On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime
Abstract
:1. Activity-Level Evaluations: The Context of Body Fluid and Tissue Identification
1.1. Prosecution and Defense Scenario
1.2. Addressing Alternative Scenarios
1.3. Contextualizing Evidentiary Traces
2. Locating Biological Forensic Evidence
2.1. At the Scene of the Crime
2.1.1. Chemical Sprays for Blood and Semen
2.1.2. Alternative Light Sources
2.1.3. Spectroscopic Methods at the Scene
2.2. At the Forensic Laboratory
2.2.1. Chemical and Immunochromatographic Tests
2.2.2. Spectroscopic Techniques
2.2.3. A Practical Example
3. Major Types of Markers and Technologies Employed to Detect Them
3.1. RNA Markers
3.1.1. Messenger RNA
3.1.2. Circular RNA
3.1.3. Alternative Techniques to Analyse RNA Markers
3.2. Epigenetic Markers
3.2.1. Marker Selection and Assay Design
3.2.2. Techniques to Analyse Epigenetic Modifications
3.3. Microbial Markers
3.3.1. Microbial Markers for Body Fluid Identification
3.3.2. Technologies to Analyze Microbial Markers
4. Retrospective Analysis of RNA Typing in Forensic Casework
4.1. Requests and Results for RNA Typing in Casework
4.2. RNA Typing Results in Verdicts
5. A Criminalistic View on Targets to Be Included in a Cell Typing Assay
5.1. Cell Types Questioned in Forensic Cases
5.2. Cell Types Informing on an Alternative Scenario
5.3. Fluids and Tissues Carry Multiple Cell Types
6. Interpretation of Cell Typing Results
6.1. Sensitivity, Specificity and Degradation Issues Affecting Interpretation
6.2. Interpretation of Mixed Samples
6.3. Reporting Cell Typing Results
6.4. Associating Donor and Body Fluid
7. Further Considerations
7.1. Other Marker Types and Technologies That Have Been Explored
7.1.1. Non-Coding RNAs
7.1.2. Proteome
7.1.3. Aptamers
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, D.; Kokshoorn, B.; Biedermann, A. Evaluation of Forensic Genetics Findings given Activity Level Propositions: A Review. Forensic Sci. Int. Genet. 2018, 36, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Meakin, G.E.; Kokshoorn, B.; Oorschot, R.A.H.; Szkuta, B. Evaluating Forensic DNA Evidence: Connecting the Dots. WIREs Forensic Sci. 2021, 3, e1404. [Google Scholar] [CrossRef]
- Gill, P.; Hicks, T.; Butler, J.M.; Connolly, E.; Gusmão, L.; Kokshoorn, B.; Morling, N.; van Oorschot, R.A.H.; Parson, W.; Prinz, M.; et al. DNA Commission of the International Society for Forensic Genetics: Assessing the Value of Forensic Biological Evidence—Guidelines Highlighting the Importance of Propositions: Part I: Evaluation of DNA Profiling Comparisons given (Sub-) Source Propositions. Forensic Sci. Int. Genet. 2018, 36, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.; Hicks, T.; Butler, J.M.; Connolly, E.; Gusmão, L.; Kokshoorn, B.; Morling, N.; van Oorschot, R.A.H.; Parson, W.; Prinz, M.; et al. DNA Commission of the International Society for Forensic Genetics: Assessing the Value of Forensic Biological Evidence—Guidelines Highlighting the Importance of Propositions. Part II: Evaluation of Biological Traces Considering Activity Level Propositions. Forensic Sci. Int. Genet. 2020, 44, 102186. [Google Scholar] [CrossRef] [Green Version]
- Jackson, G.; Biedermann, A. “Source” or “Activity” What Is the Level of Issue in a Criminal Trial? Significance 2019, 16, 36–39. [Google Scholar] [CrossRef]
- Pope, S.; Biedermann, A. Editorial: The Dialogue Between Forensic Scientists, Statisticians and Lawyers About Complex Scientific Issues for Court. Front. Genet. 2020, 11, 704. [Google Scholar] [CrossRef]
- Puch-Solis, R.; Pope, S. Interpretation of DNA Data within the Context of UK Forensic Science—Evaluation. Emerg. Top. Life Sci. 2021, 5, 405–413. [Google Scholar] [CrossRef]
- Pope, S.; Puch-Solis, R. Interpretation of DNA Data within the Context of UK Forensic Science—Investigation. Emerg. Top. Life Sci. 2021, 5, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, Y.; Wang, Q.; Li, B.; Huang, P.; Wang, Z. Estimation of the Age of Human Bloodstains under the Simulated Indoor and Outdoor Crime Scene Conditions by ATR-FTIR Spectroscopy. Sci. Rep. 2017, 7, 13254. [Google Scholar] [CrossRef]
- Stotesbury, T.; Cossette, M.-L.; Newell-Bell, T.; Shafer, A.B.A. An Exploratory Time Since Deposition Analysis of Whole Blood Using Metrics of DNA Degradation and Visible Absorbance Spectroscopy. Pure Appl. Geophys. 2021, 178, 735–743. [Google Scholar] [CrossRef]
- Weber, A.R.; Lednev, I.K. Crime Clock—Analytical Studies for Approximating Time since Deposition of Bloodstains. Forensic Chem. 2020, 19, 100248. [Google Scholar] [CrossRef]
- Bremmer, R.H.; Nadort, A.; van Leeuwen, T.G.; van Gemert, M.J.C.; Aalders, M.C.G. Age Estimation of Blood Stains by Hemoglobin Derivative Determination Using Reflectance Spectroscopy. Forensic Sci. Int. 2011, 206, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Edelman, G.; van Leeuwen, T.G.; Aalders, M.C.G. Hyperspectral Imaging for the Age Estimation of Blood Stains at the Crime Scene. Forensic Sci. Int. 2012, 223, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Alshehhi, S.; Haddrill, P.R. Estimating Time since Deposition Using Quantification of RNA Degradation in Body Fluid-Specific Markers. Forensic Sci. Int. 2019, 298, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Alshehhi, S.; Haddrill, P.R. Evaluating the Effect of Body Fluid Mixture on the Relative Expression Ratio of Blood-Specific RNA Markers. Forensic Sci. Int. 2020, 307, 110116. [Google Scholar] [CrossRef]
- Fu, J.; Allen, R.W. A Method to Estimate the Age of Bloodstains Using Quantitative PCR. Forensic Sci. Int. Genet. 2019, 39, 103–108. [Google Scholar] [CrossRef]
- Heneghan, N.; Fu, J.; Pritchard, J.; Payton, M.; Allen, R.W. The Effect of Environmental Conditions on the Rate of RNA Degradation in Dried Blood Stains. Forensic Sci. Int. Genet. 2021, 51, 102456. [Google Scholar] [CrossRef]
- Weinbrecht, K.D.; Fu, J.; Payton, M.E.; Allen, R.W. Time-Dependent Loss of mRNA Transcripts from Forensic Stains. Res. Rep. Forensic Med. Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, A.P.; Russo, G.; Kreutzer, S.; Haas, C. Degradation of Human mRNA Transcripts over Time as an Indicator of the Time since Deposition (TsD) in Biological Crime Scene Traces. Forensic Sci. Int. Genet. 2021, 53, 102524. [Google Scholar] [CrossRef]
- Díez López, C.; Kayser, M.; Vidaki, A. Estimating the Time Since Deposition of Saliva Stains With a Targeted Bacterial DNA Approach: A Proof-of-Principle Study. Front. Microbiol. 2021, 12, 1102. [Google Scholar] [CrossRef]
- Gill, P.; Bleka, Ø.; Roseth, A.; Fonneløp, A.E. An LR Framework Incorporating Sensitivity Analysis to Model Multiple Direct and Secondary Transfer Events on Skin Surface. Forensic Sci. Int. Genet. 2021, 53, 102509. [Google Scholar] [CrossRef] [PubMed]
- Puliatti, L.; Handt, O.; Taylor, D. The Level of DNA an Individual Transfers to Untouched Items in Their Immediate Surroundings. Forensic Sci. Int. Genet. 2021, 54, 102561. [Google Scholar] [CrossRef]
- Saric, N.; Fabien, L.; Fischer, J.; Hermelin, A.; Massonnet, G.; Burnier, C. A Preliminary Investigation of Transfer of Condom Lubricants in the Vaginal Matrix. Forensic Sci. Int. 2021, 325, 110847. [Google Scholar] [CrossRef]
- Kelly, P.; Connolly, E. The Prevalence and Persistence of Saliva in Vehicles. Forensic Sci. Int. Genet. 2021, 53, 102530. [Google Scholar] [CrossRef]
- Reither, J.B.; Gray, E.; Durdle, A.; Conlan, X.A.; van Oorschot, R.A.H.; Szkuta, B. Investigation into the Prevalence of Background DNA on Flooring within Houses and Its Transfer to a Contacting Surface. Forensic Sci. Int. 2021, 318, 110563. [Google Scholar] [CrossRef]
- Thornbury, D.; Goray, M.; van Oorschot, R.A.H. Indirect DNA Transfer without Contact from Dried Biological Materials on Various Surfaces. Forensic Sci. Int. Genet. 2021, 51, 102457. [Google Scholar] [CrossRef]
- Tanzhaus, K.; Reiß, M.-T.; Zaspel, T. “I’ve Never Been at the Crime Scene!”—Gloves as Carriers for Secondary DNA Transfer. Int. J. Legal Med. 2021, 135, 1385–1393. [Google Scholar] [CrossRef]
- Burrill, J.; Kombara, A.; Daniel, B.; Frascione, N. Exploration of Cell-Free DNA (CfDNA) Recovery for Touch Deposits. Forensic Sci. Int. Genet. 2021, 51, 102431. [Google Scholar] [CrossRef] [PubMed]
- Schyma, C.; Madea, B.; Müller, R.; Zieger, M.; Utz, S.; Grabmüller, M. DNA-Free Does Not Mean RNA-Free—The Unwanted Persistence of RNA. Forensic Sci. Int. 2021, 318, 110632. [Google Scholar] [CrossRef]
- Ménard, H.; Cole, C.; Gray, A.; Mudie, R.; Klu, J.K.; Nic Daéid, N. Creation of a Universal Experimental Protocol for the Investigation of Transfer and Persistence of Trace Evidence: Part 1—From Design to Implementation for Particulate Evidence. Forensic Sci. Int. Synerg. 2021, 3, 100165. [Google Scholar] [CrossRef] [PubMed]
