Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review
Abstract
:1. Introduction
2. Bioinformatics in Melanoma Genomics
3. Bioinformatics and Machine Learning in Melanoma Risk Assessment
3.1. Gene-Expression Profiling
3.2. Current Bioinformatics in Melanoma Risk Assessement
3.3. Machine Learning in Melanoma Risk Asessement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Facts & Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 11 July 2021).
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma (KEYNOTE-006): Post-Hoc 5-Year Results from an Open-Label, Multicentre, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- de Gruijl, F.R. Photocarcinogenesis: UVA vs. UVB Radiation. Ski. Pharm. Appl Ski. Physiol. 2002, 15, 316–320. [Google Scholar] [CrossRef]
- Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo 2014, 28, 1005–1011. [Google Scholar] [PubMed]
- Albino, A.P.; Le Strange, R.; Oliff, A.I.; Furth, M.E.; Old, L.J. Transforming Ras Genes from Human Melanoma: A Manifestation of Tumour Heterogeneity? Nature 1984, 308, 69–72. [Google Scholar] [CrossRef]
- Hussussian, C.J.; Struewing, J.P.; Goldstein, A.M.; Higgins, P.A.T.; Ally, D.S.; Sheahan, M.D.; Clark, W.H.; Tucker, M.A.; Dracopoli, N.C. Germline P16 Mutations in Familial Melanoma. Nat. Genet. 1994, 8, 15–21. [Google Scholar] [CrossRef]
- Ghosh, P.; Chin, L. Genetics and Genomics of Melanoma. Expert Rev. Derm. 2009, 4, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, A.; Grob, J.-J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H.; Kaempgen, E.; et al. Dabrafenib in BRAF-Mutated Metastatic Melanoma: A Multicentre, Open-Label, Phase 3 Randomised Controlled Trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Barba, M.; Czosnek, H.; Hadidi, A. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef] [PubMed]
- Hodis, E.; Watson, I.R.; Kryukov, G.V.; Arold, S.T.; Imielinski, M.; Theurillat, J.-P.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; et al. A Landscape of Driver Mutations in Melanoma. Cell 2012, 150, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Krauthammer, M.; Kong, Y.; Ha, B.H.; Evans, P.; Bacchiocchi, A.; McCusker, J.P.; Cheng, E.; Davis, M.J.; Goh, G.; Choi, M.; et al. Exome Sequencing Identifies Recurrent Somatic RAC1 Mutations in Melanoma. Nat. Genet. 2012, 44, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Program—National Cancer Institute. Available online: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga (accessed on 21 August 2021).
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef]
- Trevarton, A.; Mann, M.; Knapp, C.; Araki, H.; Wren, J.; Stones-Havas, S.; Black, M.; Print, C. MelanomaDB: A Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways. Front. Oncol. 2013, 3, 184. [Google Scholar] [CrossRef] [Green Version]
- Papadodima, O.; Kontogianni, G.; Piroti, G.; Maglogiannis, I.; Chatziioannou, A. Genomics of Cutaneous Melanoma: Focus on next-Generation Sequencing Approaches and Bioinformatics. J. Transl. Genet. Genom. 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Dummer, R.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Kirkwood, J.M.; Chiarion Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N. Engl. J. Med. 2020, 383, 1139–1148. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef]
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensimon, A.G.; Zhou, Z.-Y.; Jenkins, M.; Song, Y.; Gao, W.; Signorovitch, J.; Krepler, C.; Liu, F.X.; Wang, J.; Aguiar-Ibáñez, R. Cost-Effectiveness of Pembrolizumab for the Adjuvant Treatment of Resected High-Risk Stage III Melanoma in the United States. J. Med. Econ. 2019, 22, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Coit, D.G.; Thompson, J.A.; Algazi, A.; Andtbacka, R.; Bichakjian, C.K.; Carson, W.E.; Daniels, G.A.; DiMaio, D.; Ernstoff, M.; Fields, R.C.; et al. Melanoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 450–473. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma Staging: Evidence-Based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poklepovic, A.S.; Luke, J.J. Considering Adjuvant Therapy for Stage II Melanoma. Cancer 2020, 126, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, G.; Busch, C.; Knappskog, S.; Geisler, J.; Miletic, H.; Ringnér, M.; Lillehaug, J.R.; Borg, A.; Lønning, P.E. Gene Expression Profiling-Based Identification of Molecular Subtypes in Stage IV Melanomas with Different Clinical Outcome. Clin. Cancer Res. 2010, 16, 3356–3367. [Google Scholar] [CrossRef] [Green Version]
