes of PCSK9 Inhibitors: With Special Emphasis on Its Effect beyond LDL-Cholesterol Lowering. J. Lipids 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Matarazzo, S.; Quitadamo, M.C.; Mango, R.; Ciccone, S.; Novelli, G.; Biocca, S. Cholesterol-Lowering Drugs Inhibit Lectin-Like Oxidized Low-Density Lipoprotein-1 Receptor Function by Membrane Raft Disruption. Mol. Pharmacol. 2012, 82, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.W.; Wong, N.; Luo, H.; McManus, B.M. Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. J. Hear. Lung Transplant. 2011, 30, 955–962. [Google Scholar] [CrossRef]
- Kjolby, M.; Nielsen, M.S.; Petersen, C.M. Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Curr. Atheroscler. Rep. 2015, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Deng, Z.; Zeng, Z.; Fan, J.; Feng, Y.; Wang, X.; Cao, D.; Zhang, B.; Yang, L.; Liu, B.; et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis. 2020, 7, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zernecke, A.; Weber, C. Chemokines in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2014, 34, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Hulthe, J.; McPheat, W.; Samnegård, A.; Tornvall, P.; Hamsten, A.; Eriksson, P. Plasma interleukin (IL)-18 concentrations is elevated in patients with previous myocardial infarction and related to severity of coronary atherosclerosis independently of C-reactive protein and IL-6. Atherosclerosis 2006, 188, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.M.; Liew, F.Y. The IL-33/ST2 pathway—A new therapeutic target in cardiovascular disease. Pharmacol. Ther. 2011, 131, 179–186. [Google Scholar] [CrossRef]
- Gregersen, I.; Sandanger, Ø.; Askevold, E.T.; Sagen, E.L.; Yang, K.; Holm, S.; Pedersen, T.M.; Skjelland, M.; Krohg-Sørensen, K.; Hansen, T.V.; et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS ONE 2017, 12, e0188387. [Google Scholar] [CrossRef] [Green Version]
- Mor, A.; Salto, M.S.; Katav, A.; Barashi, N.; Edelshtein, V.; Manetti, M.; Levi, Y.; George, J.; Matucci-Cerinic, M. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019, 78, 1260–1268. [Google Scholar] [CrossRef]
- Bob, F.; Schiller, A.; Timar, R.; Lighezan, D.; Schiller, O.; Timar, B.; Bujor, C.G.; Munteanu, M.; Gadalean, F.; Mihaescu, A.; et al. Rapid decline of kidney function in diabetic kidney disease is associated with high soluble Klotho levels. Nefrología 2019, 39, 250–257. [Google Scholar] [CrossRef]
- Shiau, M.-Y.; Chuang, P.-H.; Yang, C.-P.; Hsiao, C.-W.; Chang, S.-W.; Chang, K.-Y.; Liu, T.-M.; Chen, H.-W.; Chuang, C.-C.; Yuan, S.-Y.; et al. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase. Sci. Rep. 2019, 9, 11974. [Google Scholar] [CrossRef]
- Ohmori, R.; Momiyama, Y.; Taniguchi, H.; Takahashi, R.; Kusuhara, M.; Nakamura, H.; Ohsuzu, F. Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis 2003, 170, 333–337. [Google Scholar] [CrossRef]
- Zhang, L.; Peppel, K.; Sivashanmugam, P.; Orman, E.S.; Brian, L.; Exum, S.T.; Freedman, N.J. Expression of Tumor Necrosis Factor Receptor-1 in Arterial Wall Cells Promotes Atherosclerosis. Arter. Thromb. Vasc. Biol. 2007, 27, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Fornai, F.; Carrizzo, A.; Forte, M.; Ambrosio, M.; Damato, A.; Ferrucci, M.; Biagioni, F.; Busceti, C.L.; Puca, A.A.; Vecchione, C. The inflammatory protein Pentraxin 3 in cardiovascular disease. Immun. Ageing 2016, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Scarisbrick, I.A.; Epstein, B.; Cloud-Biebl, B.; Yoon, H.; Wu, J.; Renner, D.N.; Blaber, S.I.; Blaber, M.; Vandell, A.G.; Bryson, A.L. Functional Role of Kallikrein 6 in Regulating Immune Cell Survival. PLoS ONE 2011, 6, e18376. [Google Scholar] [CrossRef] [Green Version]
