Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder
Abstract
:1. General Introduction
1.1. Epidemiology of METH Use
1.2. Clinical Presentations of METH-Use Disorder
2. Alterations of Chromatin Dynamics in METH-Use Disorder
2.1. Brief Introduction
2.2. Histone Modifications in METH-Use Disorder
2.2.1. Histone Acetylation
Acute Effects of METH on Histone Acetylation
Chronic Effects of METH on Histone Acetylation
Role of HDAC Inhibitors in METH Exposure
Role of HATs in METH Exposure
2.2.2. Histone Methylation
Source | Experimental Design | Comparison | Assay and Results | Ref. | |||
---|---|---|---|---|---|---|---|
WB | H4K5ac Enrichment ChIP-PCR | H4K5ac Enrichment ChIP-Seq | RT-PCR | ||||
Rat male DStr | SM-Saline for 3 wk followed by METH (5 mg/kg), i.p. | ↑ SM vs. CT | ARC and c-FOS | Arc, Crem, Egr2, c-Fos, Npas4, and Nr4a3 | Crem, DNAjb5, Egr2, c-Fos, Npas4, Nr4a3, and Nts | Arc, Crem, Egr2, c-Fos, Npas4, and Nr4a3 | [47] |
MS-ETH escalated doses (0.5 to 3 mg/kg) for 3 wk followed by saline, i.p. | ↑ MS vs. CT | ARC and c-FOS | |||||
↓ MS vs. CT | Egr2 | ||||||
↑ SM vs. MS | Arc, Crem, Egr2, c-Fos, Npas4, and Nr4a3 | Arc, Crem, Egr2, c-Fos, Npas4, and Nr4a3 | |||||
MM-METH escalated doses (0.5 to 3 mg/kg) for 3 wk followed by challenge METH (5 mg/kg), i.p. | ↑ MM vs. CT | ARC and c-FOS | Egr2, Npas4, Nr4a3 | Arc, Egr2, c-Fos, Npas4, Npb, Nr4a3, and Nts | |||
↑ MM vs. MS | Crem, Egr2, c-Fos, Npas4, and Nr4a3 | Arc, Egr2, c-Fos, Npas4, and Nr4a3 | |||||
↑ MM vs. SM | Nr4a3 | Nr4a3 | |||||
↓ MM vs. SM | Arc, Crem, Egr2, and c-Fos | ||||||
WB | Pan-H3ac Enrichment ChIP-PCR | Pan-H4ac Enrichment ChIP-PCR | RT-PCR | ||||
Mouse pCTX | Single dose METH (1 mg/kg, s.c.) for 1 h, co-treatment with modafinil (Mod) (90 mg/kg i.p.) | ↑ METH vs. CT | pan-H3ac, HDAC1, HDAC2, and GLUN1 | Drd2, Adra1a, Hcrtr1, and Hrh1 | Drd1 and Hcrtr1 | Drd1, Adra1a, Hcrtr1, Hrh1, Hdac1, and Hdac2 | [51] |
↓ METH vs. CT | pan-H4ac | Hrh3 | Hcrtr2, Grin1, and Hrh3 | ||||
↑ METH + Mod vs. CT | pan-H3ac, HDAC1, HDAC2, and GLUN1 | Drd1, Drd2, Adra1b, Hcrtr1, and Hrh1 | Drd2 and Hcrtr1 | Drd1, Adra1a, Hcrtr1, Hrh1, Hdac1, and Hdac2 | |||
↓ Mod vs. CT | H4ac | Hrh3 | Hcrtr2, Grin1, Hrh1, and Hrh3 | Hdac2 | |||
WB | pCREB ChIP-PCR | ||||||
Rat male NAc | Single dose of METH (10 mg/kg) for 1, 2, 3, and 4 wk, i.p. | ↑ METH vs. CT | pCREB | Cartpt (4 wk) | [52] | ||
WB | |||||||
Rat male DStr | Single injection METH (20 mg/kg) for 1, 2, 4, 8, 16, and 24 h, i.p. | ↑ METH vs. CT | 1, 2, 4, 8, 16, and 24 h—H4K5ac 4, 8, 16, and 24 h—HDAC2 | [53] | |||
↓ METH vs. CT | 1, 2, 4, 8, 16, and 24 h—H3K9ac 8, 16, and 24 h-H3K18ac 1, 2, 4, 8, and 16 h—HDAC1 | ||||||
RT-PCR | |||||||
Mouse male NAc | Single dose of METH (20 mg/kg) for 1, 2, and 8 h in HDAC2 KO and WT, i.p. | ↓ WT vs. CT | 1 h—Hdac3, Hdac4, Hdac7, and Hdac11 2 h—Hdac4, Hdac7, and Hdac11 8 h—Hdac3, Hdac4, Hdac8, and Hdac11 | [54] | |||
↑ WT vs. CT | 1, 2, and 8 h—Hdac6 | ||||||
↓ KO vs. CT | 1 h—Hdac4 | ||||||
↑ KO vs. CT | 1 h—Hdac7 and Hdac11 2 h—Hdac8 and Hdac11 8 h—Hdac3, Hdac4, Hdac6, and Hdac11 | ||||||
↑ WT vs. KO | 1 and 2 h—Hdac6 | ||||||
↑ KO vs. WT | 1 h—Hdac3 and Hdac7 2 h—Hdac3, Hdac4 and Hdac8 8 h—Hdac3, Hdac4, and Hdac7 | ||||||
WB | RT-PCR | ||||||
Human primary astrocytes (cerebral cortex) | Single dose of METH (10 µM), co-treatment with Piracetam (10 µM), | ↑ METH vs. CT | HDAC1, HDAC4, HDAC6, p300/CBP, pan-H3ac, and H3K56ac | Hdac1 | [63] | ||
↑ METH + Piracetam vs. CT | HDAC2, HDAC3, HDAC4, pan-H3ac, and H3K56ac | ||||||
↓ METH vs. CT | HDAC5, PCAF, GCN5 and H3K14ac | ||||||
↓ METH + Piracetam vs. CT | HDAC5, PCAF, and H3K14ac | ||||||
WB | pan-H3ac enrichment ChIP-PCR | pan-H4ac enrichment ChIP-PCR | RT-PCR | ||||
Mouse male pCTX | Repeated METH (1 mg/kg, s.c.) for 7 d, co-treatment with modafinil (90 mg/kg i.p.) | ↑ METH vs. CT | Drd1, Hctr1, and Hrh1 | Drd1, Gria1, and Grin1 | [64] | ||
↓ METH vs. CT | pan-H3ac and pan-H4ac | Drd2, Hctr1, Hctr2, Hrh1, Hrh3, and Grin1 | Hctr2 | ||||
↑ METH + Mod vs. CT | Adra1a | Drd1, Hctr1, and Hrh1 | |||||
↓ METH + Mod vs. CT | Hrh3 | Hctr2 | |||||
WB | pan-H3ac Enrichment ChIP-PCR | pan-H4ac Enrichment ChIP-PCR | RT-PCR | ||||
Mouse male pCTX | METH (5 mg/kg × 1-development phase) for 7 d, withdrawal for 7 d followed by challenge METH (1 mg/kg x1), s.c. | ↑ METH vs. CT | ANP32A and POUF3F2 | POUF3F2 (challenge phase) | ANP32A (all three phases) and POUF3F2 (challenge phase) | NP32A and POUF3F2 (development phase) | [65] |
WB | ChIP-PCR | RT-PCR | |||||
Rat male DStr | METH escalated doses (0.5 mg/kg to 3 mg/kg) for 3 wk, co-treatment with sodium valporate (VPA-300 mg/kg) followed by challenge METH (5 mg/kg), 1.p. | ↑ METH vs. CT | HDAC1, HDAC2, SIRT1, SIRT2, CoREST and REST | HDAC1 enrichment on GluN1 HDAC2 enrichment on GluA1 and GluA2 CoREST enrichment on GluA1 and GluA2 REST enrichment on GluN1 | [66] | ||
↓ METH vs. CT | GluA1, GluA2, GluN1, H4K5ac, H4K12ac, and H4K16ac | H4K5ac enrichment on GluA2 and GluN1 H4K12ac enrichment on GluA1, GluA2, and GluN1 H4K16ac enrichment on GluA1, GluA2, and GluN1 | GluA1, GluA2, and GluN1 | ||||
↑ METH + VPA vs. METH | H4K16ac enrichment on GluA1 | GluA2 and GluN1 | |||||
RT-PCR | |||||||
Rat male DStr | METH (10 mg/kg × 4 every 2 h) i.p. | ↓ METH vs. CT | Hdac6, Hdac8, Hdac9, Hdac10, Sirt2, Sirt5, Sirt6, and Hdac11 | [67] | |||
RT-PCR | |||||||
