Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria for Considering Studies
2.2. Data Synthesis and Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A. Glaucoma. Lancet 2011, 377, 1367–1377. [Google Scholar] [CrossRef]
- Caprioli, J. Glaucoma: A disease of early cellular senescence. Investig. Ophthalmol. Vis. Sci. 2013, 54, ORSF60–ORSF67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- McMonnies, C.W. Glaucoma history and risk factors. J. Optom. 2017, 10, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.H.; Fingert, J.H.; Kuehn, M.H.; Alward, W.L. Primary open-angle glaucoma. N. Engl. J. Med. 2009, 360, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunger, B.M.; Fuchshofer, R.; Tamm, E.R. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur. J. Pharm. Biopharm. 2015, 95, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Vranka, J.A.; Kelley, M.J.; Acott, T.S.; Keller, K.E. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp. Eye Res. 2015, 133, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tektas, O.Y.; Lutjen-Drecoll, E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp. Eye Res. 2009, 88, 769–775. [Google Scholar] [CrossRef]
- Stone, E.M.; Fingert, J.H.; Alward, W.L.; Nguyen, T.D.; Polansky, J.R.; Sunden, S.L.; Nishimura, D.; Clark, A.F.; Nystuen, A.; Nichols, B.E.; et al. Identification of a gene that causes primary open angle glaucoma. Science 1997, 275, 668–670. [Google Scholar] [CrossRef] [PubMed]
- Fingert, J.H.; Stone, E.M.; Sheffield, V.C.; Alward, W.L. Myocilin glaucoma. Surv. Ophthalmol. 2002, 47, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Kosoko-Lasaki, O.; Haynatzki, G.R.; Wilson, M.R. Genetic dissection of myocilin glaucoma. Hum. Mol. Genet. 2004, 13, R91–R102. [Google Scholar] [CrossRef] [Green Version]
- Resch, Z.T.; Fautsch, M.P. Glaucoma-associated myocilin: A better understanding but much more to learn. Exp. Eye Res. 2009, 88, 704–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borras, T. The effects of myocilin expression on functionally relevant trabecular meshwork genes: A mini-review. J. Ocul. Pharmacol. Ther. 2014, 30, 202–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson-Orazem, A.C.; Lieberman, R.L. Antibodies used to detect glaucoma-associated myocilin: More or less than meets the eye? Investig. Ophthalmol. Vis. Sci. 2019, 60, 2034–2037. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, A.W.; Mackey, D.A.; Craig, J.E. Myocilin allele-specific glaucoma phenotype database. Hum. Mutat. 2008, 29, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Polansky, J.R.; Fauss, D.J.; Zimmerman, C.C. Regulation of tigr/myoc gene expression in human trabecular meshwork cells. Eye 2000, 14B Pt 3, 503–514. [Google Scholar] [CrossRef]
- Anholt, R.R.; Carbone, M.A. A molecular mechanism for glaucoma: Endoplasmic reticulum stress and the unfolded protein response. Trends Mol. Med. 2013, 19, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stothert, A.R.; Fontaine, S.N.; Sabbagh, J.J.; Dickey, C.A. Targeting the er-autophagy system in the trabecular meshwork to treat glaucoma. Exp. Eye Res. 2016, 144, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Sears, N.C.; Boese, E.A.; Miller, M.A.; Fingert, J.H. Mendelian genes in primary open angle glaucoma. Exp. Eye Res. 2019, 186, 107702. [Google Scholar] [CrossRef] [PubMed]
- Zode, G.S.; Kuehn, M.H.; Nishimura, D.Y.; Searby, C.C.; Mohan, K.; Grozdanic, S.D.; Bugge, K.; Anderson, M.G.; Clark, A.F.; Stone, E.M.; et al. Reduction of er stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J. Clin. Investig. 2011, 121, 3542–3553. [Google Scholar] [CrossRef] [Green Version]
- Zode, G.S.; Bugge, K.E.; Mohan, K.; Grozdanic, S.D.; Peters, J.C.; Koehn, D.R.; Anderson, M.G.; Kardon, R.H.; Stone, E.M.; Sheffield, V.C. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1557–1565. [Google Scholar] [CrossRef]