- Ii, M.; Losordo, D.W. Statins and the endothelium. Vasc. Pharmacol. 2007, 46, 1–9. [Google Scholar] [CrossRef]
- Salomaa, V.; Matei, C.; Aleksic, N.; Sansores-Garcia, L.; Folsom, A.R.; Juneja, H.; Park, E.; Wu, K.K. Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease; The ARIC study. Atherosclerosis 2001, 157, 309–314. [Google Scholar] [CrossRef]
- Kim, K.-I.; Park, K.U.; Chun, E.J.; Choi, S.I.; Cho, Y.-S.; Youn, T.-J.; Cho, G.-Y.; Chae, I.-H.; Song, J.; Choi, D.-J.; et al. A Novel Biomarker of Coronary Atherosclerosis: Serum DKK1 Concentration Correlates with Coronary Artery Calcification and Atherosclerotic Plaques. J. Korean Med. Sci. 2011, 26, 1178–1184. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, C.J.; Murphy, M.; Buckley, B.M. Statins do more than just lower cholesterol. Lancet 1996, 348, 1079–1082. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Khunti, K. Statins and secondary prevention of venous thromboembolism: Pooled analysis of published observational cohort studies. Eur. Heart J. 2017, 38, 1608–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şenaran, H.; Ileri, M.; AltinbaŞ, A.; Koşar, A.; Yetkin, E.; Öztürk, M.; Karaaslan, Y.; Kirazli, S. Thrombopoietin and mean platelet volume in coronary artery disease. Clin. Cardiol. 2001, 24, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xian, M.; Yang, B.; Ying, M.; He, Q. Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells. Stem Cell Rep. 2017, 8, 1617–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.; Wang, Y.-Y.; Jia, P.; Xiong, Q.; Hu, Y.; Chang, Y.; Lai, S.; Xu, Y.; Zhao, Z.; Song, J. Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Segev, A.; Nili, N.; Strauss, B.H. The role of perlecan in arterial injury and angiogenesis. Cardiovasc. Res. 2004, 63, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanssen, N.M.; Stehouwer, C.D.; Schalkwijk, C.G. Methylglyoxal and glyoxalase I in atherosclerosis. Biochem. Soc. Trans. 2014, 42, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Yau, S.W.; Russo, V.C.; Clarke, I.; Dunshea, F.; A Werther, G.; Sabin, M. IGFBP-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. Int. J. Obes. 2015, 39, 770–781. [Google Scholar] [CrossRef] [PubMed]
LLD+/AF− | LLD+/AF+ | |
---|---|---|
Male/Female (N) | 8/10 | 7/7 |
Age (years) | 55.4 ± 13.1 | 58.0 ± 13.6 |
BMI (kg/m2) | 26.5 ± 4.1 | 26.8 ± 3.1 |
Current smokers and ex-smokers/non-smokers | 7/11 | 4/10 |
Hypertension | 5 | 5 |
Diabetes Mellitus | 0 | 2 |
LDLR mutations: (N) homozygotes/heterozygotes | 0/18 | 6/8 |
Duration of apheresis treatment (years) | - | 12.3 ± 6.5 |
Hypolipidemic treatment | 1 month | >13 years |
ACE-i/ARB | 4 | 3 |
Betablockers | 4 | 6 |
Antithrombotic drugs | 3 | 14 |
PCSK9 inhibitors | 0 | 3 |
Statins | 8 (Atoravastatin 10–40 mg) 7 (Rosuvastatin 10–40 mg) 2 (Atoravastatin/Rosuvastatin 40 mg + Ezetimibe 10 mg) 1 (Simvastatin 20 mg) | 14 (all Rosuvastatin 40 mg or Atorvastatin 80 mg + Ezetimibe 10 mg) |
(a)/LLD+/AF− | Before | After | |||
Protein | Lipids | Spearman ρ | p | Spearman ρ | p |
PTX3 | TC | −0.5356 | 0.0084 | −0.1536 | 0.5302 |
PRSS27 | TC | 0.2905 | 0.1787 | 0.7041 | 0.0008 |
PRSS27 | LDL-C | 0.2881 | 0.1825 | 0.6570 | 0.0022 |
MB | TC | −0.2223 | 0.3079 | −0.6319 | 0.0037 |
CCL3 | TC | 0.1423 | 0.5172 | 0.6222 | 0.0044 |
CCL3 | LDL-C | 0.1769 | 0.4193 | 0.5925 | 0.0075 |
GDF-2 | TC | 0.3262 | 0.1288 | 0.5801 | 0.0092 |
MARCO | LDL-C | 0.0919 | 0.6766 | 0.7068 | 0.0007 |
CD40-L | LDL-C | 0.6123 | 0.0019 | 0.1434 | 0.5582 |