- Samie, L.; Taroni, F.; Champod, C. Estimating the Quantity of Transferred DNA in Primary and Secondary Transfers. Sci. Justice J. Forensic Sci. Soc. 2020, 60, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Oorschot, R.A.H.; Szkuta, B.; Meakin, G.E.; Kokshoorn, B.; Goray, M. DNA Transfer in Forensic Science: A Review. Forensic Sci. Int. Genet. 2019, 38, 140–166. [Google Scholar] [CrossRef] [PubMed]
- Goray, M.; Eken, E.; Mitchell, R.J.; van Oorschot, R.A.H. Secondary DNA Transfer of Biological Substances under Varying Test Conditions. Forensic Sci. Int. Genet. 2010, 4, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Goray, M.; van Oorschot, R.A.H.; Mitchell, J.R. DNA Transfer within Forensic Exhibit Packaging: Potential for DNA Loss and Relocation. Forensic Sci. Int. Genet. 2012, 6, 158–166. [Google Scholar] [CrossRef]
- Verdon, T.J.; Mitchell, R.J.; van Oorschot, R.A.H. The Influence of Substrate on DNA Transfer and Extraction Efficiency. Forensic Sci. Int. Genet. 2013, 7, 167–175. [Google Scholar] [CrossRef]
- Szkuta, B.; Harvey, M.L.; Ballantyne, K.N.; van Oorschot, R.A.H. DNA Transfer by Examination Tools—A Risk for Forensic Casework? Forensic Sci. Int. Genet. 2015, 16, 246–254. [Google Scholar] [CrossRef]
- McColl, D.L.; Harvey, M.L.; van Oorschot, R.A.H. DNA Transfer by Different Parts of a Hand. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e29–e31. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, V.J.; Mitchell, R.J.; Ballantyne, K.N.; van Oorschot, R.A.H. Following the Transfer of DNA: How Far Can It Go? Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e53–e54. [Google Scholar] [CrossRef]
- Taylor, D.; Biedermann, A.; Samie, L.; Pun, K.-M.; Hicks, T.; Champod, C. Helping to Distinguish Primary from Secondary Transfer Events for Trace DNA. Forensic Sci. Int. Genet. 2017, 28, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.; Samie, L.; Champod, C. Using Bayesian Networks to Track DNA Movement through Complex Transfer Scenarios. Forensic Sci. Int. Genet. 2019, 42, 69–80. [Google Scholar] [CrossRef]
- Bouzga, M.M.; Dørum, G.; Gundersen, K.; Kohler, P.; Hoff-Olsen, P.; Fonneløp, A.E. Is It Possible to Predict the Origin of Epithelial Cells?—A Comparison of Secondary Transfer of Skin Epithelial Cells versus Vaginal Mucous Membrane Cells by Direct Contact. Sci. Justice 2020, 60, 234–242. [Google Scholar] [CrossRef]
- van den Berge, M.; Ozcanhan, G.; Zijlstra, S.; Lindenbergh, A.; Sijen, T. Prevalence of Human Cell Material: DNA and RNA Profiling of Public and Private Objects and after Activity Scenarios. Forensic Sci. Int. Genet. 2016, 21, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Van den Berge, M.; van de Merwe, L.; Sijen, T. DNA Transfer and Cell Type Inference to Assist Activity Level Reporting: Post-Activity Background Samples as a Control in Dragging Scenario. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e591–e592. [Google Scholar] [CrossRef] [Green Version]
- Burrill, J.; Daniel, B.; Frascione, N. Illuminating Touch Deposits through Cellular Characterization of Hand Rinses and Body Fluids with Nucleic Acid Fluorescence. Forensic Sci. Int. Genet. 2020, 46, 102269. [Google Scholar] [CrossRef]
- Cook, R.; Evett, I.W.; Jackson, G.; Jones, P.J.; Lambert, J.A. A Model for Case Assessment and Interpretation. Sci. Justice 1998, 38, 151–156. [Google Scholar] [CrossRef]
- Evett, I.W.; Jackson, G.; Lambert, J.A. More on the Hierarchy of Propositions: Exploring the Distinction between Explanations and Propositions. Sci. Justice 2000, 40, 3–10. [Google Scholar] [CrossRef]
- Blum, L.J.; EsperanÇA, P.; Rocquefelte, S. A New High-Performance Reagent and Procedure for Latent Bloodstain Detection Based on Luminol Chemiluminescence. Can. Soc. Forensic Sci. J. 2006, 39, 81–99. [Google Scholar] [CrossRef]
- Quinones, I.; Sheppard, D.; Harbison, S.; Elliot, D. Comparative Analysis of Luminol Formulations. Can. Soc. Forensic Sci. J. 2007, 40, 53–63. [Google Scholar] [CrossRef]
- Finnis, J.; Lewis, J.; Davidson, A. Comparison of Methods for Visualizing Blood on Dark Surfaces. Sci. Justice 2013, 53, 178–186. [Google Scholar] [CrossRef]
- Patel, G.; Hopwood, A. An Evaluation of Luminol Formulations and Their Effect on DNA Profiling. Int. J. Leg. Med. 2013, 127, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, K.; Cassella, J.P.; Fieldhouse, S.; King, R. The Adaptation of a 360° Camera Utilising an Alternate Light Source (ALS) for the Detection of Biological Fluids at Crime Scenes. Sci. Justice J. Forensic Sci. Soc. 2017, 57, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, P.; Liu, H.; Zhao, Z.; Xiong, L.; He, W.; Kwok, R.T.K.; Lam, J.W.Y.; Ye, R.; Tang, B.Z. Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Appl. Mater. Interfaces 2019, 11, 17306–17312. [Google Scholar] [CrossRef]
- Borges, E.; Degiuli, A.; Desrentes, S.; Popielarz, C.; Blum, L.J.; Marquette, C.A. Evaluation of the SPERM TRACKER™ for Semen Stains Localization on Fabrics. J. Forensic Res. 2017, 8. [Google Scholar] [CrossRef]
- Auvdel, M.J. Comparison of Laser and Ultraviolet Techniques Used in the Detection of Body Secretions. J. Forensic Sci. 1987, 32, 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberg, N.; van Oorschot, R.A.H. The Use of Polilight® in the Detection of Seminal Fluid, Saliva, and Bloodstains and Comparison with Conventional Chemical-Based Screening Tests. J. Forensic Sci. 2006, 51, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Sterzik, V.; Panzer, S.; Apfelbacher, M.; Bohnert, M. Searching for Biological Traces on Different Materials Using a Forensic Light Source and Infrared Photography. Int. J. Leg. Med. 2016, 130, 599–605. [Google Scholar] [CrossRef]
- Sterzik, V.; Hinderberger, P.; Panzer, S.; Bohnert, M. Visualizing Old Biological Traces on Different Materials without Using Chemicals. Int. J. Leg. Med. 2018, 132, 35–41. [Google Scholar] [CrossRef]
- Tay, J.; Joudo, J.; Tran, T.; Ta, H.; Botting, J.; Liew, Y.; Cooper, P.; Rye, M. Comparison of Crime-Lite® 82S, Polilight® PL400 and Polilight® PL500 for the Detection of Semen and Saliva Stains. Aust. J. Forensic Sci. 2020, 53, 483–493. [Google Scholar] [CrossRef]
- Zapata, F.; de la Ossa, M.Á.F.; García-Ruiz, C. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics. Appl. Spectrosc. 2016, 70, 654–665. [Google Scholar] [CrossRef]
- Morillas, A.V.; Gooch, J.; Frascione, N. Feasibility of a Handheld near Infrared Device for the Qualitative Analysis of Bloodstains. Talanta 2018, 184, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.F.Q.; Silva, C.S.; Vieira, M.J.L.; Pimentel, M.F.; Braz, A.; Honorato, R.S. Evaluation and Identification of Blood Stains with Handheld NIR Spectrometer. Microchem. J. 2017, 133, 561–566. [Google Scholar] [CrossRef]
- Edelman, G.J.; van Leeuwen, T.G.; Aalders, M.C.G. Hyperspectral Imaging of the Crime Scene for Detection and Identification of Blood Stains. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Baltimore, MD, USA, 18 May 2013; Volume 8743, pp. 47–53. [Google Scholar]
- Edelman, G.; Manti, V.; Ruth, S.; van Leeuwen, T.; Aalders, M.C.G. Identification and Age Estimation of Blood Stains on Colored Backgrounds by near Infrared Spectroscopy. Forensic Sci. Int. 2012, 220, 239–244. [Google Scholar] [CrossRef]
- Edelman, G.; Gaston, E.; van Leeuwen, T.; Cullen, P.J.; Aalders, M.C.G. Hyperspectral Imaging for Non-Contact Analysis of Forensic Traces. Forensic Sci. Int. 2012, 223, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadd, S.; Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. Age Determination of Blood-Stained Fingerprints Using Visible Wavelength Reflectance Hyperspectral Imaging. J. Imaging 2018, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Malegori, C.; Alladio, E.; Oliveri, P.; Manis, C.; Vincenti, M.; Garofano, P.; Barni, F.; Berti, A. Identification of Invisible Biological Traces in Forensic Evidences by Hyperspectral NIR Imaging Combined with Chemometrics. Talanta 2020, 215, 120911. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Ahmad, M.; Sohaib, A.; Mazzara, M.; Distefano, S. Hyperspectral Imaging for Bloodstain Identification. Sensors 2021, 21, 3045. [Google Scholar] [CrossRef] [PubMed]
- Romaszewski, M.; Głomb, P.; Sochan, A.; Cholewa, M. A Dataset for Evaluating Blood Detection in Hyperspectral Images. Forensic Sci. Int. 2021, 320, 110701. [Google Scholar] [CrossRef]
- Sijen, T. Molecular Approaches for Forensic Cell Type Identification: On mRNA, MiRNA, DNA Methylation and Microbial Markers. Forensic Sci. Int. Genet. 2015, 18, 21–32. [Google Scholar] [CrossRef]
- Sakurada, K.; Watanabe, K.; Akutsu, T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics 2020, 10, 693. [Google Scholar] [CrossRef]