- Gerami, P.; Cook, R.W.; Wilkinson, J.; Russell, M.C.; Dhillon, N.; Amaria, R.N.; Gonzalez, R.; Lyle, S.; Johnson, C.E.; Oelschlager, K.M.; et al. Development of a Prognostic Genetic Signature to Predict the Metastatic Risk Associated with Cutaneous Melanoma. Clin. Cancer Res. 2015, 21, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerami, P.; Cook, R.W.; Russell, M.C.; Wilkinson, J.; Amaria, R.N.; Gonzalez, R.; Lyle, S.; Jackson, G.L.; Greisinger, A.J.; Johnson, C.E.; et al. Gene Expression Profiling for Molecular Staging of Cutaneous Melanoma in Patients Undergoing Sentinel Lymph Node Biopsy. J. Am. Acad. Dermatol. 2015, 72, 780–785.e3. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, C.L.; Chu, E.Y.; Adamson, A.S. Gene Expression Profile Testing for Thin Melanoma: Evidence to Support Clinical Use Remains Thin. JAMA Dermatol. 2020, 156, 837–838. [Google Scholar] [CrossRef]
- Zager, J.S.; Gastman, B.R.; Leachman, S.; Gonzalez, R.C.; Fleming, M.D.; Ferris, L.K.; Ho, J.; Miller, A.R.; Cook, R.W.; Covington, K.R.; et al. Performance of a Prognostic 31-Gene Expression Profile in an Independent Cohort of 523 Cutaneous Melanoma Patients. BMC Cancer 2018, 18, 130. [Google Scholar] [CrossRef]
- Gastman, B.R.; Gerami, P.; Kurley, S.J.; Cook, R.W.; Leachman, S.; Vetto, J.T. Identification of Patients at Risk of Metastasis Using a Prognostic 31-Gene Expression Profile in Subpopulations of Melanoma Patients with Favorable Outcomes by Standard Criteria. J. Am. Acad. Dermatol. 2019, 80, 149–157.e4. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.A.; Coit, D.G.; Dusza, S.W.; Yu, A.; McLean, L.; Hu, Y.; Nanda, J.K.; Matsoukas, K.; Mancebo, S.E.; Bartlett, E.K. Performance of Gene Expression Profile Tests for Prognosis in Patients With Localized Cutaneous Melanoma: A Systematic Review and Meta-Analysis. JAMA Derm. 2020, 156, 953. [Google Scholar] [CrossRef]
- Hu, Y.; Briggs, A.; Marchetti, M.A.; Ariyan, C.E.; Coit, D.G.; Bartlett, E.K. Cost-Benefit Implication of Gene Expression Profiling and Adjuvant Therapy in Stage IIIA Melanoma. J. Am. Coll. Surg. 2020, 231, 547–554.e1. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Han, W.; Huang, B.; Shen, G. Screening and Identification of Potential Prognostic Biomarkers in Metastatic Skin Cutaneous Melanoma by Bioinformatics Analysis. J. Cell. Mol. Med. 2020, 24, 11613–11618. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, C.; Xu, G.; Liang, T.; Yu, C.; Liao, S.; Zhang, Z.; Lu, Z.; Wang, Z.; Chen, J.; et al. Identification of Hub Genes Associated With Melanoma Development by Comprehensive Bioinformatics Analysis. Front. Oncol. 2021, 11, 1132. [Google Scholar] [CrossRef]
- Wang, R.; Shao, X.; Zheng, J.; Saci, A.; Qian, X.; Pak, I.; Roy, A.; Bello, A.; Rizzo, J.I.; Hosein, F.; et al. A Machine-Learning Approach to Identify a Prognostic Cytokine Signature That Is Associated with Nivolumab Clearance in Patients with Advanced Melanoma. Clin. Pharmacol. Ther. 2020, 107, 978–987. [Google Scholar] [CrossRef]