- Jain, A.; Zode, G.; Kasetti, R.B.; Ran, F.A.; Yan, W.; Sharma, T.P.; Bugge, K.; Searby, C.C.; Fingert, J.H.; Zhang, F.; et al. Crispr-cas9-based treatment of myocilin-associated glaucoma. Proc. Natl. Acad. Sci. USA 2017, 114, 11199–11204. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.N.; Turnage, K.C.; Walker, C.A.; Lieberman, R.L. The stability of myocilin olfactomedin domain variants provides new insight into glaucoma as a protein misfolding disorder. Biochemistry 2011, 50, 5824–5833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donegan, R.K.; Hill, S.E.; Freeman, D.M.; Nguyen, E.; Orwig, S.D.; Turnage, K.C.; Lieberman, R.L. Structural basis for misfolding in myocilin-associated glaucoma. Hum. Mol. Genet. 2015, 24, 2111–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souzeau, E.; Tram, K.H.; Witney, M.; Ruddle, J.B.; Graham, S.L.; Healey, P.R.; Goldberg, I.; Mackey, D.A.; Hewitt, A.W.; Burdon, K.P.; et al. Myocilin predictive genetic testing for primary open-angle glaucoma leads to early identification of at-risk individuals. Ophthalmology 2017, 124, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nag, A.; Lu, H.; Arno, M.; Iglesias, A.I.; Bonnemaijer, P.; Broer, L.; Uitterlinden, A.G.; Klaver, C.C.; van Duijn, C.; Hysi, P.G.; et al. Evaluation of the myocilin mutation gln368stop demonstrates reduced penetrance for glaucoma in european populations. Ophthalmology 2017, 124, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Souzeau, E.; Ong, J.S.; An, J.; Siggs, O.M.; Burdon, K.P.; Best, S.; Goldberg, I.; Healey, P.R.; Graham, S.L.; et al. Myocilin gene gln368ter variant penetrance and association with glaucoma in population-based and registry-based studies. JAMA Ophthalmol. 2019, 137, 28–35. [Google Scholar] [CrossRef]
- Zebardast, N.; Sekimitsu, S.; Wang, J.; Elze, T.; Gharahkhani, P.; Cole, B.S.; Lin, M.M.; Segre, A.V.; Wiggs, J.L.; International Glaucoma Genetics Consortium. Characteristics of p.Gln368ter myocilin variant and influence of polygenic risk on glaucoma penetrance in the uk biobank. Ophthalmology 2021, 128, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Morissette, J.; Clepet, C.; Moisan, S.; Dubois, S.; Winstall, E.; Vermeeren, D.; Nguyen, T.D.; Polansky, J.R.; Cote, G.; Anctil, J.L.; et al. Homozygotes carrying an autosomal dominant tigr mutation do not manifest glaucoma. Nat. Genet. 1998, 19, 319–321. [Google Scholar] [CrossRef]
- Cedrone, C.; Mancino, R.; Cerulli, A.; Cesareo, M.; Nucci, C. Epidemiology of primary glaucoma: Prevalence, incidence, and blinding effects. Prog. Brain Res. 2008, 173, 3–14. [Google Scholar] [CrossRef] [PubMed]
- The myocilin.com Allele Specific Phenotype Database. Available online: http://www.myocilin.com/index.php (accessed on 11 November 2021).
- Faucher, M.; Anctil, J.L.; Rodrigue, M.A.; Duchesne, A.; Bergeron, D.; Blondeau, P.; Cote, G.; Dubois, S.; Bergeron, J.; Arseneault, R.; et al. Founder tigr/myocilin mutations for glaucoma in the quebec population. Hum. Mol. Genet. 2002, 11, 2077–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruttini, M.; Longo, I.; Frezzotti, P.; Ciappetta, R.; Randazzo, A.; Orzalesi, N.; Fumagalli, E.; Caporossi, A.; Frezzotti, R.; Renieri, A. Mutations in the myocilin gene in families with primary open-angle glaucoma and juvenile open-angle glaucoma. Arch. Ophthalmol. 2003, 121, 1034–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, S.; Lichter, P.R.; Johnson, A.T.; Zhou, Z.; Higashi, M.; Gottfredsdottir, M.; Othman, M.; Moroi, S.E.; Rozsa, F.W.; Schertzer, R.M.; et al. Age-dependent prevalence of mutations at the glc1a locus in primary open-angle glaucoma. Am. J. Ophthalmol. 2000, 130, 165–177. [Google Scholar] [CrossRef]