- Harbison, S.A.; Fleming, R.I. Forensic Body Fluid Identification: State of the Art. Res. Rep. Forensic Med. Sci. 2016, 6, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Holtkötter, H.; Schwender, K.; Wiegand, P.; Peiffer, H.; Vennemann, M. Improving Body Fluid Identification in Forensic Trace Evidence—Construction of an Immunochromatographic Test Array to Rapidly Detect up to Five Body Fluids Simultaneously. Int. J. Leg. Med. 2018, 132, 83–90. [Google Scholar] [CrossRef] [PubMed]
- de Beijer, R.P.; de Graaf, C.; van Weert, A.; van Leeuwen, T.G.; Aalders, M.C.G.; van Dam, A. Identification and Detection of Protein Markers to Differentiate between Forensically Relevant Body Fluids. Forensic Sci. Int. 2018, 290, 196–206. [Google Scholar] [CrossRef]
- Lee, J.W.; Jung, J.Y.; Lim, S.-K. Simple and Rapid Identification of Saliva by Detection of Oral Streptococci Using Direct Polymerase Chain Reaction Combined with an Immunochromatographic Strip. Forensic Sci. Int. Genet. 2018, 33, 155–160. [Google Scholar] [CrossRef]
- Abbas, N.; Lu, X.; Badshah, M.A.; In, J.B.; Heo, W.I.; Park, K.Y.; Lee, M.-K.; Kim, C.H.; Kang, P.; Chang, W.-J.; et al. Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid. Sensors 2018, 18, 3874. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Bertino, M.F.; Seashols, S.J. Raman Spectroscopy of Blood Samples for Forensic Applications. Forensic Sci. Int. 2011, 208, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Virkler, K.; Lednev, I.K. Raman Spectroscopic Signature of Semen and Its Potential Application to Forensic Body Fluid Identification. Forensic Sci. Int. 2009, 193, 56–62. [Google Scholar] [CrossRef]
- Casey, T.; Mistek, E.; Halámková, L.; Lednev, I.K. Raman Spectroscopy for Forensic Semen Identification: Method Validation vs. Environmental Interferences. Vib. Spectrosc. 2020, 109, 103065. [Google Scholar] [CrossRef]
- Doty, K.C.; Muro, C.K.; Lednev, I.K. Predicting the Time of the Crime: Bloodstain Aging Estimation for up to Two Years. Forensic Chem. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Rosenblatt, R.; Halámková, L.; Doty, K.C.; de Oliveira, E.A.C.; Lednev, I.K. Raman Spectroscopy for Forensic Bloodstain Identification: Method Validation vs. Environmental Interferences. Forensic Chem. 2019, 16, 100175. [Google Scholar] [CrossRef]
- Takamura, A.; Watanabe, K.; Akutsu, T.; Ozawa, T. Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis. Sci. Rep. 2018, 8, 8459. [Google Scholar] [CrossRef] [PubMed]
- Orphanou, C.-M. The Detection and Discrimination of Human Body Fluids Using ATR FT-IR Spectroscopy. Forensic Sci. Int. 2015, 252, e10–e16. [Google Scholar] [CrossRef]
- Sharma, S.; Chophi, R.; Singh, R. Forensic Discrimination of Menstrual Blood and Peripheral Blood Using Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FT-IR) Spectroscopy and Chemometrics. Int. J. Leg. Med. 2020, 134, 63–77. [Google Scholar] [CrossRef]
- Zha, S.; Wei, X.; Fang, R.; Wang, Q.; Lin, H.; Zhang, K.; Zhang, H.; Liu, R.; Li, Z.; Huang, P.; et al. Estimation of the Age of Human Semen Stains by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: A Preliminary Study. Forensic Sci. Res. 2020, 5, 119–125. [Google Scholar] [CrossRef]
- Takamura, A.; Halamkova, L.; Ozawa, T.; Lednev, I.K. Phenotype Profiling for Forensic Purposes: Determining Donor Sex Based on Fourier Transform Infrared Spectroscopy of Urine Traces. Anal. Chem. 2019, 91, 6288–6295. [Google Scholar] [CrossRef]
- Mistek-Morabito, E.; Lednev, I.K. Discrimination of Menstrual and Peripheral Blood Traces Using Attenuated Total Reflection Fourier Transform-Infrared (ATR FT-IR) Spectroscopy and Chemometrics for Forensic Purposes. Anal. Bioanal. Chem. 2021, 413, 2513–2522. [Google Scholar] [CrossRef]
- Karadayi, S.; Moshfeghi, E.; Arasoglu, T.; Karadayi, B. Evaluating the Persistence of Laundered Semen Stains on Fabric Using a Forensic Light Source System, Prostate-Specific Antigen Semiquant Test and DNA Recovery-Profiling. Med. Sci. Law 2020, 60, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.; Fleming, R. RNA-Based Approaches for Body Fluid Identification in Forensic Science. WIREs Forensic Sci. 2021, 3, e1407. [Google Scholar] [CrossRef]
- El-Mogy, M.; Lam, B.; Haj-Ahmad, T.A.; McGowan, S.; Yu, D.; Nosal, L.; Rghei, N.; Roberts, P.; Haj-Ahmad, Y. Diversity and Signature of Small RNA in Different Bodily Fluids Using next Generation Sequencing. BMC Genom. 2018, 19, 408. [Google Scholar] [CrossRef] [PubMed]
- Na, J.-Y. Estimation of the Post-Mortem Interval Using MicroRNA in the Bones. J. Forensic Leg. Med. 2020, 75, 102049. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Patzelt, D. Evaluation of Mrna Markers for the Identification of Menstrual Blood. J. Forensic Sci. 2002, 47, 1278–1282. [Google Scholar] [CrossRef]
- Bauer, M.; Kraus, A.; Patzelt, D. Detection of Epithelial Cells in Dried Blood Stains by Reverse Transcriptase-Polymerase Chain Reaction. J. Forensic Sci. 1999, 44, 1232–1236. [Google Scholar] [CrossRef]
- Setzer, M.; Juusola, J.; Ballantyne, J. Recovery and Stability of RNA in Vaginal Swabs and Blood, Semen, and Saliva Stains. J. Forensic Sci. 2008, 53, 296–305. [Google Scholar] [CrossRef]
- Kohlmeier, F.; Schneider, P.M. Successful mRNA Profiling of 23 Years Old Blood Stains. Forensic Sci. Int. Genet. 2012, 6, 274–276. [Google Scholar] [CrossRef]
- Lin, M.-H.; Jones, D.F.; Fleming, R. Transcriptomic Analysis of Degraded Forensic Body Fluids. Forensic Sci. Int. Genet. 2015, 17, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, A.P.; Russo, G.; Aluri, S.; Haas, C. Transcription and Microbial Profiling of Body Fluids Using a Massively Parallel Sequencing Approach. Forensic Sci. Int. Genet. 2019, 43, 102149. [Google Scholar] [CrossRef] [PubMed]
- Harteveld, J.; Lindenbergh, A.; Sijen, T. RNA Cell Typing and DNA Profiling of Mixed Samples: Can Cell Types and Donors Be Associated? Sci. Justice 2013, 53, 261–269. [Google Scholar] [CrossRef]
- Lindenbergh, A.; de Pagter, M.; Ramdayal, G.; Visser, M.; Zubakov, D.; Kayser, M.; Sijen, T. A Multiplex (m)RNA-Profiling System for the Forensic Identification of Body Fluids and Contact Traces. Forensic Sci. Int. Genet. 2012, 6, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Bowden, A.; Fleming, R.; Harbison, S. A Method for DNA and RNA Co-Extraction for Use on Forensic Samples Using the Promega DNA IQ™ System. Forensic Sci. Int. Genet. 2011, 5, 64–68. [Google Scholar] [CrossRef]
- Alvarez, M.; Juusola, J.; Ballantyne, J. An mRNA and DNA Co-Isolation Method for Forensic Casework Samples. Anal. Biochem. 2004, 335, 289–298. [Google Scholar] [CrossRef]
- Wang, S.; Shanthan, G.; Bouzga, M.M.; Dinh, H.M.T.; Haas, C.; Fonneløp, A.E. Evaluating the Performance of Five Up-to-Date DNA/RNA Co-Extraction Methods for Forensic Application. Forensic Sci. Int. 2021, 328, 110996. [Google Scholar] [CrossRef] [PubMed]
- Juusola, J.; Ballantyne, J. Multiplex mRNA Profiling for the Identification of Body Fluids. Forensic Sci. Int. 2005, 152, 1–12. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Takamura, A.; Sakurada, K. Evaluation of Skin- or Sweat-Characteristic mRNAs for Inferring the Human Origin of Touched Contact Traces. Leg. Med. 2018, 33, 36–41. [Google Scholar] [CrossRef]
- van den Berge, M.; Bhoelai, B.; Harteveld, J.; Matai, A.; Sijen, T. Advancing Forensic RNA Typing: On Non-Target Secretions, a Nasal Mucosa Marker, a Differential Co-Extraction Protocol and the Sensitivity of DNA and RNA Profiling. Forensic Sci. Int. Genet. 2016, 20, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Cossu, C.; Germann, U.; Kratzer, A.; Bär, W.; Haas, C. How Specific Are the Vaginal Secretion mRNA-Markers HBD1 and MUC4? Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 536–537. [Google Scholar] [CrossRef]
- Richard, M.L.L.; Harper, K.A.; Craig, R.L.; Onorato, A.J.; Robertson, J.M.; Donfack, J. Evaluation of mRNA Marker Specificity for the Identification of Five Human Body Fluids by Capillary Electrophoresis. Forensic Sci. Int. Genet. 2012, 6, 452–460. [Google Scholar] [CrossRef]
- Fleming, R.I.; Harbison, S. The Development of a mRNA Multiplex RT-PCR Assay for the Definitive Identification of Body Fluids. Forensic Sci. Int. Genet. 2010, 4, 244–256. [Google Scholar] [CrossRef]
- Park, J.-L.; Park, S.-M.; Kim, J.-H.; Lee, H.-C.; Lee, S.-H.; Woo, K.-M.; Kim, S.-Y. Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology. Genom. Inform. 2013, 11, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.; Ingold, S.; Haas, C.; Ballantyne, J. Targeted Multiplexed next Generation RNA Sequencing Assay for Tissue Source Determination of Forensic Samples. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e441–e443. [Google Scholar] [CrossRef]