- Segura, M.F.; Belitskaya-Lévy, I.; Rose, A.E.; Zakrzewski, J.; Gaziel, A.; Hanniford, D.; Darvishian, F.; Berman, R.S.; Shapiro, R.L.; Pavlick, A.C.; et al. Melanoma MicroRNA Signature Predicts Post-Recurrence Survival. Clin. Cancer Res. 2010, 16, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Arora, C.; Kaur, D.; Lathwal, A.; Raghava, G.P.S. Risk Prediction in Cutaneous Melanoma Patients from Their Clinico-Pathological Features: Superiority of Clinical Data over Gene Expression Data. Heliyon 2020, 6, e04811. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, D.; Arias-Mejias, S.M.; Ramana, C.; Heim, J.B.; Quattrocchi, E.; Sominidi-Damodaran, S.; Bridges, A.G.; Lehman, J.S.; Hieken, T.J.; Jakub, J.W.; et al. Model Combining Tumor Molecular and Clinicopathologic Risk Factors Predicts Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma. JCO Precis. Oncol. 2020, 4, PO.19.00206. [Google Scholar] [CrossRef]
- Brinker, T.J.; Kiehl, L.; Schmitt, M.; Jutzi, T.B.; Krieghoff-Henning, E.I.; Krahl, D.; Kutzner, H.; Gholam, P.; Haferkamp, S.; Klode, J.; et al. Deep Learning Approach to Predict Sentinel Lymph Node Status Directly from Routine Histology of Primary Melanoma Tumours. Eur. J. Cancer 2021, 154, 227–234. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, J.; Chen, G.; Ardekani, G.S.; Rotte, A.; Martinka, M.; Xu, X.; McElwee, K.J.; Zhang, G.; Zhou, Y. Stage-Specific Prognostic Biomarkers in Melanoma. Oncotarget 2015, 6, 4180–4189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrow, N.E.; Holl, E.K.; Jung, J.; Gao, J.; Jung, S.-H.; Al-Rohil, R.N.; Selim, M.A.; Mosca, P.J.; Ollila, D.W.; Antonia, S.J.; et al. Characterization of Sentinel Lymph Node Immune Signatures and Implications for Risk Stratification for Adjuvant Therapy in Melanoma. Ann. Surg. Oncol. 2021, 28, 3501–3510. [Google Scholar] [CrossRef]
- Garg, M.; Couturier, D.-L.; Nsengimana, J.; Fonseca, N.A.; Wongchenko, M.; Yan, Y.; Lauss, M.; Jönsson, G.B.; Newton-Bishop, J.; Parkinson, C.; et al. Tumour Gene Expression Signature in Primary Melanoma Predicts Long-Term Outcomes. Nat. Commun. 2021, 12, 1137. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Y.; Ou, X.; Wang, C.; Wang, X.; Qin, B.; Zhang, Q.; Yu, J.; Zhang, J.; Yu, J. M5C-Related Signatures for Predicting Prognosis in Cutaneous Melanoma with Machine Learning. J. Oncol. 2021, 2021, e6173206. [Google Scholar] [CrossRef] [PubMed]
- Johannet, P.; Coudray, N.; Donnelly, D.M.; Jour, G.; Illa-Bochaca, I.; Xia, Y.; Johnson, D.B.; Wheless, L.; Patrinely, J.R.; Nomikou, S.; et al. Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clin. Cancer Res. 2021, 27, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Saw, R.P.; Thompson, J.F.; Lo, S.; Spillane, A.J.; Shannon, K.F.; Stretch, J.R.; Howle, J.; Menzies, A.M.; Carlino, M.S.; et al. Pre-Operative CtDNA Predicts Survival in High-Risk Stage III Cutaneous Melanoma Patients. Ann. Oncol. 2019, 30, 815–822. [Google Scholar] [CrossRef]
- Mancuso, F.; Lage, S.; Rasero, J.; Díaz-Ramón, J.L.; Apraiz, A.; Pérez-Yarza, G.; Ezkurra, P.A.; Penas, C.; Sánchez-Diez, A.; García-Vazquez, M.D.; et al. Serum Markers Improve Current Prediction of Metastasis Development in Early-Stage Melanoma Patients: A Machine Learning-Based Study. Mol. Oncol. 2020, 14, 1705–1718. [Google Scholar] [CrossRef]
- Shepelin, D.; Korzinkin, M.; Vanyushina, A.; Aliper, A.; Borisov, N.; Vasilov, R.; Zhukov, N.; Sokov, D.; Prassolov, V.; Gaifullin, N.; et al. Molecular Pathway Activation Features Linked with Transition from Normal Skin to Primary and Metastatic Melanomas in Human. Oncotarget 2015, 7, 656–670. [Google Scholar] [CrossRef] [Green Version]
- Wei, D. A Multigene Support Vector Machine Predictor for Metastasis of Cutaneous Melanoma. Mol. Med. Rep. 2018, 17, 2907–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.L.; Kattan, M.W.; McMasters, K.M.; Coit, D.G. A Nomogram That Predicts the Presence of Sentinel Node Metastasis in Melanoma With Better Discrimination Than the American Joint Committee on CancerStaging System. Ann. Surg. Oncol. 2005, 12, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, J.; Zeng, X. A Six-Long Non-Coding RNA Signature Predicts Prognosis in Melanoma Patients. Int. J. Oncol. 2018, 52, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Zormpas-Petridis, K.; Failmezger, H.; Raza, S.E.A.; Roxanis, I.; Jamin, Y.; Yuan, Y. Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology. Front. Oncol. 2019, 9, 1045. [Google Scholar] [CrossRef] [PubMed]