Rat male DStr and NAc | METH SA (0.1 mg/kg/infusion, 9 h/d) for 20 d followed by footshock (5 d) and withdrawal for 30 d | ↑ SR vs. CT | DStr—Kat4/Taf1, Kat5/Tip60 | [69] | |||
SR-Footshock resistant/compulsive METH taking rats | ↓ SR vs. CT | DStr—Hdac5, Hdac7, and Hdac10 NAc—Hdac1 and Hdac11 | |||||
SS-Footshock sensitive/abstinent rats | ↑ SR vs. SS | DStr—Kat4/Taf1, Kat5/Tip60, Hdac2, Hdac8 and Hdac9 | |||||
RT-PCR | |||||||
Rat male DStr | METH SA (0.1 mg/kg/infusion, 9 h/d) for 10 d and withdrawal for 30 d. Seven days prior to SA, AAV injection for overexpression HDAC5 (mutant/mHDAC5) or knock-down HDAC5 (short-hairpin/shHDAC5) | ↑ shHDAC5 vs. CT | Hdac1, Hdac4, Gnb4, and Suv39h1 | [74] | |||
↓ shHDAC5 vs. CT | Hdac5 and Tacr1 | ||||||
WB | pCREB enrichment ChIP-PCR | ||||||
Rat male DStr | METH SA (0.1 mg/kg/infusion, 15 h/d) for 8 d) and withdrawal for 2 h, 24 h, and 30 d | ↑ METH vs. CT | 2 h and 24 h—H3K4me3 and pCREB | 2h- c-Fos, FosB, Bdnf, and Syp | [79] | ||
↓ METH vs. CT | 30d- pCREB | ||||||
H3K4me3 enrichment ChIP-PCR | RT-PCR | ||||||
Mouse male NAc | METH (2 mg/kg, once every 96 h) for 5 times, s.c. and withdrawal for 7 wk | ↑ METH vs. CT | Ccr2 | Ccr2 | [83] | ||
WB | H3K4me3 enrichment ChIP-PCR | Microarray | |||||
Mouse male NAc | METH (2 mg/kg i.p., 2 CPP training session/day) for 3 d. | ↑ METH vs. CT | H3K4me2, H3K4me3, pan-H2ac, and pan-H3ac | Oxtr | Mll1/Kmt2a, Oxtr and c-Fos | [87] | |
Prior to METH CPP training intra-NAc infusion of Kdm5c siRNA for knock-down (Kdm5c KD) | ↑ METH Kdm5c KD vs. CT | H3K4me3 | |||||
Prior to METH CPP training intra-NAc infusion of Mll1/Kmt2a siRNA for knock-down (Mll1 KD) | ↓ METH Mll1/Kmt2a KD vs. CT | H3K4me3 | |||||
HDAC enzymatic assay | |||||||
Rat female mAmygdala | METH injection (5 mg/kg × 1) for 4 d i.p., co-treatment with estradiol benzoate (EB) and progesterone (P) for 5 h s.c. | ↓ METH + EB + P vs. CT | HDAC activity | [89] | |||
pan-H3ac enrichment ChIP-PCR | pan-H4ac enrichment ChIP-PCR | RT-PCR | |||||
Mouse male pCTX | Single dose METH (1 mg/kg) for 1h, Repeated METH (1 mg/kg × 1) for 7 d s.c.and withdrawal for 4 d, co-treatment with modafinil (90 mg/kg) i.p. | ↑ single dose METH vs. CT | Hdac1 and Hdac10 | Hdac1, Hdac2, Hdac4, Hdac5, and Hdac8 | [90] | ||
↓ single dose METH vs. CT | Hdac2, Hdac4, Hdac5, and Hdac8 | ||||||
↑ single dose METH + Mod vs. CT | Hdac7 | Hdac1, Hdac2, Hdac5, Hdac7 and Hdac8 | |||||
↑ rep. dose METH vs. CT | Hdac3, Hdac4, Sirt3, and Sirt6 | Hdac1, Hdac4, Hdac5, and Hdac11 | Hdac4 and Sirt7 | ||||
↓ rep. dose METH vs. CT | Hdac1, Hdac2, and Hdac8 | Hdac2 Hdac8, and Sirt7 | Hdac2 | ||||
↑ rep.dose METH + Mod vs. CT | Hdac3, Hdac4, and Sirt6 | Hdac1, Hdac2, Hdac5, Hdac7 and Hdac8 | |||||
↓ rep. dose METH + Mod vs. CT | Hdac8 | ||||||
RNA-Seq | |||||||
Rat male CeA | METH SA (0.1 mg/kg/infusion, 9 h/d) for 10 d, and withdrawal for 35 d. | ↑ METH vs. CT | Mll1/Kmt2a | [91] |
2.3. DNA Methylation
2.3.1. Pre-Clinical Studies
2.3.2. Clinical Studies
2.4. DNA Hydroxymethylation
Source | Experimental Design | Comparison | Assay and Results | Ref. | |||
---|---|---|---|---|---|---|---|
WB | ChIP-PCR | MeDIP and hMeDIP-PCR | RT-PCR | ||||
Rat male NAc | Single dose METH (10 mg/kg) for 1, 2, 3, and 4 wk, co-treatment with 1,5-isoquinolinediol (IQD, 3 mg/kg) on days 1, 2, 4, and 6 per wk, i.p. | ↑ METH vs. CT | TET1 DNMT1 (2–4 wk) TET2 and TET3 (4 wk) | TET1 enrichment on Crh TET3 enrichment on Avp | hMeDIP- Crh and Avp (4 wk) | Cartpt and Crh (2–4 wk) Avp (3–4wk) | [52] |
↓ METH vs. CT | MeDIP- Crh and Avp (4 wk) | ||||||
↑ METH + IQD vs. CT | Avp and Crh (4 wk) | ||||||
ELISA | |||||||
Mouse pCTX | Repeated METH (1 mg/kg, s.c.) for 7 d, co-treatment with modafinil (90 mg/kg i.p.) | ↑ METH vs. CT | Global 5mC | [64] | |||
WB | ChIP-PCR | MeDIP and hMeDIP-PCR | |||||
Rat male DStr | METH escalated doses (0.5 mg/kg to 3 mg/kg) for 3 wk, co-treatment with sodium valporate (VPA-300 mg/kg) followed by challenge METH (5 mg/kg), 1.p. | ↑ METH vs. CT | MeCP2, and DNMT1 | MeCP2 enrichment on GluA1 and CoREST enrichment on GluA1 and GluA2 | [66] | ||
↓ METH vs. CT | MeDIP- GluA2 hMeDIP- GluA1 and GluA2 | ||||||
WB | |||||||
Rat female VMN | METH injection (5 mg/kg × 1) for 4 d i.p., co-treatment with estradiol benzoate (EB) and progesterone (P) for 5 h s.c. | ↑ METH + EB + P vs. METH | DNMT3b | [89] | |||
↑ METH + EB + P vs. CT + EB + P | DNMT3b | ||||||
Pyrosequencing | PCR Array | RT-PCR | |||||
Mouse male pCTX and HIP | Repeated METH (2 mg/kg x 16) injected every other day for 31 d, i.p. and withdrawal for 1 wk. DNA methylation levels on CpG islands via pyrosequencing. | ↑ METH vs. CT | pCTX—Arc (site # 3, 5, and 9) and c-FosHIP—Klf10 | [97] | |||
↓ METH vs. CT | pCTX—Arc (site # 4, 6, 7, and 10) HIP—Nr4a1 | pCTX—Arc, Bdnf, Cebpb, Egr1, 2, and 4, c-Fos, Junb, Klf10, Ngf, Nr4a1,and Pim1 HIP—Arc, Egr2, and 3, c-Fos, c-Jun, Klf10, Nr4a1,and Plat | pCTX and HIP—Arc, Egr2, c-Fos, and Nr4a1 | ||||
Pyrosequencing | |||||||
Mouse male and female, HIP | METH escalated doses (0.5 to 4 mg/kg, i.p.) from PD33 to PD59 followed by mating on PD60 and from PD61 injected with fixed dose of METH (4 mg/kg, s.c.) every-other-day for 17 d. | ↑ MpMd vs. SpSd | Bcl7c, Dhx16, Hspb8, Pgam1, Six6, Snx7, and Txnrd3 | [98] | |||
SpSd-Saline pups reared by saline exposed dams; MpMd- METH pups reared by METH exposed dams | ↓ MpMd vs. SpSd | Col24a1 and Hdac5 | |||||
WB | MeDIP-PCR | RT-PCR | |||||