- Zubakov, D.; Hanekamp, E.; Kokshoorn, M.; van IJcken, W.; Kayser, M. Stable RNA Markers for Identification of Blood and Saliva Stains Revealed from Whole Genome Expression Analysis of Time-Wise Degraded Samples. Int. J. Leg. Med. 2008, 122, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Lindenbergh, A.; Maaskant, P.; Sijen, T. Implementation of RNA Profiling in Forensic Casework. Forensic Sci. Int. Genet. 2013, 7, 159–166. [Google Scholar] [CrossRef]
- Tozzo, P.; Nespeca, P.; Spigarolo, G.; Caenazzo, L. The Importance of Distinguishing Menstrual and Peripheral Blood in Forensic Casework: A Case Report. Am. J. Forensic Med. Pathol. 2018, 39, 337–340. [Google Scholar] [CrossRef]
- Fabbri, M.; Venturi, M.; Talarico, A.; Inglese, R.; Gaudio, R.M.; Neri, M. mRNA Profiling: Application to an Old Casework. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e380–e382. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.; Gittos, M.; Harbison, S.A.; Fleming, R.; Wivell, R. Exploring the Recovery and Detection of Messenger RNA and DNA from Enhanced Fingermarks in Blood. Sci. Justice 2014, 54, 192–198. [Google Scholar] [CrossRef]
- Lux, C.; Schyma, C.; Madea, B.; Courts, C. Identification of Gunshots to the Head by Detection of RNA in Backspatter Primarily Expressed in Brain Tissue. Forensic Sci. Int. 2014, 237, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Klesser, B.; Maake, C.; Bär, W.; Kratzer, A. mRNA Profiling for Body Fluid Identification by Reverse Transcription Endpoint PCR and Realtime PCR. Forensic Sci. Int. Genet. 2009, 3, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, C.; Gharehbaghi-Schnell, E.; Korschineck, I. Messenger RNA Profiling: A Novel Method for Body Fluid Identification by Real-Time PCR. Forensic Sci. Int. 2006, 157, 181–186. [Google Scholar] [CrossRef]
- Ingold, S.; Dørum, G.; Hanson, E.; Berti, A.; Branicki, W.; Brito, P.; Elsmore, P.; Gettings, K.B.; Giangasparo, F.; Gross, T.E.; et al. Body Fluid Identification Using a Targeted mRNA Massively Parallel Sequencing Approach—Results of a EUROFORGEN/EDNAP Collaborative Exercise. Forensic Sci. Int. Genet. 2018, 34, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.; Ingold, S.; Haas, C.; Ballantyne, J. Messenger RNA Biomarker Signatures for Forensic Body Fluid Identification Revealed by Targeted RNA Sequencing. Forensic Sci. Int. Genet. 2018, 34, 206–221. [Google Scholar] [CrossRef]
- Dørum, G.; Ingold, S.; Hanson, E.; Ballantyne, J.; Snipen, L.; Haas, C. Predicting the Origin of Stains from next Generation Sequencing mRNA Data. Forensic Sci. Int. Genet. 2018, 34, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Neubauer, J.; Salzmann, A.P.; Hanson, E.; Ballantyne, J. Forensic Transcriptome Analysis Using Massively Parallel Sequencing. Forensic Sci. Int. Genet. 2021, 52, 102486. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded Identification and Characterization of Mammalian Circular RNAs. Genome Biol. 2014, 15, 409. [Google Scholar] [CrossRef]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-Type Specific Features of Circular RNA Expression. PLOS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Song, F.; Luo, H.; Xie, M.; Zhu, H.; Hou, Y. Microarray Expression Profile of Circular RNAs in Human Body Fluids. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e55–e56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, B.; Shao, C.; Xu, H.; Xue, A.; Zhao, Z.; Shen, Y.; Tang, Q.; Xie, J. Evaluation of the Inclusion of Circular RNAs in mRNA Profiling in Forensic Body Fluid Identification. Int. J. Leg. Med. 2018, 132, 43–52. [Google Scholar] [CrossRef]
- Juusola, J.; Ballantyne, J. mRNA Profiling for Body Fluid Identification by Multiplex Quantitative RT-PCR *. J. Forensic Sci. 2007, 52, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, Q.; Meng, H.; Shao, C.; Jiang, J.; Xu, H.; Sun, K.; Zhou, Y.; Yao, Y.; Zhou, Z.; et al. Development of a Multiplex System for the Identification of Forensically Relevant Body Fluids. Forensic Sci. Int. Genet. 2020, 47, 102312. [Google Scholar] [CrossRef]
- Baonian, L.; Song, F.; Yang, Q.; Zhou, Y.; Chengchen, S.; Shen, Y.; Zhao, Z.; Tang, Q.; Hou, Y.; Xie, J. Characterization of Tissue-Specific Biomarkers with the Expression of CircRNAs in Forensically Relevant Body Fluids. Int. J. Leg. Med. 2019, 133, 1321–1331. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.-W.; Li, C.-Y.; Lee, J.C.-I.; Ji, D.-D.; Li, S.-Y.; Daniel, B.; Syndercombe-Court, D.; Linacre, A.; Hsieh, H.-M. A Novel Application of Real-Time RT-LAMP for Body Fluid Identification: Using HBB Detection as the Model. Forensic Sci. Med. Pathol. 2015, 11, 208–215. [Google Scholar] [CrossRef]
- Tsai, L.-C.; Su, C.-W.; Lee, J.C.-I.; Lu, Y.-S.; Chen, H.-C.; Lin, Y.-C.; Linacre, A.; Hsieh, H.-M. The Detection and Identification of Saliva in Forensic Samples by RT-LAMP. Forensic Sci. Med. Pathol. 2018, 14, 469–477. [Google Scholar] [CrossRef]
- Satoh, T.; Kouroki, S.; Ogawa, K.; Tanaka, Y.; Matsumura, K.; Iwase, S. Development of MRNA-Based Body Fluid Identification Using Reverse Transcription Loop-Mediated Isothermal Amplification. Anal. Bioanal. Chem. 2018, 410, 4371–4378. [Google Scholar] [CrossRef]
- Jackson, K.R.; Layne, T.; Dent, D.A.; Tsuei, A.; Li, J.; Haverstick, D.M.; Landers, J.P. A Novel Loop-Mediated Isothermal Amplification Method for Identification of Four Body Fluids with Smartphone Detection. Forensic Sci. Int. Genet. 2020, 45, 102195. [Google Scholar] [CrossRef]
- Mehta, B.; Daniel, R.; McNevin, D. HRM and SNaPshot as Alternative Forensic SNP Genotyping Methods. Forensic Sci. Med. Pathol. 2017, 13, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.S.; De Amorim, I.S.S.; Simão, T.D.A.; Fonseca, A.D.S.; Garrido, R.G.; Mencalha, A.L. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science. J. Forensic Sci. 2018, 63, 536–540. [Google Scholar] [CrossRef]
- Wang, S.; Song, F.; Wang, Y.; Huang, Y.; Xie, B.; Luo, H. High Resolution Melting Analysis (HRM) Based on 16SrRNA as a Tool for Personal Identification with the Human Oral Microbiome. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 161–163. [Google Scholar] [CrossRef]
- Alghanim, H.; Balamurugan, K.; McCord, B. Development of DNA Methylation Markers for Sperm, Saliva and Blood Identification Using Pyrosequencing and QPCR/HRM. Anal. Biochem. 2020, 611, 113933. [Google Scholar] [CrossRef]
- Hanson, E.K.; Ballantyne, J. Rapid and Inexpensive Body Fluid Identification by RNA Profiling-Based Multiplex High Resolution Melt (HRM) Analysis. F1000Research 2014, 2, 281. [Google Scholar] [CrossRef]
- Danaher, P.; White, R.L.; Hanson, E.K.; Ballantyne, J. Facile Semi-Automated Forensic Body Fluid Identification by Multiplex Solution Hybridization of NanoString® Barcode Probes to Specific MRNA Targets. Forensic Sci. Int. Genet. 2015, 14, 18–30. [Google Scholar] [CrossRef]
- Malkov, V.A.; Serikawa, K.A.; Balantac, N.; Watters, J.; Geiss, G.; Mashadi-Hossein, A.; Fare, T. Multiplexed Measurements of Gene Signatures in Different Analytes Using the Nanostring Ncounter™ Assay System. BMC Res. Notes 2009, 2, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, D.J.; Archard, C.L.; Brown, T.; McDowell, D.G. HyBeaconTM Probes: A New Tool for DNA Sequence Detection and Allele Discrimination. Mol. Cell. Probes 2001, 15, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Blackman, S.; Stafford-Allen, B.; Hanson, E.K.; Panasiuk, M.; Brooker, A.-L.; Rendell, P.; Ballantyne, J.; Wells, S. Developmental Validation of the ParaDNA® Body Fluid ID System—A Rapid Multiplex MRNA-Profiling System for the Forensic Identification of Body Fluids. Forensic Sci. Int. Genet. 2018, 37, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Blackman, S.; Dawnay, N.; Ball, G.; Stafford-Allen, B.; Tribble, N.; Rendell, P.; Neary, K.; Hanson, E.K.; Ballantyne, J.; Kallifatidis, B.; et al. Developmental Validation of the ParaDNA® Intelligence System—A Novel Approach to DNA Profiling. Forensic Sci. Int. Genet. 2015, 17, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.R.; Jung, S.-E.; Lee, E.H.; Shin, K.-J.; Yang, W.I.; Lee, H.Y. DNA Methylation-Based Age Prediction from Saliva: High Age Predictability by Combination of 7 CpG Markers. Forensic Sci. Int. Genet. 2017, 29, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Vidaki, A.; Kayser, M. Recent Progress, Methods and Perspectives in Forensic Epigenetics. Forensic Sci. Int. Genet. 2018, 37, 180–195. [Google Scholar] [CrossRef]
- Kader, F.; Ghai, M.; Olaniran, A.O. Characterization of DNA Methylation-Based Markers for Human Body Fluid Identification in Forensics: A Critical Review. Int. J. Leg. Med. 2020, 134, 1–20. [Google Scholar] [CrossRef]