- Alward, W.L.; Fingert, J.H.; Coote, M.A.; Johnson, A.T.; Lerner, S.F.; Junqua, D.; Durcan, F.J.; McCartney, P.J.; Mackey, D.A.; Sheffield, V.C.; et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (glc1a). N. Engl. J. Med. 1998, 338, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Rozsa, F.W.; Shimizu, S.; Lichter, P.R.; Johnson, A.T.; Othman, M.I.; Scott, K.; Downs, C.A.; Nguyen, T.D.; Polansky, J.; Richards, J.E. Glc1a mutations point to regions of potential functional importance on the tigr/myoc protein. Mol. Vis. 1998, 4, 20. [Google Scholar] [PubMed]
- Souzeau, E.; Burdon, K.P.; Dubowsky, A.; Grist, S.; Usher, B.; Fitzgerald, J.T.; Crawford, A.; Hewitt, A.W.; Goldberg, I.; Mills, R.A.; et al. Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an australasian disease registry. Ophthalmology 2013, 120, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.E.; Ritch, R.; Lichter, P.R.; Rozsa, F.W.; Stringham, H.M.; Caronia, R.M.; Johnson, D.; Abundo, G.P.; Willcockson, J.; Downs, C.A.; et al. Novel trabecular meshwork inducible glucocorticoid response mutation in an eight-generation juvenile-onset primary open-angle glaucoma pedigree. Ophthalmology 1998, 105, 1698–1707. [Google Scholar] [CrossRef]
- Adam, M.F.; Belmouden, A.; Binisti, P.; Brezin, A.P.; Valtot, F.; Bechetoille, A.; Dascotte, J.C.; Copin, B.; Gomez, L.; Chaventre, A.; et al. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of tigr in familial open-angle glaucoma. Hum. Mol. Genet. 1997, 6, 2091–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggs, J.L.; Allingham, R.R.; Vollrath, D.; Jones, K.H.; de la Paz, M.; Kern, J.; Patterson, K.; Babb, V.L.; del Bono, E.A.; Broomer, B.W.; et al. Prevalence of mutations in tigr/myocilin in patients with adult and juvenile primary open-angle glaucoma. Am. J. Hum. Genet. 1998, 63, 1549–1552. [Google Scholar] [CrossRef] [Green Version]
- Povoa, C.A.; Malta, R.F.; Mde, M.R.; de Melo, K.F.; Giannella-Neto, D. Correlation between genotype and phenotype in primary open angle glaucoma of brazilian families with mutations in exon 3 of the tigr/myoc gene. Arq. Bras. Oftalmol. 2006, 69, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos, J.P.; Melo, M.B.; Costa, V.P.; Tsukumo, D.M.; Basseres, D.S.; Bordin, S.; Saad, S.T.; Costa, F.F. Novel mutation in the myoc gene in primary open glaucoma patients. J. Med. Genet. 2000, 37, 301–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoilova, D.; Child, A.; Brice, G.; Desai, T.; Barsoum-Homsy, M.; Ozdemir, N.; Chevrette, L.; Adam, M.F.; Garchon, H.J.; Crick, R.P.; et al. Novel tigr/myoc mutations in families with juvenile onset primary open angle glaucoma. J. Med. Genet. 1998, 35, 989–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, P.; Lichter, P.R.; Higashi, M.; Downs, C.A.; Richards, J.E. Septuagenarian’s phenotype leads to ascertainment of familial myoc gene mutation. J. Glaucoma 2003, 12, 98–103. [Google Scholar] [CrossRef]
- Souzeau, E.; Goldberg, I.; Healey, P.R.; Mills, R.A.; Landers, J.; Graham, S.L.; Grigg, J.R.; Usher, B.; Straga, T.; Crawford, A.; et al. Australian and new zealand registry of advanced glaucoma: Methodology and recruitment. Clin. Exp. Ophthalmol. 2012, 40, 569–575. [Google Scholar] [CrossRef]
- Brezin, A.P.; Adam, M.F.; Belmouden, A.; Lureau, M.A.; Chaventre, A.; Copin, B.; Gomez, L.; de Dinechin, S.D.; Berkani, M.; Valtot, F.; et al. Founder effect in glc1a-linked familial open-angle glaucoma in northern france. Am. J. Med. Genet. 1998, 76, 438–445. [Google Scholar] [CrossRef]
- Mimivati, Z.; Nurliza, K.; Marini, M.; Liza-Sharmini, A. Identification of myoc gene mutation and polymorphism in a large malay family with juvenile-onset open angle glaucoma. Mol. Vis. 2014, 20, 714–723. [Google Scholar] [PubMed]