Rat male Nac | Single dose METH (10 mg/kg, i.p.) followed by METH SA (0.1 mg/kg/infusion) for 18 d and withdrawal for 30 d | ↑ MM vs. SM | Kcna1, Kcna3 and Kcnn1 | Kcna4, Kcna5, Kcnn3, Kcnma1, and Kcnmb2 | [99] | ||
SM- Single saline injection followed by METH SA | ↓ MM vs. SM | Kcna1, Kcna3, and Kcnn1 | Kcna1, Kcna3, Kcna5, Kcna6, and Kcnn1 | ||||
MM- Single METH injection followed by METH SA | ↑ SM vs. CT | Kcna1, Kcna3, and Kcnn1 | Kcna1, Kcna3, Kcna5, Kcna6, Kcnb1, Kcnb2, Kcnn1, Kcnn3, Kcnma11, and Kcnmb2 | ||||
↓ SM vs. CT | Kcna1 | ||||||
WB | IHC | TEM | MeDIP-PCR | ||||
Mouse male striatal neurons | Acute METH (5 mg/kg × 5 every 2 h) and withdrawal for 1 h, 2 d, and 7 d Sub-acute METH (5 mg/kg × 1 daily) for 7 d and withdrawal for 1 d, 7 d, and 21 d Chronic METH (5 mg/kg × 1 daily) for 21 d and withdrawal for 1 d, 7 d, and 21 d | ↑ METH vs. CT | α- SYNUCLEIN Acute—1 h Sub-acute—7 d and 21 d Chronic—1 d, 7 d, and 21 d | α- SYNUCLEIN Acute—1 h Sub-acute—7 d and 21 d Chronic—1 d, 7 d, and 21 d | α- SYNUCLEINAcute—1 h Chronic—1 d, 7 d, and 21 d | [100] | |
↓ METH vs. CT | α- SYNUCLEIN Acute—7 d | α- SYNUCLEIN Acute—1 h and 7 d | 5-mC enrichment on SCNA Acute—1 h Sub-acute and Chronic—1 d, 7 d, and 21 d | ||||
Quantitative methylation specific PCR | Quantitative non-methylation specific PCR | ||||||
Male human peripheral blood | METH abusers and healthy controls. | ↑ METH vs. CT | CHN2 | [102] | |||
↓ METH vs. CT | CHN2 | ||||||
MethyLight qPCR | |||||||
Male human peripheral blood | METH abusers and healthy controls. | ↑ LMAQ vs. CT | CAV2, LNX1, and BHLHB9 | [105] | |||
As per DSM IV METH abusers were segregated to: Low METH addictive quality group (LMAQ); High METH addictive quality group (HMAQ) | ↓ LMAQ vs. CT | SLC1A6 and PCSK9 | |||||
↑ HMAQ vs. CT | LNX1 and BHLHB9 | ||||||
↓ HMAQ vs. CT | SLC1A6 and PCSK9 | ||||||
PyroMark PCR | |||||||
Male human blood cells | METH abusers and healthy controls. | ↑ Psy vs. CT | PVALB (CpG1 and CpG2) | [106] | |||
As per DSM IV METH abusers were segregated to: with psychosis (Psy) and without psychosis (Non-Psy) | |||||||
MeDIP-PCR | RT-PCR | ||||||
Male and female human saliva | METH abusers and healthy controls. | ↓ Psy vs. CT | DRD3, DRD4, MB-COMT, and AKT1 | [107] | |||
As per DSM IV METH abusers were segregated to: with psychosis (Psy) and without psychosis (Non-Psy) | ↓ Non-Psy vs. CT | AKT1 | |||||
↑ Non-Psy vs. Psy | DRD3, DRD4, MB-COMT, and AKT1 | ||||||
↑ Psy vs. CT | DRD2, DRD3, DRD4,MB-COMT, and AKT1 | ||||||
↑ Non-Psy vs. CT | MB-COMT and AKT1 | ||||||
↓ Non-Psy vs. Psy | DRD4 | ||||||
Pyrosequencing | |||||||
Male and female human peripheral blood | METH abusers and healthy controls | ↑ METH vs. CT | Methylation of CpG of BDNF in site # 1–4 | [108] | |||
Pyrosequencing and PyroMark PCR | |||||||
Male and female human peripheral blood | METH abusers with psychotic disorder and healthy controls | ↑ METH vs. CT | Methylation of CpG of SHATI/NAT8L in site # 2, 4–8 | [109] | |||
PyroMark PCR | |||||||
Male and female human saliva | 10 and 11-year old children, with prenatal METH exposure (PME) and healthy controls | ↑ PME vs. CT | Methylation of CpG2 of HSD11B2 in model 1 and 2. The effect observed remained after adjusting for cortisone and co-variates | [113] | |||
The PME children were separated into 4 model groups: Model 1—Only PMEModel 2—PME + Early adversity Model 3—PME + Early adversity + Cortisone Model 4—PME + Early adversity + Cortisone + Co-variates (gestational age, cigarette, alcohol and marijuana use) | |||||||
COBRA on LINE-1 | |||||||
Male and female human peripheral blood | METH abusers and healthy controls. | ↓ Non-Psy vs. CT | % uCmC | [114] | |||
As per DSM IV METH abusers were segregated to: with psychosis (Psy) and without psychosis (Non-Psy) | ↓ Psy vs. Non-Psy | % uCmC | |||||
LINE-1 alleles are classified into four patterns: hypermethylation (mCmC) partial methylation 5′m with 3′u (mCuC) partial methylation 5′u with 3′m (uCmC) hypomethylation (uCuC) | ↑ Non-Psy vs. CT | % mCuC % mCuC + % uCmC | |||||
hMeDIP-Seq | RT-PCR | ||||||
Rat male Nac | METH SA (0.1 mg/kg/infusion, 9 h/d) for 20 d followed by footshock (10 d) | ↑ SR vs. CT | Kcnb2 and Kcnn2 | [128] | |||
SR-Footshock resistant/compulsive METH taking rats | ↑ SS vs. CT | Kcnip2, Kcnj2, Kcnj3, Kcnk12, Kcnma1, and Kcnn2 | Kcna1, Kcna2, Kcnb2, Kcnma1, Kcnn1, and Kcnn2 | ||||
SS-Footshock sensitive/abstinent rats | ↑ SR vs. SS | Kcna4, Kcnb2, Kcnd3, Kcnh1, Kcnk1, Kcnn2, and Kctd13 | |||||
↓ SR vs. SS | Kcnb2, Kcnn2, and Kcnt2 | Knca1, Kcna2, Kcnab1, Kcnb2, Kcnma1, Kcnn1, and Kcnn2 |
2.5. Non-Coding RNA
2.5.1. Pre-Clinical Studies
2.5.2. Clinical Study
Source | Experimental Design | Comparison | Assay and Results | Ref. | |||
---|---|---|---|---|---|---|---|
Behavioral Sensitization | RT-PCR | miRNA-Target Protein Interaction | WB | ||||
Mouse male NAc | METHiHS- Chronic METH for 5 d (2 mg/kg, once daily), i.p. or and withdrawal for 2 d, followed by METH challenge (2 mg/kg) i.p. | ↑ ChMETH vs. CT | Yes | Arf6 | [131] | ||
↓ ChMETH vs. CT | Nlgn1 | Arf6 and Nlgn1 | |||||
Saline for 7 d followed by Acute METH (2 mg/kg), i.p. | ↑ ChMETH vs. AcMETH | Cpeb3 | |||||
↓ ChMETH vs. AcMETH | Arf6 | ||||||
↑ AcMETH vs. CT | Arf6 | ||||||
↓ AcMETH vs. CT | Cpeb3 | ||||||
AAV-miR-128 KD | ↑ KD CT vs. CT | Nlgn1 | |||||
↑ KD METH vs. ChMETH | 100 | Arf6, Nlgn1, and Cpeb3 | |||||
↓ KD METH vs. ChMETH | Yes | 18 | |||||
AAV-miR-128 KI | ↓ KI CT vs. CT | Nlgn1 | |||||
↑ KI METH vs. ChMETH | Yes | ||||||