- Lee, H.Y.; An, J.H.; Jung, S.-E.; Oh, Y.N.; Lee, E.Y.; Choi, A.; Yang, W.I.; Shin, K.-J. Genome-Wide Methylation Profiling and a Multiplex Construction for the Identification of Body Fluids Using Epigenetic Markers. Forensic Sci. Int. Genet. 2015, 17, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-L.; Kwon, O.-H.; Kim, J.H.; Yoo, H.-S.; Lee, H.-C.; Woo, K.-M.; Kim, S.-Y.; Lee, S.-H.; Kim, Y.S. Identification of Body Fluid-Specific DNA Methylation Markers for Use in Forensic Science. Forensic Sci. Int. Genet. 2014, 13, 147–153. [Google Scholar] [CrossRef]
- Ghai, M.; Naidoo, N.; Evans, D.L.; Kader, F. Identification of Novel Semen and Saliva Specific Methylation Markers and Its Potential Application in Forensic Analysis. Forensic Sci. Int. Genet. 2020, 49, 102392. [Google Scholar] [CrossRef]
- Antunes, J.; Gauthier, Q.; Aguiar-Pulido, V.; Duncan, G.; McCord, B. A Data-Driven, High-Throughput Methodology to Determine Tissue-Specific Differentially Methylated Regions Able to Discriminate Body Fluids. Electrophoresis 2021, 42, 1168–1176. [Google Scholar] [CrossRef]
- An, J.H.; Choi, A.; Shin, K.-J.; Yang, W.I.; Lee, H.Y. DNA Methylation-Specific Multiplex Assays for Body Fluid Identification. Int. J. Leg. Med. 2013, 127, 35–43. [Google Scholar] [CrossRef]
- Choi, A.; Shin, K.-J.; Yang, W.I.; Lee, H.Y. Body Fluid Identification by Integrated Analysis of DNA Methylation and Body Fluid-Specific Microbial DNA. Int. J. Leg. Med. 2014, 128, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Frumkin, D.; Wasserstrom, A.; Budowle, B.; Davidson, A. DNA Methylation-Based Forensic Tissue Identification. Forensic Sci. Int. Genet. 2011, 5, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-L.; Tsai, L.-C.; Lin, Y.-C.; Huang, N.-E.; Yang, L.-J.; Su, C.-W.; Lee, J.C.-I.; Linacre, A.; Hsieh, H.-M. Identification of Spermatozoa Using a Novel 3-Plex MSRE-PCR Assay for Forensic Examination of Sexual Assaults. Int. J. Leg. Med. 2020, 134, 1991–2004. [Google Scholar] [CrossRef]
- Vidaki, A.; Giangasparo, F.; Court, D.S. Discovery of Potential DNA Methylation Markers for Forensic Tissue Identification Using Bisulphite Pyrosequencing. Electrophoresis 2016, 37, 2767–2779. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Nishimukai, H.; Asano, M. Application of Fragment Analysis Based on Methylation Status Mobility Difference to Identify Vaginal Secretions. Sci. Justice 2021, 61, 384–390. [Google Scholar] [CrossRef]
- Holtkötter, H.; Beyer, V.; Schwender, K.; Glaub, A.; Johann, K.S.; Schürenkamp, M.; Sibbing, U.; Banken, S.; Wiegand, P.; Pfeiffer, H.; et al. Independent Validation of Body Fluid-Specific CpG Markers and Construction of a Robust Multiplex Assay. Forensic Sci. Int. Genet. 2017, 29, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Newton, C.R.; Graham, A.; Heptinstall, L.E.; Powell, S.J.; Summers, C.; Kalsheker, N.; Smith, J.C.; Markham, A.F. Analysis of Any Point Mutation in DNA. The Amplification Refractory Mutation System (ARMS). Nucleic Acids Res. 1989, 17, 2503–2516. [Google Scholar] [CrossRef]
- Tian, H.; Bai, P.; Tan, Y.; Li, Z.; Peng, D.; Xiao, X.; Zhao, H.; Zhou, Y.; Liang, W.; Zhang, L. A New Method to Detect Methylation Profiles for Forensic Body Fluid Identification Combining ARMS-PCR Technique and Random Forest Model. Forensic Sci. Int. Genet. 2020, 49, 102371. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.R.; Shin, K.-J. Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Front. Genet. 2021, 12, 173. [Google Scholar] [CrossRef]
- Schommer, N.N.; Gallo, R.L. Structure and Function of the Human Skin Microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Fleming, R.I.; Harbison, S. The Use of Bacteria for the Identification of Vaginal Secretions. Forensic Sci. Int. Genet. 2010, 4, 311–315. [Google Scholar] [CrossRef]
- Benschop, C.C.G.; Quaak, F.C.A.; Boon, M.E.; Sijen, T.; Kuiper, I. Vaginal Microbial Flora Analysis by next Generation Sequencing and Microarrays; Can Microbes Indicate Vaginal Origin in a Forensic Context? Int. J. Leg. Med. 2012, 126, 303–310. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal Microbiome of Reproductive-Age Women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.J.; Rifkin, R.F.; Cowan, D.A.; Potgieter, M. The Healthy Human Blood Microbiome: Fact or Fiction? Front. Cell. Infect. Microbiol. 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Huse, S.M.; Ye, Y.; Zhou, Y.; Fodor, A.A. A Core Human Microbiome as Viewed through 16S RRNA Sequence Clusters. PLoS ONE 2012, 7, e34242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaak, F.C.A.; van Duijn, T.; Hoogenboom, J.; Kloosterman, A.D.; Kuiper, I. Human-Associated Microbial Populations as Evidence in Forensic Casework. Forensic Sci. Int. Genet. 2018, 36, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, E.N.; Avershina, E.; Rudi, K.; Gill, P.; Snipen, L. Body Fluid Prediction from Microbial Patterns for Forensic Application. Forensic Sci. Int. Genet. 2017, 30, 10–17. [Google Scholar] [CrossRef]
- Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Ishak, S.; Dormontt, E.; Young, J.M. Microbiomes in Forensic Botany: A Review. Forensic Sci. Med. Pathol. 2021, 17, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Damaso, N.; Mendel, J.; Mendoza, M.; von Wettberg, E.J.; Narasimhan, G.; Mills, D. Bioinformatics Approach to Assess the Biogeographical Patterns of Soil Communities: The Utility for Soil Provenance. J. Forensic Sci. 2018, 63, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-W.; Eom, Y.-B. Forensic Analysis of Human Microbiome in Skin and Body Fluids Based on Geographic Location. Front. Cell. Infect. Microbiol. 2021, 11, 695191. [Google Scholar] [CrossRef] [PubMed]
- Badgley, A.J.; Jesmok, E.M.; Foran, D.R. Time Radically Alters Ex Situ Evidentiary Soil 16S Bacterial Profiles Produced Via Next-Generation Sequencing. J. Forensic Sci. 2018, 63, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Signoretto, C.; Bianchi, F.; Burlacchini, G.; Sivieri, F.; Spratt, D.; Canepari, P. Drinking Habits Are Associated with Changes in the Dental Plaque Microbial Community. J. Clin. Microbiol. 2010, 48, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, M.A.M.; Aronoff, D.M. The Influence of Non-Steroidal Anti-Inflammatory Drugs on the Gut Microbiome. Clin. Microbiol. Infect. 2016, 22, 178.e1. [Google Scholar] [CrossRef] [Green Version]
- Kates, A.E.; Jarrett, O.; Skarlupka, J.H.; Sethi, A.; Duster, M.; Watson, L.; Suen, G.; Poulsen, K.; Safdar, N. Household Pet Ownership and the Microbial Diversity of the Human Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Challenges in Human Skin Microbial Profiling for Forensic Science: A Review. Genes 2020, 11, 1015. [Google Scholar] [CrossRef]
- Kim, D.; Hofstaedter, C.E.; Zhao, C.; Mattei, L.; Tanes, C.; Clarke, E.; Lauder, A.; Sherrill-Mix, S.; Chehoud, C.; Kelsen, J.; et al. Optimizing Methods and Dodging Pitfalls in Microbiome Research. Microbiome 2017, 5, 52. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and Laboratory Contamination Can Critically Impact Sequence-Based Microbiome Analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.M.; Pasternak, Z.; Mason, C.E.; Elhaik, E. Forensic Applications of Microbiomics: A Review. Front. Microbiol. 2021, 11, 3455. [Google Scholar] [CrossRef]
- Schmedes, S.E.; Woerner, A.E.; Novroski, N.M.M.; Wendt, F.R.; King, J.L.; Stephens, K.M.; Budowle, B. Targeted Sequencing of Clade-Specific Markers from Skin Microbiomes for Forensic Human Identification. Forensic Sci. Int. Genet. 2018, 32, 50–61. [Google Scholar] [CrossRef]
- Woerner, A.E.; Novroski, N.M.M.; Wendt, F.R.; Ambers, A.; Wiley, R.; Schmedes, S.E.; Budowle, B. Forensic Human Identification with Targeted Microbiome Markers Using Nearest Neighbor Classification. Forensic Sci. Int. Genet. 2019, 38, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Lauber, C.L.; Zhou, N.; McDonald, D.; Costello, E.K.; Knight, R. Forensic Identification Using Skin Bacterial Communities. Proc. Natl. Acad. Sci. USA 2010, 107, 6477–6481. [Google Scholar] [CrossRef] [Green Version]
- Meadow, J.F.; Altrichter, A.E.; Green, J.L. Mobile Phones Carry the Personal Microbiome of Their Owners. PeerJ 2014, 2, e447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goga, H. Comparison of Bacterial DNA Profiles of Footwear Insoles and Soles of Feet for the Forensic Discrimination of Footwear Owners. Int. J. Leg. Med. 2012, 126, 815–823. [Google Scholar] [CrossRef]
- Lax, S.; Hampton-Marcell, J.T.; Gibbons, S.M.; Colares, G.B.; Smith, D.; Eisen, J.A.; Gilbert, J.A. Forensic Analysis of the Microbiome of Phones and Shoes. Microbiome 2015, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Young, J.M.; Linacre, A. Massively Parallel Sequencing Is Unlocking the Potential of Environmental Trace Evidence. Forensic Sci. Int. Genet. 2021, 50, 102393. [Google Scholar] [CrossRef]
- Allwood, J.S.; Fierer, N.; Dunn, R.R. The Future of Environmental DNA in Forensic Science. Appl. Environ. Microbiol. 2020, 86, e01504-19. [Google Scholar] [CrossRef] [PubMed]
