The Role of Csmd1 during Mammary Gland Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Model
2.2. Whole Mount Staining
2.3. Haematoxylin and Eosin (H&E) Staining
2.4. Picro-Sirus Red Staining
2.5. Immunohistochemistry (IHC)
2.6. Quantification and Statistical Analysis
3. Results
3.1. Csmd1 KO Leads to Increased Mammary Gland Development during Early Stages of Puberty
3.2. Csmd1 KO is Able to Generate Changes in Ductal Morphology, along with Altering Mammary Gland Development Factors
3.3. Csmd1 KO Leads to the Altered Expression Patterns of Mammary Gland Development Associated Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, P.C.; Uppaluri, R.; Schmidt, A.P.; Pashia, M.E.; Quant, E.C.; Sunwoo, J.B.; Gollin, S.M.; Scholnick, S.B. Transcript Map of the 8p23 Putative Tumor Suppressor Region. Genomics 2001, 75, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Toomes, C.; Jackson, A.; Maguire, K.; Wood, J.; Gollin, S.; Ishwad, C.; Paterson, I.; Prime, S.; Parkinson, K.; Bell, S.; et al. The Presence of Multiple Regions of Homozygous Deletion at the CSMD1 Locus in Oral Squamous Cell Carcinoma Question the Role of CSMD1 in Head and Neck Carcinogenesis. Genes. Chromosomes Cancer 2003, 37, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Bork, P.; Beckmann, G. The CUB Domain: A Widespread Module in Developmentally Regulated Proteins. J. Mol. Biol. 1993, 231, 539–545. [Google Scholar] [CrossRef]
- Lee, H.X.; Mendes, F.A.; Plouhinec, J.-L.; De Robertis, E.M. Enzymatic Regulation of Pattern: BMP4 Binds CUB Domains of Tolloids and Inhibits Proteinase Activity. Genes Dev. 2009, 23, 2551–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaboriaud, C.; Gregory-Pauron, L.; Teillet, F.; Thielens, N.M.; Bally, I.; Arlaud, G.J. Structure and Properties of the Ca2+-Binding CUB Domain, a Widespread Ligand-Recognition Unit Involved in Major Biological Functions. Biochem. J. 2011, 439, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Kirkitadze, M.D.; Barlow, P.N. Structure and Flexibility of the Multiple Domain Proteins That Regulate Complement Activation. Immunol. Rev. 2001, 180, 146–161. [Google Scholar] [CrossRef]
- Kraus, D.M.; Elliott, G.S.; Chute, H.; Horan, T.; Pfenninger, K.H.; Sanford, S.D.; Foster, S.; Scully, S.; Welcher, A.A.; Holers, V.M. CSMD1 Is a Novel Multiple Domain Complement-Regulatory Protein Highly Expressed in the Central Nervous System and Epithelial Tissues. J. Immunol. 2006, 176, 4419–4430. [Google Scholar] [CrossRef]
- Ichinose, A.; Bottenus, R.E.; Davie, E.W. Structure of Transglutaminases. J. Biol. Chem. 1990, 265, 13411–13414. [Google Scholar] [CrossRef]
- Donohoe, G.; Walters, J.; Hargreaves, A.; Rose, E.J.; Morris, D.W.; Fahey, C.; Bellini, S.; Cummins, E.; Giegling, I.; Hartmann, A.M.; et al. Neuropsychological Effects of the CSMD1 Genome-Wide Associated Schizophrenia Risk Variant Rs10503253. Genes Brain Behav. 2013, 12, 203–209. [Google Scholar] [CrossRef]
- Escudero-Esparza, A.; Kalchishkova, N.; K urbasic, E.; Jiang, W.G.; Blom, A.M. The Novel Complement Inhibitor Human CUB and Sushi Multiple Domains 1 (CSMD1) Protein Promotes Factor I-Mediated Degradation of C4b and C3b and Inhibits the Membrane Attack Complex Assembly. FASEB J. 2013, 27, 5083–5093. [Google Scholar] [CrossRef]
- Lee, A.S.; Rusch, J.; Lima, A.C.; Usmani, A.; Huang, N.; Lepamets, M.; Vigh-Conrad, K.A.; Worthington, R.E.; Mägi, R.; Wu, X.; et al. Rare Mutations in the Complement Regulatory Gene CSMD1 Are Associated with Male and Female Infertility. Nat. Commun. 2019, 10, 4626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Quesnelle, K.M.; Sparano, A.; Rao, S.; Park, M.S.; Cohen, M.A.; Wang, Y.; Samanta, M.; Kumar, M.S.; Aziz, M.U.; et al. Characterization CSMD1 in a Large Set of Primary Lung, Head and Neck, Breast and Skin Cancer Tissues. Cancer Biol. Ther. 2009, 8, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.-R.; Wang, Y.-X.; Guo, S.; Han, S.-Y.; Wang, D. CSMD1 Exhibits Antitumor Activity in A375 Melanoma Cells through Activation of the Smad Pathway. Apoptosis 2012, 17, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Hong, L.-L.; Wang, K.-L.; Liu, X.; Wang, J.-L.; Lei, L.; Xu, Z.-Y.; Cheng, X.-D.; Ling, Z.-Q. Deregulation of CSMD1 Targeted by MicroRNA-10b Drives Gastric Cancer Progression through the NF-ΚB Pathway. Int. J. Biol. Sci. 2019, 15, 2075–2086. [Google Scholar] [CrossRef] [Green Version]