↓ KI METH vs. ChMETH | Arf6 and Cpeb3 | ||||||
WB | miRNA-PCR | CPP Score | |||||
Mouse male dHIP | METH CPP for 8 d (1 mg/kg, every other day), i.p. | ↑ METH vs. CT | miR-31-3p | Post-test | [132] | ||
↓ METH vs. CT | RhoA | ||||||
AAV-RhoA- or AAV-miR-31-3p- KD | ↑ KD CT vs. CT | RhoA (miR-31-3p) | |||||
↓ KD METH vs. KD CT | RhoA (miR-31-3p) | ||||||
↑ KD METH vs. METH | RhoA (miR-31-3p) | Post-test (RhoA) | |||||
↓ KD METH vs. METH | Post-test (miR-31-3p) | ||||||
AAV-RhoA- or AAV-mIR-31-3p- KI | ↓ KI CT vs. CT | RhoA (miR-31-3p) | |||||
↑ KI METH vs. METH | Post-test (miR-31-3p) | ||||||
↓ KI METH vs. METH | RhoA (miR-31-3p) | Post-test (RhoA) | |||||
miRNA-PCR | RT-PCR | ||||||
Rat male DStr | METH CPP for 8 d (1 mg/kg, every other day), i.p. | ↑ METH vs. CT | Ube2d3, Rnf169, Fbxo33, Rad23b, Neurl1b, Pcnp, Tulp4, Klhl15, Rnf34, Derl1, and Hsp90b1 | [133] | |||
↓ METH vs. CT | rno-miR-: 181a-5p and 181b-5p | ||||||
miRNA-Seq | miRNA-PCR | ||||||
Mouse NAc | METH CPP for 4 d (2 mg/kg), s.c. | ↑ METH vs. CT | 276 | miR-: 197-5p, 22-3p, 152-3p and 218b | [134] | ||
↓ METH vs. CT | 25 | ||||||
miRNA-Seq | miRNA-PCR | RT-PCR | |||||
Rat male NAc | METH CPP for 4 wk (10 mg/kg, twice daily), i.p. | ↑ METH vs. CT | 17 miRs | rno-miR-: 217-5p, 31b, 28-3p, 31a-5p, 547-3p, and 216b-5p | 5-Htr1b, Rtn4, and Sv2a | [135] | |
↓ METH vs. CT | 23 miRs | rno-miR-: 1b, 144-5p, 202-5p, 133a-3p, 133c, and 451-5p | Rbm8a and Syt7 | ||||
miRNA-Seq | High target gene # | ||||||
Rat male DStr | METH for 3 d (2 mg/kg), i.p. followed by METH for 4 d, (5 mg/kg), i.p. | ↑ METH vs. CT | 113 | rno-miR-: 3068-5p, 34a-5p, 326-3p and let-7b-5p | [136] | ||
↓ METH vs. CT | 54 | rno-miR-485-5p | |||||
mRNA expression Array | RT-PCR | miRNA-Array | |||||
Rat male VTA | METH SA for 40 d (0.1 mg/kg/infusion, 2 h/d, FR-1 to FR-5) | ↑ METH vs. CT | 31 | Ret and Dat | 7 | [137] | |
↓ METH vs. CT | 17 | 71 | |||||
RT-PCR | miRNA-PCR | ||||||
Mouse NAc | METHiHS -Repeated METH for 5 d (2 mg/kg), i.p. and withdrawal for 2 d, followed by METH challenge (2 mg/kg), i.p. | ↓ METH vs. CT | Ago2 | [138] | |||
AAV-SYN-Ago2 KI | ↑ Ago2 KI vs. CT | Ago2 and Grin1 | miR-: 3068-5p and 30a-5p | ||||
↓ Ago2 KI vs. CT | miR-: 124-3p, 33-5p, and 376a-3p | ||||||
AAV-Ago2 KD | ↑ Ago2 KD vs. CT | miR-: 33-5p and 376a-3p | |||||
↓ Ago2 KD vs. CT | Ago2 | miR-3068-5p | |||||
AAV-SYN-spmIR-3068 | ↑ miR-3068 KD vs. CT | Grin1 | |||||
↓ miR-3068 KD vs. CT | App | ||||||
miRNA-PCR | WB | ||||||
Mouse male HIP | METH CPP for 6 d (2 mg/kg), s.c. | ↑ METH vs. CT | miR-: 183-5p, 9a-5p, and 369-3p | [140] | |||
(EV containing miRNAs) | ↓ METH vs. CT | ErbB4 and NRG1 | |||||
miRNA-Array | Age of onset | Percent of lifetime | Frequency of use | ||||
Female human peripheral blood | METH dependent patients (diagnosed according to DSM IV) and healthy controls. | ↑ METH vs. CT | 19 | [143] | |||
(EV containing miRNAs) | ↓ METH vs. CT | 69 | |||||
Positive correlation | hsa-miR-628-5p | hsa-miR-: 301a-3p and 382-5p | |||||
Negative correlation | hsa-miR-: 301a-3p and 382-5p | hsa-miR-628-5p | hsa-miR-382-5p | ||||
miRNA-Seq | miRNA-PCR | HAM-A | HAM-D | ||||
Human peripheral blood | METH dependent patients (diagnosed according to DSM V) and healthy controls. | ↑ METH vs. CT | hsa-miR-: 151a-5p, 151b, 338-3p, 744-5p, 432-5p, and 191-3p | [144] | |||
(EV containing miRNAs) | ↓ METH vs. CT | hsa-miR-: 363-3p, 629-5p, 16-5p, 484, 486-5p, 18a-3p, 1180-3p, and 548ay-5p | hsa-miR-: 143-3p, 200a-3p, 363-3p, and 125b-5p | ||||
Negative correlation | hsa-miR-: 363-3p, 16-5p, 129-5p, and 92a-3p | hsa-miR-: 363-3p, 16-5p, 129-5p, and 92a-3p | |||||
miRNA-Array | miRNA-PCR | ||||||
Male and female human peripheral blood | METH dependent patients (diagnosed according to DSM IV) and healthy controls. | ↑ METH vs. CT | hsa-miR-: 550b-3p, 9-3p, 4776-3p, 4799-3p, and kshv-miR-K12-12-3p | hsa-miR-9-3p | [145] | ||
↓ METH vs. CT | hsa-miR-: 3656, 4258, 1469, 1471, 4419a, 4651, 5196-5p, Plus-C1076, and ks1v-miR-H8-3p |
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rusyniak, D.E. Neurologic manifestations of chronic methamphetamine abuse. Neurol. Clin. 2011, 29, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Meredith, C.W.; Jaffe, C.; Ang-Lee, K.; Saxon, A.J. Implications of chronic methamphetamine use: A literature review. Harv. Rev. Psychiatry 2005, 13, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.L.; Richardson, K.; Dacey, J.; Glynn, S.; Domier, C.P.; Rawson, R.A.; Ling, W. A comparison of patterns of methamphetamine and cocaine use. J. Addict. Dis. 2002, 21, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Rawson, R.; Huber, A.; Brethen, P.; Obert, J.; Gulati, V.; Shoptaw, S.; Ling, W. Methamphetamine and cocaine users: Differences in characteristics and treatment retention. J. Psychoact. Drugs 2000, 32, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, K.; Okada, Y.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Kanamori, T.; Iwata, Y.T. Degradation of 1-phenyl-2-propanone during long-term storage: Useful information for methamphetamine impurity profiling. Forensic. Toxicol. 2021, 39, 405–416. [Google Scholar] [CrossRef]
- Federal Register. Designation of Methyl α-phenylacetoacetate, a Precursor Chemical Used in the Illicit Manufacture of Phenylacetone, Methamphetamine, and Amphetamine, as a List I Chemical; Drug Enforcement Administration: Springfield, VA, USA, 2021; pp. 16558–16565.