- Giampaoli, S.; Berti, A.; Di Maggio, R.M.; Pilli, E.; Valentini, A.; Valeriani, F.; Gianfranceschi, G.; Barni, F.; Ripani, L.; Spica, V.R. The Environmental Biological Signature: NGS Profiling for Forensic Comparison of Soils. Forensic Sci. Int. 2014, 240, 41–47. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats across Space and Time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Leake, S.L.; Pagni, M.; Falquet, L.; Taroni, F.; Greub, G. The Salivary Microbiome for Differentiating Individuals: Proof of Principle. Microbes Infect. 2016, 18, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Yoon, H.K.; An, S.; Lee, J.W.; Ahn, E.-R.; Kim, Y.-J.; Park, H.-C.; Lee, K.; Hwang, J.H.; Lim, S.-K. Rapid Oral Bacteria Detection Based on Real-Time PCR for the Forensic Identification of Saliva. Sci. Rep. 2018, 8, 10852. [Google Scholar] [CrossRef]
- Quaak, F.C.A.; de Graaf, M.-L.M.; Weterings, R.; Kuiper, I. Microbial Population Analysis Improves the Evidential Value of Faecal Traces in Forensic Investigations. Int. J. Leg. Med. 2017, 131, 45–51. [Google Scholar] [CrossRef]
- Akutsu, T.; Motani, H.; Watanabe, K.; Iwase, H.; Sakurada, K. Detection of Bacterial 16S Ribosomal RNA Genes for Forensic Identification of Vaginal Fluid. Leg. Med. 2012, 14, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Díez López, C.; Montiel González, D.; Haas, C.; Vidaki, A.; Kayser, M. Microbiome-Based Body Site of Origin Classification of Forensically Relevant Blood Traces. Forensic Sci. Int. Genet. 2020, 47, 102280. [Google Scholar] [CrossRef]
- López, C.D.; Vidaki, A.; Ralf, A.; González, D.M.; Radjabzadeh, D.; Kraaij, R.; Uitterlinden, A.G.; Haas, C.; Lao, O.; Kayser, M. Novel Taxonomy-Independent Deep Learning Microbiome Approach Allows for Accurate Classification of Different Forensically Relevant Human Epithelial Materials. Forensic Sci. Int. Genet. 2019, 41, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Han, X.; Guan, T.; Wang, Z.; Zhang, S.; Liu, C.; Liu, C.; Chen, L. Effect of Indoor Environmental Exposure on Seminal Microbiota and Its Application in Body Fluid Identification. Forensic Sci. Int. 2020, 314, 110417. [Google Scholar] [CrossRef]
- Haas, C.; Hanson, E.; Anjos, M.J.; Ballantyne, K.N.; Banemann, R.; Bhoelai, B.; Borges, E.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA Co-Analysis from Human Menstrual Blood and Vaginal Secretion Stains: Results of a Fourth and Fifth Collaborative EDNAP Exercise. Forensic Sci. Int. Genet. 2014, 8, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Dobay, A.; Haas, C.; Fucile, G.; Downey, N.; Morrison, H.G.; Kratzer, A.; Arora, N. Microbiome-Based Body Fluid Identification of Samples Exposed to Indoor Conditions. Forensic Sci. Int. Genet. 2019, 40, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, A.E.; Taylor, M.C.; Cordiner, S.J.; Lamont, I.L. Using Oral Microbial DNA Analysis to Identify Expirated Bloodspatter. Int. J. Leg. Med. 2010, 124, 569–576. [Google Scholar] [CrossRef]
- Giampaoli, S.; Berti, A.; Valeriani, F.; Gianfranceschi, G.; Piccolella, A.; Buggiotti, L.; Rapone, C.; Valentini, A.; Ripani, L.; Spica, V.R. Molecular Identification of Vaginal Fluid by Microbial Signature. Forensic Sci. Int. Genet. 2012, 6, 559–564. [Google Scholar] [CrossRef]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the Microbiome: Advantages of Whole Genome Shotgun versus 16S Amplicon Sequencing. Biochem. Biophys. Res. Commun. 2016, 469, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtkötter, H.; Dierig, L.; Schürenkamp, M.; Sibbing, U.; Pfeiffer, H.; Vennemann, M. Validation of an Immunochromatographic D-Dimer Test to Presumptively Identify Menstrual Fluid in Forensic Exhibits. Int. J. Leg. Med. 2015, 129, 37–41. [Google Scholar] [CrossRef]
- Holtkötter, H.; Filho, C.R.D.; Schwender, K.; Stadler, C.; Vennemann, M.; Pacheco, A.C.; Roca, G. Forensic Differentiation between Peripheral and Menstrual Blood in Cases of Alleged Sexual Assault—Validating an Immunochromatographic Multiplex Assay for Simultaneous Detection of Human Hemoglobin and D-Dimer. Int. J. Leg. Med. 2018, 132, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Giampaoli, S.; Alessandrini, F.; Berti, A.; Ripani, L.; Choi, A.; Crab, R.; De Vittori, E.; Egyed, B.; Haas, C.; Lee, H.Y.; et al. Forensic Interlaboratory Evaluation of the ForFLUID Kit for Vaginal Fluids Identification. J. Forensic Leg. Med. 2014, 21, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, R.; Pregler, C.; Schellmann, B. The Value of the Lugol’s Iodine Staining Technique for the Identification of Vaginal Epithelial Cells. Int. J. Leg. Med. 1994, 106, 298–301. [Google Scholar] [CrossRef]
- Nichols, C.A.; Sens, M.A. Recovery and Evaluation by Cytologic Techniques of Trace Material Retained on Bullets. Am. J. Forensic Med. Pathol. 1990, 11, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Uitspraken. Available online: https://www.rechtspraak.nl/Uitspraken/Paginas/default.aspx (accessed on 12 September 2021).
- Lin, Y.-C.; Tsai, L.-C.; Lee, J.C.-I.; Liu, K.-L.; Tzen, J.T.-C.; Linacre, A.; Hsieh, H.-M. Novel Identification of Biofluids Using a Multiplex Methylation-Specific PCR Combined with Single-Base Extension System. Forensic Sci. Med. Pathol. 2016, 12, 128–138. [Google Scholar] [CrossRef]
- Wasserstrom, A.; Frumkin, D.; Davidson, A.; Shpitzen, M.; Herman, Y.; Gafny, R. Demonstration of DSI-Semen—A Novel DNA Methylation-Based Forensic Semen Identification Assay. Forensic Sci. Int. Genet. 2013, 7, 136–142. [Google Scholar] [CrossRef]
- Iwasaki, M.; Kubo, S.-I.; Ogata, M.; Nakasono, I. A Demonstration of Spermatozoa on Vaginal Swabs after Complete Destruction of the Vaginal Cell Deposits. J. Forensic Sci. 1989, 34, 659–664. [Google Scholar] [CrossRef]
- Bamberg, M.; Dierig, L.; Kulstein, G.; Kunz, S.N.; Schmidt, M.; Hadrys, T.; Wiegand, P. Development and Validation of an MRNA-Based Multiplex Body Fluid Identification Workflow and a Rectal Mucosa Marker Pilot Study. Forensic Sci. Int. Genet. 2021, 54, 102542. [Google Scholar] [CrossRef] [PubMed]
- Zubakov, D.; Kokshoorn, M.; Kloosterman, A.; Kayser, M. New Markers for Old Stains: Stable MRNA Markers for Blood and Saliva Identification from up to 16-Year-Old Stains. Int. J. Leg. Med. 2009, 123, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirnside, O.; Lemalu, A.; Fleming, R. Identification of Nasal Mucosa Markers for Forensic MRNA Body Fluid Determination. Forensic Sci. Int. Genet. 2020, 48, 102317. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, J.; Cao, Y.; Zhou, H.; Ping, Y.; Chen, L.; Gu, L.; Hu, W.; Bi, G.; Ge, J.; et al. Development of Highly Sensitive and Specific MRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification. PLoS ONE 2014, 9, e100123. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, K.; Akutsu, T.; Fukushima, H.; Watanabe, K.; Yoshino, M. Detection of Dermcidin for Sweat Identification by Real-Time RT-PCR and ELISA. Forensic Sci. Int. 2010, 194, 80–84. [Google Scholar] [CrossRef]
- Layne, T.R.; Green, R.A.; Lewis, C.A.; Nogales, F.; Cruz, T.C.D.; Zehner, Z.E.; Seashols-Williams, S.J. MicroRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J. Forensic Sci. 2019, 64, 1831–1837. [Google Scholar] [CrossRef]
- Visser, M.; Zubakov, D.; Ballantyne, K.N.; Kayser, M. MRNA-Based Skin Identification for Forensic Applications. Int. J. Leg. Med. 2011, 125, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.; Haas, C.; Jucker, R.; Ballantyne, J. Identification of Skin in Touch/Contact Forensic Samples by Messenger RNA Profiling. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e305–e306. [Google Scholar] [CrossRef]
- Haas, C.; Hanson, E.; Banemann, R.; Bento, A.M.; Berti, A.; Carracedo, Á.; Courts, C.; Cock, G.D.; Drobnic, K.; Fleming, R.; et al. RNA/DNA Co-Analysis from Human Skin and Contact Traces—Results of a Sixth Collaborative EDNAP Exercise. Forensic Sci. Int. Genet. 2015, 16, 139–147. [Google Scholar] [CrossRef]
- van den Berge, M.; Carracedo, A.; Gomes, I.; Graham, E.A.M.; Haas, C.; Hjort, B.; Hoff-Olsen, P.; Maroñas, O.; Mevåg, B.; Morling, N.; et al. A Collaborative European Exercise on MRNA-Based Body Fluid/Skin Typing and Interpretation of DNA and RNA Results. Forensic Sci. Int. Genet. 2014, 10, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Lindenbergh, A.; van den Berge, M.; Oostra, R.-J.; Cleypool, C.; Bruggink, A.; Kloosterman, A.; Sijen, T. Development of a MRNA Profiling Multiplex for the Inference of Organ Tissues. Int. J. Leg. Med. 2013, 127, 891–900. [Google Scholar] [CrossRef]
- Hanson, E.; Ballantyne, J. Human Organ Tissue Identification by Targeted RNA Deep Sequencing to Aid the Investigation of Traumatic Injury. Genes 2017, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Euteneuer, J.; Courts, C. Ten Years of Molecular Ballistics—a Review and a Field Guide. Int. J. Leg. Med. 2021, 135, 1121–1136. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; ISBN 978-0-8153-3218-3. [Google Scholar]