- Escudero-Esparza, A.; Bartoschek, M.; Gialeli, C.; Okroj, M.; Owen, S.; Jirström, K.; Orimo, A.; Jiang, W.G.; Pietras, K.; Blom, A.M. Complement Inhibitor CSMD1 Acts as Tumor Suppressor in Human Breast Cancer. Oncotarget 2016, 7, 76920. [Google Scholar] [CrossRef] [Green Version]
- Farrell, C.L.; Crimm, H.; Meeh, P.; Croshaw, R.; Barbar, T.D.; Vandersteenhoven, J.J.; Butler, W.; Buckhaults, P. Somatic Mutations to CSMD1 in Colorectal Adenocarcinomas. Cancer Biol. Ther. 2008, 7, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.; Shaaban, A.M.; Zhang, L.; Walker, C.; Gray, S.; Thakker, N.; Toomes, C.; Speirs, V.; Bell, S.M. Loss of CSMD1 Expression Is Associated with High Tumour Grade and Poor Survival in Invasive Ductal Breast Carcinoma. Breast Cancer Res. Treat. 2010, 121, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Scholnick, S.B.; Richter, T.M. The Role of CSMD1 in Head and Neck Carcinogenesis. Genes. Chromosomes Cancer 2003, 38, 281–283. [Google Scholar] [CrossRef]
- Sun, P.C.; Schmidt, A.P.; Pashia, M.E.; Sunwoo, J.B.; Scholnick, S.B. Homozygous Deletions Define a Region of 8p23.2 Containing a Putative Tumor Suppressor Gene. Genomics 1999, 62, 184–188. [Google Scholar] [CrossRef]
- Lebok, P.; Mittenzwei, A.; Kluth, M.; Özden, C.; Taskin, B.; Hussein, K.; Möler, K.; Hartmann, A.; Lebeau, A.; Witzel, I.; et al. 8p Deletion Is Strongly Linked to Poor Prognosis in Breast Cancer. Cancer Biol. Ther. 2015, 16, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Rennstam, K.; Ahlstedt-Soini, M.; Baldetorp, B.; Bendahl, P.-O.; Borg, Å.; Karhu, R.; Tanner, M.; Tirkkonen, M.; Isola, J. Patterns of Chromosomal Imbalances Defines Subgroups of Breast Cancer with Distinct Clinical Features and Prognosis. A Study of 305 Tumors by Comparative Genomic Hybridization. Cancer Res. 2003, 63, 8861–8868. [Google Scholar] [PubMed]
- Kamal, M.; Holliday, D.L.; Morrison, E.E.; Speirs, V.; Toomes, C.; Bell, S.M. Loss of CSMD1 Expression Disrupts Mammary Duct Formation While Enhancing Proliferation, Migration and Invasion. Oncol. Rep. 2017, 38, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeramachaneni, R.; Walker, T.; Revil, T.; Weck, A.D.; Badescu, D.; O’Sullivan, J.; Higgins, C.; Elliott, L.; Liloglou, T.; Risk, J.M.; et al. Analysis of Head and Neck Carcinoma Progression Reveals Novel and Relevant Stage-Specific Changes Associated with Immortalisation and Malignancy. Sci. Rep. 2019, 9, 11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, D.M.; Medici, D. Signaling Mechanisms of the Epithelial-Mesenchymal Transition. Sci. Signal. 2014, 7, re8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R.; Weinberg, R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Gong, L.; Wang, J.; Tu, Q.; Yao, L.; Zhang, J.-R.; Han, X.-J.; Zhu, S.-J.; Wang, S.-M.; Li, Y.-H.; et al. MiR-10b Exerts Oncogenic Activity in Human Hepatocellular Carcinoma Cells by Targeting Expression of CUB and Sushi Multiple Domains 1 (CSMD1). BMC Cancer 2016, 16, 806. [Google Scholar] [CrossRef] [Green Version]
- Ruicci, K.M.; Meens, J.; Sun, R.X.; Rizzo, G.; Pinto, N.; Yoo, J.; Fung, K.; MacNeil, D.; Mymryk, J.S.; Barrett, J.W.; et al. A Controlled Trial of HNSCC Patient-Derived Xenografts Reveals Broad Efficacy of PI3Kα Inhibition in Controlling Tumor Growth. Int. J. Cancer 2019, 145, 2100–2106. [Google Scholar] [CrossRef]
- Baum, M.L.; Wilton, D.K.; Muthukumar, A.; Fox, R.G.; Carey, A.; Crotty, W.; Scott-Hewitt, N.; Bien, E.; Sabatini, D.A.; Lanser, T.; et al. CUB and Sushi Multiple Domains 1 (CSMD1) Opposes the Complement Cascade in Neural Tissues. bioRxiv 2020. [Google Scholar] [CrossRef]