- UNODC. Drug Market Trends: Cocaine, Amphetamine-Type Stimulants; United Nations Publication: Vienna, Austria, 2021. [Google Scholar]
- SAMHSA. Key Substance Use and Mental Health Indicators in the United States: Results from the 2016 National Survey of Drug Use and Health (NSDUH) Releases; HHS Publication: Rockville, MD, USA, 2017.
- SAMHSA. DAWN Methamphetamine Profile; HHS Publication: Rockville, MD, USA, 2020.
- SAMHSA. Treatment Episode Data Set (TEDS): 2016 Admissions to and Discharges from Publicly-Funded Substance Use Treatment; HHS Publication: Rockville, MD, USA, 2018.
- Paulus, M.P.; Stewart, J.L. Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review. JAMA Psychiatry 2020, 77, 959–966. [Google Scholar] [CrossRef]
- Jaffe, J.H. Drug Addiction and Drug Abuse; McMillan Publishing Co.: New York, NY, USA, 1985. [Google Scholar]
- Hart, C.L.; Ward, A.S.; Haney, M.; Foltin, R.W.; Fischman, M.W. Methamphetamine self-administration by humans. Psychopharmacology 2001, 157, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.L.; Gunderson, E.W.; Perez, A.; Kirkpatrick, M.G.; Thurmond, A.; Comer, S.D.; Foltin, R.W. Acute physiological and behavioral effects of intranasal methamphetamine in humans. Neuropsychopharmacology 2008, 33, 1847–1855. [Google Scholar] [CrossRef]
- Akindipe, T.; Wilson, D.; Stein, D.J. Psychiatric disorders in individuals with methamphetamine dependence: Prevalence and risk factors. Metab. Brain Dis. 2014, 29, 351–357. [Google Scholar] [CrossRef]
- Svingen, L.; Dykstra, R.E.; Simpson, J.L.; Jaffe, A.E.; Bevins, R.A.; Carlo, G.; DiLillo, D.; Grant, K.M. Associations Between Family History of Substance Use, Childhood Trauma, and Age of First Drug Use in Persons With Methamphetamine Dependence. J. Addict. Med. 2016, 10, 269–273. [Google Scholar] [CrossRef]
- Cadet, J.L. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol. Neurobiol. 2016, 53, 545–560. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.L.; Jayanthi, S. Epigenetic Landscape of Methamphetamine Use Disorder. Curr. Neuropharmacol. 2021, 19. [Google Scholar] [CrossRef]
- Waddington, C.H. The epigenotype. Int. J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Farrelly, L.A.; Maze, I. An emerging perspective on ‘histone code’ mediated regulation of neural plasticity and disease. Curr. Opin. Neurobiol. 2019, 59, 157–163. [Google Scholar] [CrossRef]
- Villasenor, R.; Baubec, T. Regulatory mechanisms governing chromatin organization and function. Curr. Opin. Cell Biol. 2021, 70, 10–17. [Google Scholar] [CrossRef]
- Bhat, K.P.; Umit Kaniskan, H.; Jin, J.; Gozani, O. Epigenetics and beyond: Targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug Discov. 2021, 20, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Muntean, A.G. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim. Biophys. Acta. Rev. Cancer. 2021, 1875, 188498. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, X.; Li, H. Beyond histone acetylation-writing and erasing histone acylations. Curr. Opin. Struct. Biol. 2018, 53, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Jenke, R.; Ressing, N.; Hansen, F.K.; Aigner, A.; Buch, T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers 2021, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- Sterling, J.; Menezes, S.V.; Abbassi, R.H.; Munoz, L. Histone lysine demethylases and their functions in cancer. Int. J. Cancer 2020, 148, 2375–2388. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wei, T.; Cai, Y.; Jin, J. Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020, 25, 578. [Google Scholar] [CrossRef] [Green Version]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Baxter, E.; Windloch, K.; Gannon, F.; Lee, J.S. Epigenetic regulation in cancer progression. Cell Biosci. 2014, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015, 20, 3898–3941. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Allfrey, V.G.; Faulkner, R.; Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 1964, 51, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Saha, R.N.; Pahan, K. HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006, 13, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Hebbes, T.R.; Thorne, A.W.; Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 1988, 7, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volmar, C.-H.; Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics 2015, 1, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Mai, A.; Rotili, D.; Valente, S.; Kazantsev, A.G. Histone deacetylase inhibitors and neurodegenerative disorders: Holding the promise. Curr. Pharm. Des. 2009, 15, 3940–3957. [Google Scholar] [CrossRef] [PubMed]
- Nativio, R.; Lan, Y.; Donahue, G.; Sidoli, S.; Berson, A.; Srinivasan, A.R.; Shcherbakova, O.; Amlie-Wolf, A.; Nie, J.; Cui, X.; et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat. Genet. 2020, 52, 1024–1035. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The Epigenome as a therapeutic target for Parkinson’s disease. Neural. Regen. Res. 2016, 11, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-S.; Zhang, R.; Wang, G.; Zhang, Y.-F. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl. Neurodegener. 2017, 6, 19. [Google Scholar] [CrossRef]
- Fischer, A.; Sananbenesi, F.; Mungenast, A.; Tsai, L.-H. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol. Sci. 2010, 31, 605–617. [Google Scholar] [CrossRef]
- Hasan, A.; Mitchell, A.; Schneider, A.; Halene, T.; Akbarian, S. Epigenetic dysregulation in schizophrenia: Molecular and clinical aspects of histone deacetylase inhibitors. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 273–284. [Google Scholar] [CrossRef]
- Arent, C.O.; Valvassori, S.S.; Fries, G.R.; Stertz, L.; Ferreira, C.L.; Lopes-Borges, J.; Mariot, E.; Varela, R.B.; Ornell, F.; Kapczinski, F.; et al. Neuroanatomical profile of antimaniac effects of histone deacetylases inhibitors. Mol. Neurobiol. 2011, 43, 207–214. [Google Scholar] [CrossRef]
- Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Browne, C.J.; Godino, A.; Salery, M.; Nestler, E.J. Epigenetic Mechanisms of Opioid Addiction. Biol. Psychiatry 2020, 87, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.L.; Jayanthi, S.; McCoy, M.T.; Ladenheim, B.; Saint-Preux, F.; Lehrmann, E.; De, S.; Becker, K.G.; Brannock, C. Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genom. 2013, 14, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.C.; Kyzar, E.J.; Zhang, H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology 2017, 122, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Rogge, G.A.; Wood, M.A. The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology 2013, 38, 94–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.M.; Nestler, E.J. Neuroepigenetics and addiction. Handb. Clin. Neurol. 2018, 148, 747–765. [Google Scholar]
- González, B.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; Bernardi, A.; Urbano, F.J.; García-Rill, E.; Cadet, J.-L.; Bisagno, V. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: Potential role of dopamine receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 222–234. [Google Scholar] [CrossRef]