- Piñero, A.; Canteras, M.; Ortiz, E.; Martínez-Barba, E.; Parrilla, P. Validation of a Nomogram to Predict the Presence of Sentinel Lymph Node Metastases in Melanoma. Ann. Surg. Oncol. 2008, 15, 2874–2877. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, S.; Mocellin, S.; Campana, L.G.; Vecchiato, A.; Bonandini, E.; Montesco, M.C.; Santarcangelo, S.; Zavagno, G.; Nitti, D.; Rossi, C.R. Maximizing the Clinical Usefulness of a Nomogram to Select Patients Candidate to Sentinel Node Biopsy for Cutaneous Melanoma. Eur. J. Surg. Oncol. 2011, 37, 675–680. [Google Scholar] [CrossRef]
- Woods, J.F.C.; De Marchi, J.A.; Lowery, A.J.; Hill, A.D.K. Validation of a Nomogram Predicting Sentinel Lymph Node Status in Melanoma in an Irish Population. Ir. J. Med. Sci. 2015, 184, 769–773. [Google Scholar] [CrossRef]
- Schrider, D.R.; Kern, A.D. Supervised Machine Learning for Population Genetics: A New Paradigm. Trends Genet. 2018, 34, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, K.; Iversen, L.; Titlestad, T.L.; Winther, O. Systematic Review of Machine Learning for Diagnosis and Prognosis in Dermatology. J. Dermatol. Treat. 2020, 31, 496–510. [Google Scholar] [CrossRef] [PubMed]
Publication | Methods | Key Finding(s) | Performance | Data |
---|---|---|---|---|
Arora et al. 2020 [39] | Multiple machine learning algorithms (e.g., SVM 1, decision tree, random forest) | Machine learning model based on clinicopathologic variables outperformed model based on GEP profiles or AJCC 1 staging in predicting OS 1 | RNA expression data of cutaneous melanomas (CMs) (n = 458) from TCGA 1 | |
Bellomo et al. 2020 [40] | Machine learning logistic regression model | Epithelial-to-mesenchymal transition and melanosome function genes were associated with SLN 1 metastasis; model combining clinicopathologic and gene expression variables better predicted SLN metastases than model with clinicopathologic or gene expression variables | AUROC 1: 0.82 (clinicopathologic and gene expression model) | Gene expression data of primary CMs (n = 754) |
Brinker et al. 2021 [41] | Artificial neural network (ANN) | ANNs trained with H&E images not matched to SLN status had AUROC of 62% and may not be clinically relevant to predict SLN status | AUROC: 61.8% (matched), 55.0% (unmatched) | Primary melanoma with positive SLN H&E slides (n = 291) |
Cheng et al. 2015 [42] | Multi-variate Cox regression analysis | BRAF and MMP2 were prognostic biomarkers for stage I/II, while p27 is a biomarker for stage III/IV | Primary (n = 148) and metastatic (n = 106) CMs | |
Farrow et al. 2021 [43] | Multi-variate Cox regression analysis | 12 genes predicted RFS 1; increased TIGIT expression and decreased CXCL16 correlated with improved RFS | RNA samples (n = 62) from SLN biopsies | |
Garg et al. 2021 [44] | Random forest classifier | Machine learning models trained with 121 metastasis associated genes performed better in predicting regional lymph node metastasis than models trained with clinical trained with clinical covariates or published prognostic signatures | PAUROC: 7.03 × 10−4 (combined model) | RNA data of primary CMs (n = 204) |
Huang et al. 2021 [45] | Decision-tree algorithm (XGBoost) | 5-methylcytosine (m5c) signatures were used to predict CM prognosis; NSUN6 may be a marker for CM progression | Transcriptomic data of CMs (n = 4761) from TCGA | |
Jiang et al. 2021 [36] | GO 1 and KEGG 1 enrichment analysis, PPI network analysis | Identified 435 DEGs 1; FOXM1, EXO1, KIF20A, TPX2, and CDC20 were associated with reduced OS | Gene expression data of CMs from UCSC Xena (n = 322) and GEO (n = 45) | |
Johannet et al. 2021 [46] | Deep convolutional neural network (DCNN) | Machine learning algorithm trained with histology and clinicodemographic variables predicted immunotherapy response (PFS 1) in advanced melanoma patients with AUC 1 of 0.800 | AUC: 0.800 | Advanced melanoma patients (n = 121) |