- Mathiesen, C.; Thomsen, K.; Lauritzen, M. Integrated Measurements of Electrical Activity, Oxygen Tension, Blood Flow, and Ca2+-Signaling in Rodents In Vivo. In Brain Energy Metabolism. Neuromethods; Hirrlinger, J., Waagepetersen, H., Eds.; Humana Press: New York, NY, USA, 2014; Volume 90. [Google Scholar] [CrossRef]
- Jackson, D.G. Leucocyte Trafficking via the Lymphatic Vasculature—Mechanisms and Consequences. Front. Immunol. 2019, 10, 471. [Google Scholar] [CrossRef]
- Slagter, M.; Kruise, D.; van Ommen, L.; Hoogenboom, J.; Steensma, K.; de Jong, J.; Hovers, P.; Parag, R.; van der Linden, J.; Kneppers, A.L.J.; et al. The DNAxs Software Suite: A Three-Year Retrospective Study on the Development, Architecture, Testing and Implementation in Forensic Casework. Forensic Sci. Int. Rep. 2021, 3, 100212. [Google Scholar] [CrossRef]
- McNevin, D.; Wright, K.; Barash, M.; Gomes, S.; Jamieson, A.; Chaseling, J. Proposed Framework for Comparison of Continuous Probabilistic Genotyping Systems amongst Different Laboratories. Forensic Sci. 2021, 1, 33–45. [Google Scholar] [CrossRef]
- Bleka, Ø.; Storvik, G.; Gill, P. EuroForMix: An Open Source Software Based on a Continuous Model to Evaluate STR DNA Profiles from a Mixture of Contributors with Artefacts. Forensic Sci. Int. Genet. 2016, 21, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Bright, J.-A.; Cheng, K.; Kerr, Z.; McGovern, C.; Kelly, H.; Moretti, T.R.; Smith, M.A.; Bieber, F.R.; Budowle, B.; Coble, M.D.; et al. STRmix™ Collaborative Exercise on DNA Mixture Interpretation. Forensic Sci. Int. Genet. 2019, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Coble, M.D.; Bright, J.-A. Probabilistic Genotyping Software: An Overview. Forensic Sci. Int. Genet. 2019, 38, 219–224. [Google Scholar] [CrossRef]
- van den Berge, M.; Sijen, T. Extended Specificity Studies of MRNA Assays Used to Infer Human Organ Tissues and Body Fluids. Electrophoresis 2017, 38, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-H.; Albani, P.P.; Fleming, R. Degraded RNA Transcript Stable Regions (StaRs) as Targets for Enhanced Forensic RNA Body Fluid Identification. Forensic Sci. Int. Genet. 2016, 20, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Kim, B.; Murphy, K.E.; Matthews, S.G. Impact of Ex Vivo Sample Handling on DNA Methylation Profiles in Human Cord Blood and Neonatal Dried Blood Spots. Front. Genet. 2020, 11, 224. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Tsai, L.-C.; Lee, J.C.-I.; Su, C.-W.; Tzen, J.T.-C.; Linacre, A.; Hsieh, H.-M. Novel Identification of Biofluids Using a Multiplex Methylation Sensitive Restriction Enzyme-PCR System. Forensic Sci. Int. Genet. 2016, 25, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Roeder, A.D.; Haas, C. MRNA Profiling Using a Minimum of Five MRNA Markers per Body Fluid and a Novel Scoring Method for Body Fluid Identification. Int. J. Leg. Med. 2013, 127, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Iacob, D.; Fürst, A.; Hadrys, T. A Machine Learning Model to Predict the Origin of Forensically Relevant Body Fluids. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 392–394. [Google Scholar] [CrossRef]
- de Zoete, J.; Curran, J.; Sjerps, M. A Probabilistic Approach for the Interpretation of RNA Profiles as Cell Type Evidence. Forensic Sci. Int. Genet. 2016, 20, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Ypma, R.J.F.; Wijk, P.A.M.; Gill, R.; Sjerps, M.; van den Berge, M. Calculating LRs for Presence of Body Fluids from MRNA Assay Data in Mixtures. Forensic Sci. Int. Genet. 2021, 52, 102455. [Google Scholar] [CrossRef]
- Hanson, E.; Ingold, S.; Dorum, G.; Haas, C.; Lagace, R.; Ballantyne, J. Assigning Forensic Body Fluids to DNA Donors in Mixed Samples by Targeted RNA/DNA Deep Seqeuncing of Coding Region SNPs Using Ion Torrent Technology. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 23–24. [Google Scholar] [CrossRef]
- Gill, P. Misleading DNA Evidence: Reasons for Miscarriages of Justice. Int. Comment. Evid. 2012, 10, 55–71. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Tao, R.; Song, F.; Hou, Y. Validating the Consistency of CSNPs Analysis Results between DNA and RNA Using SNaPshot Method. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 76–78. [Google Scholar] [CrossRef]
- Ingold, S.; Dørum, G.; Hanson, E.; Ballantyne, J.; Haas, C. Assigning Forensic Body Fluids to Donors in Mixed Body Fluids by Targeted RNA/DNA Deep Sequencing of Coding Region SNPs. Int. J. Leg. Med. 2020, 134, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Ingold, S.; Haas, C.; Dørum, G.; Hanson, E.; Ballantyne, J. Association of a Body Fluid with a DNA Profile by Targeted RNA/DNA Deep Sequencing. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e112–e113. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, J.; Li, Y.; Liu, N.; Liu, F.; Ren, J.; Yun, K.; Yan, J.; Zhang, G. Development of a Multiplex Methylation-Sensitive Restriction Enzyme-Based SNP Typing System for Deconvolution of Semen-Containing Mixtures. Int. J. Leg. Med. 2021, 135, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, K.; Akutsu, T. Development of a DNA Methylation-Based Semen-Specific SNP Typing Method: A New Approach for Genotyping from a Mixture of Body Fluids. Forensic Sci. Int. Genet. 2018, 37, 227–234. [Google Scholar] [CrossRef]
- Fujimoto, S.; Hamano, Y.; Ichioka, K.; Manabe, S.; Hirai, E.; Ogawa, O.; Tamaki, K. Rapid Semen Identification from Mixed Body Fluids Using Methylation-Sensitive High-Resolution Melting Analysis of the DACT1 Gene. Leg. Med. 2021, 48, 101806. [Google Scholar] [CrossRef]
- Rocchi, A.; Chiti, E.; Maiese, A.; Turillazzi, E.; Spinetti, I. MicroRNAs: An Update of Applications in Forensic Science. Diagnostics 2021, 11, 32. [Google Scholar] [CrossRef]
- Sun, K.; Lai, E.C. Adult-Specific Functions of Animal MicroRNAs. Nat. Rev. Genet. 2013, 14, 535–548. [Google Scholar] [CrossRef]
- Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H.A. MicroRNA Expression in Zebrafish Embryonic Development. Science 2005, 309, 310–311. [Google Scholar] [CrossRef] [Green Version]
- Omelia, E.J.; Uchimoto, M.L.; Williams, G. Quantitative PCR Analysis of Blood- and Saliva-Specific MicroRNA Markers Following Solid-Phase DNA Extraction. Anal. Biochem. 2013, 435, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.K.; Lubenow, H.; Ballantyne, J. Identification of Forensically Relevant Body Fluids Using a Panel of Differentially Expressed MicroRNAs. Anal. Biochem. 2009, 387, 303–314. [Google Scholar] [CrossRef]
- Zubakov, D.; Boersma, A.W.M.; Choi, Y.; van Kuijk, P.F.; Wiemer, E.A.C.; Kayser, M. MicroRNA Markers for Forensic Body Fluid Identification Obtained from Microarray Screening and Quantitative RT-PCR Confirmation. Int. J. Leg. Med. 2010, 124, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-L.; Park, S.-M.; Kwon, O.-H.; Lee, H.; Kim, J.; Seok, H.H.; Lee, W.S.; Lee, S.-H.; Kim, Y.S.; Woo, K.-M.; et al. Microarray Screening and QRT-PCR Evaluation of MicroRNA Markers for Forensic Body Fluid Identification. Electrophoresis 2014, 35, 3062–3068. [Google Scholar] [CrossRef]
- Li, Z.; Bai, P.; Peng, D.; Wang, H.; Guo, Y.; Jiang, Y.; He, W.; Tian, H.; Yang, Y.; Huang, Y.; et al. Screening and Confirmation of MicroRNA Markers for Distinguishing between Menstrual and Peripheral Blood. Forensic Sci. Int. Genet. 2017, 30, 24–33. [Google Scholar] [CrossRef]
- Sauer, E.; Extra, A.; Cachée, P.; Courts, C. Identification of Organ Tissue Types and Skin from Forensic Samples by MicroRNA Expression Analysis. Forensic Sci. Int. Genet. 2017, 28, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, H.; Xiao, Z.-X.; Ji, A.; Ye, J.; Sun, Q.; Cao, Y. A Systematic Analysis of miRNA Markers and Classification Algorithms for Forensic Body Fluid Identification. Brief. Bioinform. 2021, 22. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, M.; Zhu, Y.; Zhang, L.; Zheng, Z.; Wang, Q.; Li, Y.; Zhang, P.; Zhu, S.; Ding, S.; et al. The Persistence and Stability of miRNA in Bloodstained Samples under Different Environmental Conditions. Forensic Sci. Int. 2021, 318, 110594. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The Stability and Persistence of Blood and Semen MRNA and miRNA Targets for Body Fluid Identification in Environmentally Challenged and Laundered Samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Sirker, M.; Fimmers, R.; Schneider, P.M.; Gomes, I. Evaluating the Forensic Application of 19 Target MicroRNAs as Biomarkers in Body Fluid and Tissue Identification. Forensic Sci. Int. Genet. 2017, 27, 41–49. [Google Scholar] [CrossRef]