- Jayanthi, S.; Gonzalez, B.; McCoy, M.T.; Ladenheim, B.; Bisagno, V.; Cadet, J.L. Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Mol. Neurobiol. 2018, 55, 5154–5166. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.A.; Jayanthi, S.; McCoy, M.T.; Brannock, C.; Ladenheim, B.; Garrett, T.; Lehrmann, E.; Becker, K.G.; Cadet, J.L. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS ONE 2012, 7, e34236. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.V.; Ladenheim, B.; Jayanthi, S.; McCoy, M.T.; Krasnova, I.N.; Vautier, F.A.; Cadet, J.L. An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression. Neurotox Res. 2016, 30, 32–40. [Google Scholar] [CrossRef]
- Agricola, E.; Verdone, L.; Di Mauro, E.; Caserta, M. H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes. Mol. Microbiol. 2006, 62, 1433–1446. [Google Scholar] [CrossRef]
- Gansen, A.; Tóth, K.; Schwarz, N.; Langowski, J. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—A FRET study. Nucleic Acids Res. 2015, 43, 1433–1443. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Olsen, L.; Zhang, X.; Boeke, J.D.; Bi, X. Differential contributions of histone H3 and H4 residues to heterochromatin structure. Genetics 2011, 188, 291–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, S.E.; Gudelsky, G.A.; Heaton, P.C. Use of modafinil for the treatment of attention deficit/hyperactivity disorder. Ann. Pharmacother. 2006, 40, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Ballon, J.S.; Feifel, D. A systematic review of modafinil: Potential clinical uses and mechanisms of action. J. Clin. Psychiatry 2006, 67, 554–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.L.; Reid, M.S.; Li, S.H.; Holmes, T.; Shemanski, L.; Slee, A.; Smith, E.V.; Kahn, R.; Chiang, N.; Vocci, F.; et al. Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend. 2009, 104, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Dackis, C.A.; Kampman, K.M.; Lynch, K.G.; Pettinati, H.M.; O’Brien, C.P. A double-blind, placebo-controlled trial of modafinil for cocaine dependence. Neuropsychopharmacology 2005, 30, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.L.; Li, S.H.; Biswas, K.; McSherry, F.; Holmes, T.; Iturriaga, E.; Kahn, R.; Chiang, N.; Beresford, T.; Campbell, J.; et al. Modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend 2012, 120, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Doke, M.; Pendyala, G.; Samikkannu, T. Psychostimulants and opioids differentially influence the epigenetic modification of histone acetyltransferase and histone deacetylase in astrocytes. PLoS ONE 2021, 16, e0252895. [Google Scholar] [CrossRef]
- González, B.; Jayanthi, S.; Gomez, N.; Torres, O.V.; Sosa, M.H.; Bernardi, A.; Urbano, F.J.; García-Rill, E.; Cadet, J.-L.; Bisagno, V. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.A.; Ding, Q.Z.; Lu, G.Y.; Wu, N.; Su, R.B.; Li, F.; Li, J. Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci. 2021, 22, 24. [Google Scholar] [CrossRef]
- Jayanthi, S.; McCoy, M.T.; Chen, B.; Britt, J.P.; Kourrich, S.; Yau, H.-J.; Ladenheim, B.; Krasnova, I.N.; Bonci, A.; Cadet, J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry 2014, 76, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Omonijo, O.; Wongprayoon, P.; Ladenheim, B.; McCoy, M.T.; Govitrapong, P.; Jayanthi, S.; Cadet, J.L. Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. Neurotoxicology 2014, 45, 178–184. [Google Scholar] [CrossRef] [Green Version]
- DSM-5. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Cadet, J.L.; Patel, R.; Jayanthi, S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol. Biochem. Behav. 2019, 179, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Janetsian, S.S.; Linsenbardt, D.N.; Lapish, C.C. Memory impairment and alterations in prefrontal cortex γ band activity following methamphetamine sensitization. Psychopharmacology 2015, 232, 2083–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coccurello, R.; Caprioli, A.; Ghirardi, O.; Virmani, A. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice. Ann. N. Y. Acad Sci. 2007, 1122, 260–275. [Google Scholar] [CrossRef]
- Sharma, C.; Oh, Y.J.; Park, B.; Lee, S.; Jeong, C.-H.; Lee, S.; Seo, J.H.; Seo, Y.H. Development of Thiazolidinedione-Based HDAC6 Inhibitors to Overcome Methamphetamine Addiction. Int. J. Mol. Sci. 2019, 20, 6213. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jha, S.; Seo, J.H.; Jeong, C.-H.; Lee, S.; Lee, S.; Seo, Y.H.; Park, B. MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus. Biomol. Ther. 2020, 28, 519–526. [Google Scholar] [CrossRef]
- Li, X.; Carreria, M.B.; Witonsky, K.R.; Zeric, T.; Lofaro, O.M.; Bossert, J.M.; Zhang, J.; Surjono, F.; Richie, C.T.; Harvey, B.K.; et al. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biol. Psychiatry 2018, 84, 213–222. [Google Scholar] [CrossRef]
- Shibasaki, M.; Mizuno, K.; Kurokawa, K.; Ohkuma, S. L-type voltage-dependent calcium channels facilitate acetylation of histone H3 through PKCγ phosphorylation in mice with methamphetamine-induced place preference. J. Neurochem. 2011, 118, 1056–1066. [Google Scholar] [CrossRef]
- Chen, P.-C.; Chen, J.-C. Enhanced Cdk5 activity and p35 translocation in the ventral striatum of acute and chronic methamphetamine-treated rats. Neuropsychopharmacology 2005, 30, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Davidson, C.; Chen, Q.; Zhang, X.; Xiong, X.; Lazarus, C.; Lee, T.H.; Ellinwood, E.H. Deprenyl treatment attenuates long-term pre- and post-synaptic changes evoked by chronic methamphetamine. Eur. J. Pharmacol. 2007, 573, 100–110. [Google Scholar] [CrossRef]
- Simões, P.F.; Silva, A.P.; Pereira, F.C.; Marques, E.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Macedo, T.R. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann. N. Y. Acad. Sci. 2008, 1139, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, I.N.; Chiflikyan, M.; Justinova, Z.; McCoy, M.T.; Ladenheim, B.; Jayanthi, S.; Quintero, C.; Brannock, C.; Barnes, C.; Adair, J.E.; et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 2013, 58, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Liu, L.; Zhang, R.; Li, J.; Leung, C.-K.; Huang, J.; Li, Y.; Shen, B.; Zeng, X.; Zhang, D. Cannabidiol attenuates methamphetamine-induced conditioned place preference via the Sigma1R/AKT/GSK-3β/CREB signaling pathway in rats. Toxicol Res. 2020, 9, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Cardinaux, J.R.; Notis, J.C.; Zhang, Q.; Vo, N.; Craig, J.C.; Fass, D.M.; Brennan, R.G.; Goodman, R.H. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol. Cell Biol. 2000, 20, 1546–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitchcock, L.N.; Lattal, K.M. Histone-mediated epigenetics in addiction. Prog. Mol. Biol. Transl. Sci. 2014, 128, 51–87. [Google Scholar] [PubMed] [Green Version]
- Ikegami, D.; Narita, M.; Imai, S.; Miyashita, K.; Tamura, R.; Narita, M.; Takagi, S.; Yokomizo, A.; Takeshima, H.; Ando, T.; et al. Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine. Addict. Biol. 2010, 15, 358–361. [Google Scholar] [CrossRef]