Jönsson et al. 2010 [27] | Unsupervised hierarchical clustering, two-group significance of microarray analysis (SAM), support tree analysis | Four distinct subtypes with unique gene signatures are associated with different prognoses | Global gene expression data of stage IV CMs (n = 57) | |
Lee et al. 2019 [47] | Multi-variate Cox regression analysis | Pre-operative ctDNA predicts melanoma-specific survival in stage III melanoma | Pre-operative ctDNA from stage III CM patients (n = 174) | |
Mancuso et al. 2021 [48] | Multiple machine learning algorithms (e.g., logistic regression, SVM, decision tree, Gaussian naïve Bayes classifier) | Machine learning algorithm classified early-stage melanoma patients with high and low risk of metastasis; select serum cytokines (e.g., IL-4, GM-CSG, DCD) and Breslow thickness were variables that best predicted metastasis | Accuracy: 80% (Breslow thickness and serum markers model) | Stage I and II melanoma patients (n = 323) |
Segura et al. 2010 [38] | SAM, KEGG enrichment analysis | 18 overexpressed miRNAs were significantly correlated with longer post-recurrence survival | Accuracy: 80.2% | Total RNA of metastatic CMs (n = 59) |
Sheng et al. 2020 [35] | GO and KEGG enrichment analysis, PPI network analysis | Identified 258 DEGs as potential biomarkers of metastasis | Gene expression data of primary (n = 109) and metastatic (n = 136) CMs from GEO | |
Shepelin et al. 2018 [49] | Multiple machine learning algorithms (e.g., SVM, random forest) | Identified 44 characteristic signaling pathways associated with melanoma metastasis | Accuracy: 94% (SVM classifier) | Transcriptomic data of primary and metastatic CMs (n = 478) from GEO |
Wang et al. 2020 [37] | GO enrichment analysis, PPI network analysis | CD38 level was a diagnostic factor for CM; high CD38 expression correlated with higher OS | Gene expression data of CD38 positive CMs from TCGA | |
Wei et al. 2018 [50] | KEGG and GO enrichment analysis, PPI network analysis, SVM classifier | An SVM predictor for melanoma metastasis had greater than 94% prediction accuracy; 798 DEGs 1 were identified | Accuracy: 94.4 to 100% | Gene expression data of primary (n = 116) and metastatic (n = 296) CMs from GEO and TCGA |
Wong et al. 2005 [51] | Nomogram | A nomogram using clinicopathologic information accurately predicted the probability of a positive SLN in melanoma | Accuracy: 69.4% | SLN biopsies (n = 979) |
Yang et al. 2018 [52] | Two-way hierarchical clustering analysis, SVM classifier, random forest classifier | SVM classifier of a 6 lncRNA signature risk-stratified patients with 85% accuracy | Accuracy: 84.84% (two-way hierarchical clustering), 85.9% (SVM classifier) | lncRNA data of primary CMs (n = 376) from TCGA |
Zormpas-Petridis et al. 2019 [53] | Spatially constrained-convolution neural network (SC-CNN) | A novel multi-resolution hierarchical framework (SuperCRF) predicted survival based on histology features; SuperCRF had an 12% improvement in accuracy compared to state-of-art SC-CNN cell classifiers | Accuracy: 84.63% | Melanoma H&E slides (n = 151) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, E.Z.; Hoegler, K.M.; Zhou, A.E. Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review. Genes 2021, 12, 1751. https://doi.org/10.3390/genes12111751
Ma EZ, Hoegler KM, Zhou AE. Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review. Genes. 2021; 12(11):1751. https://doi.org/10.3390/genes12111751
Chicago/Turabian StyleMa, Emily Z., Karl M. Hoegler, and Albert E. Zhou. 2021. "Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review" Genes 12, no. 11: 1751. https://doi.org/10.3390/genes12111751
APA StyleMa, E. Z., Hoegler, K. M., & Zhou, A. E. (2021). Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review. Genes, 12(11), 1751. https://doi.org/10.3390/genes12111751