- Hulsman, C.A.; de Jong, P.T.; Lettink, M.; van Duijn, C.M.; Hofman, A.; Bergen, A.A. Myocilin mutations in a population-based sample of cases with open-angle glaucoma: The rotterdam study. Graefes. Arch. Clin. Exp. Ophthalmol. 2002, 240, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Fujita, M.L.; Perez-Grossmann, R.A.; Estrada-Cuzcano, A.; Pawar, H.; Vargas, E.; Richards, J.E.; Fujita, R. Recurrent myocilin asn480lys glaucoma causative mutation arises de novo in a family of andean descent. J. Glaucoma 2008, 17, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.L.; Billingsley, G.; Buys, Y.; Levin, A.V.; Priston, M.; Trope, G.; Williams-Lyn, D.; Heon, E. Digenic inheritance of early-onset glaucoma: Cyp1b1, a potential modifier gene. Am. J. Hum. Genet. 2002, 70, 448–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanagavalli, J.; Krishnadas, S.R.; Pandaranayaka, E.; Krishnaswamy, S.; Sundaresan, P. Evaluation and understanding of myocilin mutations in indian primary open angle glaucoma patients. Mol. Vis. 2003, 9, 606–614. [Google Scholar]
- Iliev, M.E.; Bodmer, S.; Gallati, S.; Lanz, R.; Sturmer, J.; Katsoulis, K.; Wolf, S.; Trittibach, P.; Sarra, G.M. Glaucoma phenotype in a large swiss pedigree with the myocilin gly367arg mutation. Eye 2008, 22, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Shirato, S.; Taniguchi, F.; Ohara, K.; Nishimaki, K.; Ohta, S. Mutations in the tigr gene in familial primary open-angle glaucoma in japan. Am. J. Hum. Genet. 1997, 61, 1202–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, C.J.; Scott, G.; Swingler, R.J.; Wilson, S.; Ellis, J.; MacEwen, C.J.; McLean, W.H. Rapid mutation detection by the transgenomic wave analyser dhplc identifies myoc mutations in patients with ocular hypertension and/or open angle glaucoma. Br. J. Ophthalmol. 2002, 86, 191–195. [Google Scholar] [CrossRef]
- Chen, J.; Cai, S.P.; Yu, W.; Yan, N.; Tang, L.; Chen, X.; Liu, X. Sequence analysis of myoc and cyp1b1 in a chinese pedigree of primary open-angle glaucoma. Mol. Vis. 2011, 17, 1431–1435. [Google Scholar] [PubMed]
- Taniguchi, F.; Suzuki, Y.; Shirato, S.; Araie, M. The gly367arg mutation in the myocilin gene causes adult-onset primary open-angle glaucoma. Jpn. J. Ophthalmol. 2000, 44, 445–448. [Google Scholar] [CrossRef]
- Booth, A.P.; Anwar, R.; Chen, H.; Churchill, A.J.; Jay, J.; Polansky, J.; Nguyen, T.; Markham, A.F. Genetic screening in a large family with juvenile onset primary open angle glaucoma. Br. J. Ophthalmol. 2000, 84, 722–726. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, A.W.; Bennett, S.L.; Richards, J.E.; Dimasi, D.P.; Booth, A.P.; Inglehearn, C.; Anwar, R.; Yamamoto, T.; Fingert, J.H.; Heon, E.; et al. Myocilin gly252arg mutation and glaucoma of intermediate severity in caucasian individuals. Arch. Ophthalmol. 2007, 125, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Hamanaka, T.; Kimura, M.; Sakurai, T.; Ishida, N.; Yasuda, J.; Nagasaki, M.; Nariai, N.; Endo, A.; Homma, K.; Katsuoka, F.; et al. A histologic categorization of aqueous outflow routes in familial open-angle glaucoma and associations with mutations in the myoc gene in japanese patients. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2818–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.B.; Kitsos, G.; Samples, J.R.; Gaudette, N.D.; Economou-Petersen, E.; Sykes, R.; Rust, K.; Grigoriadou, M.; Aperis, G.; Choi, D.; et al. A large glc1c greek family with a myocilin t377m mutation: Inheritance and phenotypic variability. Investig. Ophthalmol. Vis. Sci. 2006, 47, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.A.; Healey, D.L.; Fingert, J.H.; Coote, M.A.; Wong, T.L.; Wilkinson, C.H.; McCartney, P.J.; Rait, J.L.; de Graaf, A.P.; Stone, E.M.; et al. Glaucoma phenotype in pedigrees with the myocilin thr377met mutation. Arch. Ophthalmol. 2003, 121, 1172–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Liu, Y.; Challa, P.; Herndon, L.W.; Wiggs, J.L.; Girkin, C.A.; Allingham, R.R.; Hauser, M.A. Low prevalence of myocilin mutations in an african american population with primary open-angle glaucoma. Mol. Vis. 2012, 18, 2241–2246. [Google Scholar] [PubMed]