- Szabo, I.; Chen, X.H.; Xin, L.; Adler, M.W.; Howard, O.M.; Oppenheim, J.J.; Rogers, T.J. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc. Natl. Acad. Sci. USA 2002, 99, 10276–10281. [Google Scholar] [CrossRef] [Green Version]
- Trocello, J.M.; Rostene, W.; Melik-Parsadaniantz, S.; Godefroy, D.; Roze, E.; Kitabgi, P.; Kuziel, W.A.; Chalon, S.; Caboche, J.; Apartis, E. Implication of CCR2 chemokine receptor in cocaine-induced sensitization. J. Mol. Neurosci. 2011, 44, 147–151. [Google Scholar] [CrossRef]
- Wakida, N.; Kiguchi, N.; Saika, F.; Nishiue, H.; Kobayashi, Y.; Kishioka, S. CC-chemokine ligand 2 facilitates conditioned place preference to methamphetamine through the activation of dopamine systems. J. Pharmacol. Sci. 2014, 125, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Valles, A.; Vaissière, T.; Griggs, E.M.; Mikaelsson, M.A.; Takács, I.F.; Young, E.J.; Rumbaugh, G.; Miller, C.A. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol. Psychiatry 2014, 76, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Rudzinskas, S.A.; Mong, J.A. Methamphetamine alters DNMT and HDAC activity in the posterior dorsal medial amygdala in an ovarian steroid-dependent manner. Neurosci. Lett. 2018, 683, 125–130. [Google Scholar] [CrossRef]
- González, B.; Bernardi, A.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; García-Rill, E.; Urbano, F.J.; Cadet, J.-L.; Bisagno, V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict. Biol. 2020, 25, e12737. [Google Scholar] [CrossRef]
- Cates, H.M.; Li, X.; Purushothaman, I.; Kennedy, P.J.; Shen, L.; Shaham, Y.; Nestler, E.J. Genome-wide transcriptional profiling of central amygdala and orbitofrontal cortex during incubation of methamphetamine craving. Neuropsychopharmacology 2018, 43, 2426–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, R.D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 1948, 175, 315–332. [Google Scholar] [CrossRef]
- Compere, S.J.; Palmiter, R.D. DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 1981, 25, 233–240. [Google Scholar] [CrossRef]
- Holliday, R.; Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 1975, 187, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Dantas Machado, A.C.; Zhou, T.; Rao, S.; Goel, P.; Rastogi, C.; Lazarovici, A.; Bussemaker, H.J.; Rohs, R. Evolving insights on how cytosine methylation affects protein-DNA binding. Brief. Funct Genom. 2015, 14, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numachi, Y.; Shen, H.; Yoshida, S.; Fujiyama, K.; Toda, S.; Matsuoka, H.; Sora, I.; Sato, M. Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci. Lett. 2007, 414, 213–217. [Google Scholar] [CrossRef]
- Cheng, M.-C.; Hsu, S.-H.; Chen, C.-H. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain. Brain Res. 2015, 1629, 126–134. [Google Scholar] [CrossRef]
- Itzhak, Y.; Ergui, I.; Young, J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry 2015, 20, 232–239. [Google Scholar] [CrossRef]
- Jayanthi, S.; Torres, O.V.; Ladenheim, B.; Cadet, J.L. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol. Neurobiol. 2020, 57, 1459–1472. [Google Scholar] [CrossRef] [Green Version]
- Biagioni, F.; Ferese, R.; Limanaqi, F.; Madonna, M.; Lenzi, P.; Gambardella, S.; Fornai, F. Methamphetamine persistently increases α-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res. 2019, 1719, 157–175. [Google Scholar] [CrossRef]
- Moszczynska, A.; Flack, A.; Qiu, P.; Muotri, A.R.; Killinger, B.A. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain. Sci. Rep. 2015, 5, 14356. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Luo, T.; Dong, H.; Tang, A.; Hao, W. CHN2 Promoter Methylation Change May Be Associated With Methamphetamine Dependence. Shanghai Arch. Psychiatry 2017, 29, 357–364. [Google Scholar]
- Riccomagno, M.M.; Hurtado, A.; Wang, H.; Macopson, J.G.; Griner, E.M.; Betz, A.; Brose, N.; Kazanietz, M.G.; Kolodkin, A.L. The RacGAP beta2-Chimaerin selectively mediates axonal pruning in the hippocampus. Cell 2012, 149, 1594–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestler, E.J. Cellular basis of memory for addiction. Dialogues Clin. Neurosci. 2013, 15, 431–443. [Google Scholar] [PubMed]
- Liu, L.; Luo, T.; Dong, H.; Zhang, C.; Liu, T.; Zhang, X.; Hao, W. Genome-Wide DNA Methylation Analysis in Male Methamphetamine Users With Different Addiction Qualities. Front. Psychiatry 2020, 11, 588229. [Google Scholar] [CrossRef] [PubMed]
- Veerasakul, S.; Watiktinkorn, P.; Thanoi, S.; Dalton, C.F.; Fachim, H.A.; Nudmamud-Thanoi, S.; Reynolds, G.P. Increased DNA methylation in the parvalbumin gene promoter is associated with methamphetamine dependence. Pharmacogenomics 2017, 18, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Ghadirivasfi, M.; Barati, M.; Ghasemzadeh, M.-R.; Narimani, S.; Mousavi-Behbahani, Z.; Joghataei, M.; Soleimani, M.; Taban, M.; Mehrabi, S.; et al. Methamphetamine-induced psychosis is associated with DNA hypomethylation and increased expression of AKT1 and key dopaminergic genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ji, H.; Liu, G.; Wang, Q.; Liu, H.; Shen, W.; Li, L.; Xie, X.; Zhou, W.; Duan, S. A significant association between BDNF promoter methylation and the risk of drug addiction. Gene 2016, 584, 54–59. [Google Scholar] [CrossRef]
- Yuka, K.; Nishizawa, D.; Hasegawa, J.; Uno, K.; Miyanishi, H.; Ujike, H.; Ozaki, N.; Inada, T.; Iwata, N.; Sora, I.; et al. A Single Medical Marker for Diagnosis of Methamphetamine Addiction—DNA Methylation of SHATI/NAT8L Promoter Sites from Patient Blood. Curr. Pharm. Des. 2020, 26, 260–264. [Google Scholar] [CrossRef]
- Haddar, M.; Uno, K.; Azuma, K.; Muramatsu, S.I.; Nitta, A. Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice. Addict. Biol. 2020, 25, e12749. [Google Scholar] [CrossRef] [Green Version]
- Niwa, M.; Nitta, A.; Mizoguchi, H.; Ito, Y.; Noda, Y.; Nagai, T.; Nabeshima, T. A novel molecule “shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J. Neurosci. 2007, 27, 7604–7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uno, K.; Miyazaki, T.; Sodeyama, K.; Miyamoto, Y.; Nitta, A. Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB- and dopamine D1 receptor-dependent mechanism. PLoS ONE 2017, 12, e0174196. [Google Scholar]
- Oni-Orisan, O.O.; Dansereau, L.M.; Marsit, C.J.; Smith, L.M.; Neal, C.R.; Della Grotta, S.A.; Padbury, J.F.; Lester, B.M. DNA methylation in children with prenatal methamphetamine exposure and environmental adversity. Pediatr. Res. 2020, 89, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Kalayasiri, R.; Kraijak, K.; Maes, M.; Mutirangura, A. Methamphetamine (MA) Use Induces Specific Changes in LINE-1 Partial Methylation Patterns, Which Are Associated with MA-Induced Paranoia: A Multivariate and Neuronal Network Study. Mol. Neurobiol. 2019, 56, 4258–4272. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, G.R.; Cohen, S.S. A new pyrimidine base from bacteriophage nucleic acids. Nature 1952, 170, 1072–1073. [Google Scholar] [CrossRef]