- Van der Meer, D.; Uchimoto, M.L.; Williams, G. Simultaneous Analysis of Micro-RNA and DNA for Determining the Body Fluid Origin of DNA Profiles. J. Forensic Sci. 2013, 58, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Seashols-Williams, S.; Hughes-Stamm, S. A Capillary Electrophoresis Method for Identifying Forensically Relevant Body Fluids Using miRNAs. Leg. Med. 2018, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Seashols-Williams, S.; Lewis, C.; Calloway, C.; Peace, N.; Harrison, A.; Hayes-Nash, C.; Fleming, S.; Wu, Q.; Zehner, Z.E. High-Throughput miRNA Sequencing and Identification of Biomarkers for Forensically Relevant Biological Fluids. Electrophoresis 2016, 37, 2780–2788. [Google Scholar] [CrossRef]
- Parhad, S.S.; Theurkauf, W.E. Rapid Evolution and Conserved Function of the PiRNA Pathway. Open Biol. 2019, 9, 180181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wang, Z.; Tao, R.; He, G.; Liu, J.; Li, C.; Hou, Y. The Potential Use of Piwi-Interacting RNA Biomarkers in Forensic Body Fluid Identification: A Proof-of-Principle Study. Forensic Sci. Int. Genet. 2019, 39, 129–135. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Tao, R.; Wang, M.; Liu, J.; He, G.; Yang, Y.; Xie, M.; Zou, X.; Hou, Y. Expression Profile Analysis of Piwi-Interacting RNA in Forensically Relevant Biological Fluids. Forensic Sci. Int. Genet. 2019, 42, 171–180. [Google Scholar] [CrossRef]
- Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mehmandoost, N.; Moazzen, F.; Mazraeh, A.; Marmari, V.; et al. Molecular Mechanisms and Biological Functions of SiRNA. Int. J. Biomed. Sci. IJBS 2017, 13, 48–57. [Google Scholar]
- Staedtler, F.; Hartmann, N.; Letzkus, M.; Bongiovanni, S.; Scherer, A.; Marc, P.; Johnson, K.J.; Schumacher, M.M. Robust and Tissue-Independent Gender-Specific Transcript Biomarkers. Biomarkers 2013, 18, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Pullirsch, D.; Leeb, M.; Wutz, A. Xist and the Order of Silencing. EMBO Rep. 2007, 8, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berge, M.; Sijen, T. A Male and Female RNA Marker to Infer Sex in Forensic Analysis. Forensic Sci. Int. Genet. 2017, 26, 70–76. [Google Scholar] [CrossRef]
- Hassan, F.M.; Razik, H.A.A.; Wadie, M.S.; Abdelfattah, D.S. XIST and RPS4Y1 Long Non-Coding RNA Transcriptome as Sex Biomarkers in Different Body Fluids. Egypt. J. Forensic Sci. 2019, 9, 16. [Google Scholar] [CrossRef]
- Merkley, E.D.; Wunschel, D.S.; Wahl, K.L.; Jarman, K.H. Applications and Challenges of Forensic Proteomics. Forensic Sci. Int. 2019, 297, 350–363. [Google Scholar] [CrossRef]
- Merkley, E.D. Applications in Forensic Proteomics: Protein Identification and Profiling; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2020. [Google Scholar]
- Parker, G.J.; McKiernan, H.E.; Legg, K.M.; Goecker, Z.C. Forensic Proteomics. Forensic Sci. Int. Genet. 2021, 54, 102529. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, B.; Deng, H.; Prinz, M.; Siegel, D. Body Fluid Identification by Mass Spectrometry. Int. J. Leg. Med. 2013, 127, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Legg, K.M.; Powell, R.; Reisdorph, N.; Reisdorph, R.; Danielson, P.B. Discovery of Highly Specific Protein Markers for the Identification of Biological Stains. Electrophoresis 2014, 35, 3069–3078. [Google Scholar] [CrossRef] [PubMed]
- Legg, K.M.; Powell, R.; Reisdorph, N.; Reisdorph, R.; Danielson, P.B. Verification of Protein Biomarker Specificity for the Identification of Biological Stains by Quadrupole Time-of-Flight Mass Spectrometry. Electrophoresis 2017, 38, 833–845. [Google Scholar] [CrossRef]
- McKiernan, H.E.; Danielson, P.B.; Brown, C.O.; Signaevsky, M.; Westring, C.G.; Legg, K.M. Developmental Validation of a Multiplex Proteomic Assay for the Identification of Forensically Relevant Biological Fluids. Forensic Sci. Int. 2021, 326, 110908. [Google Scholar] [CrossRef]
- Bradshaw, R.; Bleay, S.; Clench, M.R.; Francese, S. Direct Detection of Blood in Fingermarks by MALDI MS Profiling and Imaging. Sci. Justice 2014, 54, 110–117. [Google Scholar] [CrossRef]
- Kamanna, S.; Henry, J.; Voelcker, N.H.; Linacre, A.; Kirkbride, K.P. Direct Identification of Forensic Body Fluids Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Int. J. Mass Spectrom. 2016, 397–398, 18–26. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Ninomiya, S.; Reynolds, J.C.; Hiraoka, K. Sheath-Flow Probe Electrospray Ionization (SfPESI) Mass Spectrometry for the Rapid Forensic Analysis of Human Body Fluids. Anal. Methods 2019, 11, 3633–3640. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.J.; Leppert, T.; Anex, D.S.; Hilmer, J.K.; Matsunami, N.; Baird, L.; Stevens, J.; Parsawar, K.; Durbin-Johnson, B.P.; Rocke, D.M.; et al. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. PLoS ONE 2016, 11, e0160653. [Google Scholar] [CrossRef]
- Goecker, Z.C.; Salemi, M.R.; Karim, N.; Phinney, B.S.; Rice, R.H.; Parker, G.J. Optimal Processing for Proteomic Genotyping of Single Human Hairs. Forensic Sci. Int. Genet. 2020, 47, 102314. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Mason, K.E.; Anex, D.S.; Jones, A.D.; Hart, B.R. Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification. Sci. Rep. 2019, 9, 7641. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of Single-Stranded DNA Molecules That Bind and Inhibit Human Thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.E.; Chen, Z.; Ayele, T.M.; Heemstra, J.M. In Vitro Selection of an XNA Aptamer Capable of Small-Molecule Recognition. Nucleic Acids Res. 2018, 46, 8057–8068. [Google Scholar] [CrossRef] [PubMed]
- Bunka, D.H.J.; Stockley, P.G. Aptamers Come of Age—At Last. Nat. Rev. Microbiol. 2006, 4, 588–596. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-Based Biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Q.; Chen, J.; Ni, X.; Dai, J. A DNA Aptamer Based Method for Detection of SARS-CoV-2 Nucleocapsid Protein. Virol. Sin. 2020, 35, 351–354. [Google Scholar] [CrossRef]
- Abrego-Martinez, J.C.; Jafari, M.; Chergui, S.; Pavel, C.; Che, D.; Siaj, M. Aptamer-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2: Nanoscale Electrode-Aptamer-SARS-CoV-2 Imaging by Photo-Induced Force Microscopy. Biosens. Bioelectron. 2022, 195, 113595. [Google Scholar] [CrossRef]
- Gooch, J.; Tungsirisurp, S.; Costanzo, H.; Napier, R.; Frascione, N. Generating Aptamers towards Human Sperm Cells Using Massively Parallel Sequencing. Anal. Bioanal. Chem. 2021, 413, 5821–5834. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Kouroki, S.; Kitamura, Y.; Ihara, T.; Matsumura, K.; Iwase, S. Detection of Prostate-Specific Antigen in Semen Using DNA Aptamers: An Application of Nucleic Acid Aptamers in Forensic Body Fluid Identification. Anal. Methods 2020, 12, 2703–2709. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-I.; Wu, C.-C.; Yang, C.-H.; Chang, K.-W.; Lee, G.-B.; Shiesh, S.-C. Selection of Aptamers Specific for Glycated Hemoglobin and Total Hemoglobin Using On-Chip SELEX. Lab. Chip 2015, 15, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Choung, C.M.; Lee, J.W.; Park, J.H.; Kim, C.H.; Park, H.-C.; Lim, S.-K. A Forensic Case Study for Body Fluid Identification Using DNA Methylation Analysis. Leg. Med. 2021, 51, 101872. [Google Scholar] [CrossRef]
- Cortellini, V.; Brescia, G.; Cerri, N.; Verzeletti, A. Simultaneous DNA and RNA Profiling in a Case of Sexual Assault in a 3-Year-Old Child: Forensic Genetics Solves the Crime. Leg. Med. 2020, 47, 101727. [Google Scholar] [CrossRef]
- Byrnes, S.A.; Gallagher, R.; Steadman, A.; Bennett, C.; Rivera, R.; Ortega, C.; Motley, S.T.; Jain, P.; Weigl, B.H.; Connelly, J.T. Multiplexed and Extraction-Free Amplification for Simplified SARS-CoV-2 RT-PCR Tests. Anal. Chem. 2021, 93, 4160–4165. [Google Scholar] [CrossRef] [PubMed]
- Verheij, S.; Harteveld, J.; Sijen, T. A Protocol for Direct and Rapid Multiplex PCR Amplification on Forensically Relevant Samples. Forensic Sci. Int. Genet. 2012, 6, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, B.; Zhou, Y.; Yao, Y.; Zhou, Z.; Li, H.; Shao, C.; Sun, K.; Xu, H.; Tang, Q.; et al. Evaluation of One-Step RT-PCR Multiplex Assay for Body Fluid Identification. Int. J. Leg. Med. 2021, 135, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sijen, T.; Harbison, S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes 2021, 12, 1728. https://doi.org/10.3390/genes12111728
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes. 2021; 12(11):1728. https://doi.org/10.3390/genes12111728
Chicago/Turabian StyleSijen, Titia, and SallyAnn Harbison. 2021. "On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime" Genes 12, no. 11: 1728. https://doi.org/10.3390/genes12111728
APA StyleSijen, T., & Harbison, S. (2021). On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes, 12(11), 1728. https://doi.org/10.3390/genes12111728