- Wirtz, M.K.; Konstas, A.G.; Samples, J.R.; Kaltsos, K.; Economou, A.; Dimopoulos, A.; Georgiadou, I.; Petersen, M.B. Myocilin variations and familial glaucoma in taxiarchis, a small greek village. Mol. Vis. 2008, 14, 774–781. [Google Scholar]
- Puska, P.; Lemmela, S.; Kristo, P.; Sankila, E.M.; Jarvela, I. Penetrance and phenotype of the thr377met myocilin mutation in a large finnish family with juvenile- and adult-onset primary open-angle glaucoma. Ophthalmic. Genet. 2005, 26, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kitsos, G.; Petrou, Z.; Grigoriadou, M.; Samples, J.R.; Hewitt, A.W.; Kokotas, H.; Giannoulia-Karantana, A.; Mackey, D.A.; Wirtz, M.K.; Moschou, M.; et al. Primary open angle glaucoma due to t377m myoc: Population mapping of a greek founder mutation in northwestern greece. Clin. Ophthalmol. 2010, 4, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Campos-Mollo, E.; Sanchez-Sanchez, F.; Lopez-Garrido, M.P.; Lopez-Sanchez, E.; Lopez-Martinez, F.; Escribano, J. Myoc gene mutations in spanish patients with autosomal dominant primary open-angle glaucoma: A founder effect in southeast spain. Mol. Vis. 2007, 13, 1666–1673. [Google Scholar] [PubMed]
- Banerjee, D.; Bhattacharjee, A.; Ponda, A.; Sen, A.; Ray, K. Comprehensive analysis of myocilin variants in east indian poag patients. Mol. Vis. 2012, 18, 1548–1557. [Google Scholar]
- Bhattacharjee, A.; Acharya, M.; Mukhopadhyay, A.; Mookherjee, S.; Banerjee, D.; Bandopadhyay, A.K.; Thakur, S.K.; Sen, A.; Ray, K. Myocilin variants in indian patients with open-angle glaucoma. Arch. Ophthalmol. 2007, 125, 823–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willoughby, C.E.; Chan, L.L.; Herd, S.; Billingsley, G.; Noordeh, N.; Levin, A.V.; Buys, Y.; Trope, G.; Sarfarazi, M.; Heon, E. Defining the pathogenicity of optineurin in juvenile open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3122–3130. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, C.M.; Herrero, O.M.; Bastus, B.M.; Perez, V.D. Mutations in the third exon of the myoc gene in spanish patients with primary open angle glaucoma. Ophthalmic. Genet. 2000, 21, 109–115. [Google Scholar] [CrossRef]
- Andridge, R.R.; Little, R.J. A review of hot deck imputation for survey non-response. Int. Stat. Rev. 2010, 78, 40–64. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Saxena, S. Er stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol. 2017, 13, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Papa, F.R. The unfolded protein response and cell fate control. Mol. Cell. 2018, 69, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, M.; Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 2005, 74, 739–789. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Reed, J.C. Er stress-induced cell death mechanisms. Biochim. Biophys. Acta 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.C.; Bhattacharya, S.; Clark, A.F.; Zode, G.S. Increased endoplasmic reticulum stress in human glaucomatous trabecular meshwork cells and tissues. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3860–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fini, M.E.; Schwartz, S.G.; Gao, X.; Jeong, S.; Patel, N.; Itakura, T.; Price, M.O.; Price, F.W., Jr.; Varma, R.; Stamer, W.D. Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine. Prog. Retin. Eye Res. 2017, 56, 58–83. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.F.; Steely, H.T.; Dickerson, J.E., Jr.; English-Wright, S.; Stropki, K.; McCartney, M.D.; Jacobson, N.; Shepard, A.R.; Clark, J.I.; Matsushima, H.; et al. Glucocorticoid induction of the glaucoma gene myoc in human and monkey trabecular meshwork cells and tissues. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1769–1780. [Google Scholar]
- Yun, A.J.; Murphy, C.G.; Polansky, J.R.; Newsome, D.A.; Alvarado, J.A. Proteins secreted by human trabecular cells. Glucocorticoid and other effects. Investig. Ophthalmol. Vis. Sci. 1989, 30, 2012–2022. [Google Scholar]