- Penn, N.W.; Suwalski, R.; O’Riley, C.; Bojanowski, K.; Yura, R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 1972, 126, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D.; et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013, 341, 1237905. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011, 25, 2436–2452. [Google Scholar] [CrossRef] [Green Version]
- Globisch, D.; Münzel, M.; Müller, M.; Michalakis, S.; Wagner, M.; Koch, S.; Brückl, T.; Biel, M.; Carell, T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5, e15367. [Google Scholar] [CrossRef] [Green Version]
- Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324, 929–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustad, S.R.; Papale, L.A.; Alisch, R.S. DNA Methylation and Hydroxymethylation and Behavior. Curr. Top. Behav. Neurosci. 2019, 42, 51–82. [Google Scholar]
- Neri, F.; Incarnato, D.; Krepelova, A.; Rapelli, S.; Pagnani, A.; Zecchina, R.; Parlato, C.; Oliviero, S. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol. 2013, 14, R91. [Google Scholar] [CrossRef] [Green Version]
- Song, C.-X.; Szulwach, K.E.; Fu, Y.; Dai, Q.; Yi, C.; Li, X.; Li, Y.; Chen, C.-H.; Zhang, W.; Jian, X.; et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011, 29, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaas, G.A.; Zhong, C.; Eason, D.E.; Ross, D.L.; Vachhani, R.V.; Ming, G.L.; King, J.R.; Song, H.; Sweatt, J.D. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 2013, 79, 1086–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wei, W.; Zhao, Q.Y.; Widagdo, J.; Baker-Andresen, D.; Flavell, C.R.; D’Alessio, A.; Zhang, Y.; Bredy, T.W. Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc. Natl. Acad. Sci. USA 2014, 111, 7120–7125. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, A.; Dawlaty, M.M.; Seo, J.; Cheng, A.W.; Meng, J.; Le, T.; Faull, K.F.; Jaenisch, R.; Tsai, L.H. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 2013, 79, 1109–1122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.R.; Cui, Q.Y.; Murai, K.; Lim, Y.C.; Smith, Z.D.; Jin, S.; Ye, P.; Rosa, L.; Lee, Y.K.; Wu, H.P.; et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell. 2013, 13, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.L.; Brannock, C.; Krasnova, I.N.; Jayanthi, S.; Ladenheim, B.; McCoy, M.T.; Walther, D.; Godino, A.; Pirooznia, M.; Lee, R.S. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol. Psychiatry 2017, 22, 1196–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J. Integr. Bioinform. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Chi, T.; Lin, J.; Wang, M.; Zhao, Y.; Liao, Z.; Wei, P. Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management. Front Endocrinol. 2021, 12, 630032. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, L.; Su, H.; Liu, D.; Yan, Z.; Ni, T.; Wei, H.; Goh, E.L.K.; Chen, T. Regulation of miR-128 in the nucleus accumbens affects methamphetamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict. Biol. 2021, 26, e12881. [Google Scholar] [CrossRef]
- Qian, H.; Shang, Q.; Liang, M.; Gao, B.; Xiao, J.; Wang, J.; Li, A.; Yang, C.; Yin, J.; Chen, G.; et al. MicroRNA-31-3p/RhoA signaling in the dorsal hippocampus modulates methamphetamine-induced conditioned place preference in mice. Psychopharmacology 2021, 1–13. [Google Scholar]
- Wang, Y.; Wei, T.; Zhao, W.; Ren, Z.; Wang, Y.; Zhou, Y.; Song, X.; Zhou, R.; Zhang, X.; Jiao, D. MicroRNA-181a Is Involved in Methamphetamine Addiction Through the ERAD Pathway. Front Mol. Neurosci. 2021, 14, 667725. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Zhou, Y.; Luo, C.; Ou, J.; Li, J.; Mo, Z. Expression of microRNAs in the serum exosomes of methamphetamine-dependent rats vs. ketamine-dependent rats. Exp. Ther. Med. 2018, 15, 3369–3375. [Google Scholar]
- Yang, J.; Li, L.; Hong, S.; Zhang, D.; Zhou, Y. Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. Pharm. Biol. 2020, 58, 797–805. [Google Scholar] [CrossRef]
- Chavoshi, H.; Boroujeni, M.E.; Abdollahifar, M.A.; Amini, A.; Tehrani, A.M.; Moghaddam, M.H.; Norozian, M.; Farahani, R.M.; Aliaghaei, A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J. Chem. Neuroanat. 2020, 109, 101854. [Google Scholar] [CrossRef]
- Bosch, P.J.; Benton, M.C.; Macartney-Coxson, D.; Kivell, B.M. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci. 2015, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Liang, M.; Zhu, L.; Zhou, T.T.; Wang, Y.; Wang, R.; Wu, F.F.; Goh, E.L.K.; Chen, T. Potential Ago2/miR-3068-5p Cascades in the Nucleus Accumbens Contribute to Methamphetamine-Induced Locomotor Sensitization of Mice. Front. Pharmacol. 2021, 12, 708034. [Google Scholar] [CrossRef] [PubMed]
- Chivero, E.T.; Dagur, R.S.; Peeples, E.S.; Sil, S.; Liao, K.; Ma, R.; Chen, L.; Gurumurthy, C.B.; Buch, S.; Hu, G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol. Life Sci. 2021, 78, 4849–4865. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xiao, S.; Li, C.; Chen, Z.; Zhu, C.; Zhou, Q.; Ou, J.; Li, J.; Chen, Y.; Luo, C.; et al. Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. Evid. Based Complement Alternat Med. 2021, 2021, 2136076. [Google Scholar] [CrossRef] [PubMed]
- Chesworth, R.; Rosa-Porto, R.; Yao, S.; Karl, T. Sex-specific sensitivity to methamphetamine-induced schizophrenia-relevant behaviours in neuregulin 1 type III overexpressing mice. J. Psychopharmacol. 2021, 35, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Okochi, T.; Kishi, T.; Ikeda, M.; Kitajima, T.; Kinoshita, Y.; Kawashima, K.; Okumura, T.; Tsunoka, T.; Inada, T.; Yamada, M.; et al. Genetic association analysis of NRG1 with methamphetamine-induced psychosis in a Japanese population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 903–905. [Google Scholar] [CrossRef]
- Sandau, U.S.; Duggan, E.; Shi, X.; Smith, S.J.; Huckans, M.; Schutzer, W.E.; Loftis, J.M.; Janowsky, A.; Nolan, J.P.; Saugstad, J.A. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J. Extracell Vesicles 2020, 10, e12028. [Google Scholar] [CrossRef]
- Chen, F.; Zou, L.; Dai, Y.; Sun, J.; Chen, C.; Zhang, Y.; Peng, Q.; Zhang, Z.; Xie, Z.; Wu, H.; et al. Prognostic plasma exosomal microRNA biomarkers in patients with substance use disorders presenting comorbid with anxiety and depression. Sci. Rep. 2021, 11, 6271. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.J.; Zhang, C.; Zhong, Y.; Luo, J.; Zhang, C.Y.; Zhang, C.; Wang, C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomed. Pharmacother. 2020, 125, 109918. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayanthi, S.; McCoy, M.T.; Cadet, J.L. Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes 2021, 12, 1614. https://doi.org/10.3390/genes12101614
Jayanthi S, McCoy MT, Cadet JL. Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes. 2021; 12(10):1614. https://doi.org/10.3390/genes12101614
Chicago/Turabian StyleJayanthi, Subramaniam, Michael T. McCoy, and Jean Lud Cadet. 2021. "Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder" Genes 12, no. 10: 1614. https://doi.org/10.3390/genes12101614
APA StyleJayanthi, S., McCoy, M. T., & Cadet, J. L. (2021). Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes, 12(10), 1614. https://doi.org/10.3390/genes12101614