PON3 | HDL-C | 0.5871 | 0.0032 | 0.3696 | 0.1193 |
IGFBP-2 | HDL-C | 0.5660 | 0.0049 | 0.5470 | 0.0154 |
PSP-D | HDL-C | 0.5368 | 0.0083 | 0.5312 | 0.0193 |
GLO1 | HDL-C | −0.2990 | 0.1658 | −0.6839 | 0.0012 |
IL-1ra | HDL-C | −0.4359 | 0.0376 | −0.6471 | 0.0027 |
NT-proBNP | HDL-C | 0.4398 | 0.0357 | 0.6383 | 0.0033 |
GH | HDL-C | 0.2100 | 0.3361 | 0.5909 | 0.0077 |
LDL receptor | TAG | 0.5649 | 0.0050 | 0.8228 | <.0001 |
IGFBP-2 | TAG | −0.5156 | 0.0118 | −0.7895 | <.0001 |
LPL | TAG | −0.4563 | 0.0287 | −0.7474 | 0.0002 |
IGFBP-1 | TAG | −0.3326 | 0.1210 | −0.6105 | 0.0055 |
ACE2 | TAG | 0.3420 | 0.1102 | 0.5965 | 0.0070 |
t-PA | TAG | 0.3706 | 0.0817 | 0.5825 | 0.0089 |
(b)/LLD+/AF+ | Before | After | |||
Protein | Lipids | Spearman ρ | p | Spearman ρ | p |
REN | TC | −0.7357 | 0.0018 | −0.5380 | 0.0386 |
REN | LDL-C | −0.6500 | 0.0087 | −0.6810 | 0.0052 |
AXL | TC | −0.6964 | 0.0039 | −0.4383 | 0.1022 |
AXL | LDL-C | −0.6429 | 0.0097 | −0.4705 | 0.0767 |
MB | TC | −0.6929 | 0.0042 | 0.0250 | 0.9295 |
MB | LDL-C | −0.7571 | 0.0011 | 0.1233 | 0.6615 |
IGFBP-7 | TC | −0.6571 | 0.0078 | 0.0697 | 0.8050 |
IGFBP-7 | LDL-C | −0.7036 | 0.0034 | 0.1698 | 0.5452 |
CDH5 | TC | −0.6464 | 0.0092 | −0.2574 | 0.3544 |
CDH5 | LDL-C | −0.6857 | 0.0048 | −0.1573 | 0.5756 |
CCL15 | TC | −0.6464 | 0.0092 | 0.1787 | 0.5239 |
CCL15 | LDL-C | −0.7286 | 0.0021 | −0.2055 | 0.4624 |
PGF | TC | −0.7250 | 0.0022 | −0.1823 | 0.5155 |
CXCL1 | TC | 0.6893 | 0.0045 | 0.2341 | 0.4010 |
MCP-1 | LDL-C | −0.6964 | 0.0039 | −0.3342 | 0.2234 |
IL-18BP | LDL-C | −0.6702 | 0.0063 | −0.1144 | 0.6848 |
AP-N | LDL-C | −0.6679 | 0.0065 | −0.5451 | 0.0356 |
TLT-2 | LDL-C | −0.6464 | 0.0092 | −0.0465 | 0.8694 |
uPA | LDL-C | −0.6464 | 0.0092 | 0.1555 | 0.5800 |
KIM1 | TAG | 0.7750 | 0.0007 | 0.7006 | 0.0036 |
RARRES2 | TAG | 0.7607 | 0.0010 | 0.4093 | 0.1298 |
FGF-21 | TAG | 0.7607 | 0.0010 | 0.5541 | 0.0321 |
GDF-15 | TAG | 0.6786 | 0.0054 | 0.7310 | 0.0020 |
t-PA | TAG | 0.6429 | 0.0097 | 0.2788 | 0.3143 |
IL-4RA | TAG | −0.6429 | 0.0097 | −0.2522 | 0.3644 |
IL16 | TC | 0.0858 | 0.7611 | 0.7775 | 0.0006 |
PIgR | TC | 0.0071 | 0.9798 | 0.7685 | 0.0008 |
vWF | TC | 0.3571 | 0.1913 | −0.7328 | 0.0019 |
CEACAM8 | TC | −0.2000 | 0.4748 | 0.6816 | 0.0051 |
ADAM-TS13 | TC | −0.0214 | 0.9396 | −0.6780 | 0.0055 |
LOX-1 | TC | −0.0769 | 0.7854 | 0.6488 | 0.0089 |
PON3 | HDL-C | 0.5571 | 0.0310 | 0.6500 | 0.0087 |
ACE2 | TAG | 0.5143 | 0.0498 | 0.8472 | <.0001 |
Notch 3 | TAG | −0.5607 | 0.0297 | −0.7489 | 0.0013 |
PRSS8 | TAG | 0.2750 | 0.3212 | 0.7435 | 0.0015 |
TR | TAG | −0.1464 | 0.6025 | −0.7024 | 0.0035 |
FGF-23 | TAG | −0.0250 | 0.9295 | 0.6720 | 0.0061 |
IL-1RT2 | TAG | 0.2643 | 0.3412 | 0.6506 | 0.0086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlouha, D.; Blaha, M.; Rohlova, E.; Hubacek, J.A.; Lanska, V.; Visek, J.; Blaha, V. Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia. Genes 2021, 12, 1599. https://doi.org/10.3390/genes12101599
Dlouha D, Blaha M, Rohlova E, Hubacek JA, Lanska V, Visek J, Blaha V. Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia. Genes. 2021; 12(10):1599. https://doi.org/10.3390/genes12101599
Chicago/Turabian StyleDlouha, Dana, Milan Blaha, Eva Rohlova, Jaroslav A. Hubacek, Vera Lanska, Jakub Visek, and Vladimir Blaha. 2021. "Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia" Genes 12, no. 10: 1599. https://doi.org/10.3390/genes12101599
APA StyleDlouha, D., Blaha, M., Rohlova, E., Hubacek, J. A., Lanska, V., Visek, J., & Blaha, V. (2021). Multiplex Protein Biomarker Profiling in Patients with Familial Hypercholesterolemia. Genes, 12(10), 1599. https://doi.org/10.3390/genes12101599