- Becker, B.; Mills, D.W. Corticosteroids and intraocular pressure. Arch. Ophthalmol. 1963, 70, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Tovar-Vidales, T.; Yorio, T.; Wordinger, R.J.; Clark, A.F. Perfusion-cultured bovine anterior segments as an ex vivo model for studying glucocorticoid-induced ocular hypertension and glaucoma. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8068–8075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Cell biology. Metabolic control of cell death. Science 2014, 345, 1250256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingert, J.H. Penetrance of myocilin mutations-who gets glaucoma? JAMA Ophthalmol. 2019, 137, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.L.; Kodjebacheva, G. Risk factors for glaucoma needing more attention. Open Ophthalmol. J. 2009, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Tseng, V.L.; Lee, J.; Yu, F.; Sirsy, O.; Coleman, A.L. Associations between factors related to atopic disease and glaucoma in the national health and nutrition examination survey. Eur. J. Ophthalmol. 2018, 28, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Tseng, V.L.; Yu, F.; Coleman, A.L. Association between exercise intensity and glaucoma in the national health and nutrition examination survey. Ophthalmol. Glaucoma 2020, 3, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Wiggs, J.L. The cell and molecular biology of complex forms of glaucoma: Updates on genetic, environmental, and epigenetic risk factors. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2467–2469. [Google Scholar] [CrossRef] [Green Version]
- Estebanez, B.; de Paz, J.A.; Cuevas, M.J.; Gonzalez-Gallego, J. Endoplasmic reticulum unfolded protein response, aging and exercise: An update. Front. Physiol. 2018, 9, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MYOC | MT * | N (Known + Unknown) ** | Frequency (%) |
---|---|---|---|
K423E [29,32,33] | 34.2 | 13 (13 + 0) | 2.84 |
I477N [34,35,36,37,38] | 37.7 | 66 (16 + 50) | 14.41 |
I477S [39] | 39.7 | 20 (0 + 20) | 4.37 |
Y427H [40] | 40.3 | 35 (1 + 34) | 7.64 |
C433R [41,42] | 40.4 | 20 (13 + 7) | 4.37 |
R272G [34] | 41 | 5 (1 + 4) | 1.09 |
S502P [43] | 41 | 8 (8 + 0) | 1.75 |
V426F [34,36,44] | 41.5 | 17 (5 + 12) | 3.71 |
N480K [39,45,46,47,48,49] | 42.4 | 47 (47 + 0) | 10.26 |
G246R [39] | 42.5 | 7 (7 + 0) | 1.53 |
G367R [32,37,50,51,52,53,54,55,56] | 42.7 | 30 (30 + 0) | 6.55 |
I499F [39] | 42.8 | 7 (7 + 0) | 1.53 |
G252R [34,36,37,50,57,58] | 43 | 23 (23 + 0) | 5.02 |
E323K [34,36] | 44 | 12 (1 + 11) | 2.62 |
T377M [34,35,37,40,51,59,60,61,62,63,64,65] | 44.3 | 100 (85 + 15) | 21.83 |
G364V [35] | 45 | 22 (0 + 22) | 4.80 |
P481L [32] | 45.5 | 1 (1 + 0) | 0.22 |
D380A [43,66] | 46.6 | 19 (19 + 0) | 4.15 |
A427T [67,68] | 48.3 | 2 (2 + 0) | 0.44 |
K398R [69,70] | 53.8 | 4 (4 + 0) | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanji, T.; Cohen, E.; Shen, D.; Zhang, C.; Yu, F.; Coleman, A.L.; Zheng, J.J. Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities. Genes 2021, 12, 1802. https://doi.org/10.3390/genes12111802
Tanji T, Cohen E, Shen D, Zhang C, Yu F, Coleman AL, Zheng JJ. Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities. Genes. 2021; 12(11):1802. https://doi.org/10.3390/genes12111802
Chicago/Turabian StyleTanji, Tarin, Emily Cohen, Darrick Shen, Chi Zhang, Fei Yu, Anne L. Coleman, and Jie J. Zheng. 2021. "Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities" Genes 12, no. 11: 1802. https://doi.org/10.3390/genes12111802
APA StyleTanji, T., Cohen, E., Shen, D., Zhang, C., Yu, F., Coleman, A. L., & Zheng, J. J. (2021). Age at Glaucoma Diagnosis in Germline Myocilin Mutation Patients: Associations with Polymorphisms in Protein Stabilities. Genes, 12(11), 1802. https://doi.org/10.3390/genes12111802