- Paine, I.S.; Lewis, M.T. The Terminal End Bud: The Little Engine That Could. J. Mammary Gland Biol. Neoplasia 2017, 22, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Scheele, C.L.G.J.; Hannezo, E.; Muraro, M.J.; Zomer, A.; Langedijk, N.S.M.; van Oudenaarden, A.; Simons, B.D.; van Rheenen, J. Identity and Dynamics of Mammary Stem Cells during Branching Morphogenesis. Nature 2017, 542, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.M.; Nepal, C.; Ersland, K.M.; Holdhus, R.; Nævdal, M.; Ratvik, S.M.; Skrede, S.; Håvik, B. Neuropsychological Deficits in Mice Depleted of the Schizophrenia Susceptibility Gene CSMD1. PLoS ONE 2013, 8, e79501. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownfield, D.G.; Venugopalan, G.; Lo, A.; Mori, H.; Tanner, K.; Fletcher, D.A.; Bissell, M.J. Patterned Collagen Fibers Orient Branching Mammary Epithelium through Distinct Signaling Modules. Curr. Biol. CB 2013, 23, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Aupperlee, M.D.; Leipprandt, J.R.; Bennett, J.M.; Schwartz, R.C.; Haslam, S.Z. Amphiregulin Mediates Progesterone-Induced Mammary Ductal Development during Puberty. Breast Cancer Res. BCR 2013, 15, R44. [Google Scholar] [CrossRef] [Green Version]
- Brisken, C.; Scabia, V. Progesterone Receptor Signaling in the Normal Breast and Its Implications for Cancer. J. Mol. Endocrinol. 2020, 65, T81–T94. [Google Scholar] [CrossRef]
- Haricharan, S.; Li, Y. STAT Signaling in Mammary Gland Differentiation, Cell Survival and Tumorigenesis. Mol. Cell. Endocrinol. 2014, 382, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.; Watson, C.J. The Spectrum of STAT Functions in Mammary Gland Development. JAK-STAT 2012, 1, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Schlaepfer, D.D.; Mitra, S.K.; Ilic, D. Control of Motile and Invasive Cell Phenotypes by Focal Adhesion Kinase. Cell Adhes. Signal. 2004, 1692, 77–102. [Google Scholar] [CrossRef]
- Van Miltenburg, M.H.A.M.; van Nimwegen, M.J.; Tijdens, I.; Lalai, R.; Kuiper, R.; Klarenbeek, S.; Schouten, P.C.; de Vries, A.; Jonkers, J.; van de Water, B. Mammary Gland-Specific Ablation of Focal Adhesion Kinase Reduces the Incidence of P53-Mediated Mammary Tumour Formation. Br. J. Cancer 2014, 110, 2747–2755. [Google Scholar] [CrossRef] [Green Version]
- Medici, D.; Hay, E.D.; Olsen, B.R. Snail and Slug Promote Epithelial-Mesenchymal Transition through β-Catenin–T-Cell Factor-4-Dependent Expression of Transforming Growth Factor-Β3. Mol. Biol. Cell 2008, 19, 4875–4887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, Y.R.; Toker, A. Function of Akt/PKB Signaling to Cell Motility, Invasion and the Tumor Stroma in Cancer. Cell. Signal. 2009, 21, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmings, B.A.; Restuccia, D.F. The PI3K-PKB/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2015, 7, a026609. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.S.L.; Cui, W. Proliferation, Survival and Metabolism: The Role of PI3K/AKT/MTOR Signalling in Pluripotency and Cell Fate Determination. Development 2016, 143, 3050. [Google Scholar] [CrossRef] [Green Version]
- Macias, H.; Hinck, L. Mammary Gland Development. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 533–557. [Google Scholar] [CrossRef] [Green Version]
- Sternlicht, M.D. Key Stages in Mammary Gland Development: The Cues That Regulate Ductal Branching Morphogenesis. Breast Cancer Res. 2005, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Roignot, J.; Peng, X.; Mostov, K. Polarity in Mammalian Epithelial Morphogenesis. Cold Spring Harb. Perspect. Biol. 2013, 5. [Google Scholar] [CrossRef]
- Shin, K.; Fogg, V.C.; Margolis, B. Tight Junctions and Cell Polarity. Annu. Rev. Cell Dev. Biol. 2006, 22, 207–235. [Google Scholar] [CrossRef] [Green Version]
- Atwood, C.S.; Hovey, R.C.; Glover, J.P.; Chepko, G.; Ginsburg, E.; Robison, W.G.; Vonderhaar, B.K. Progesterone Induces Side-Branching of the Ductal Epithelium in the Mammary Glands of Peripubertal Mice. J. Endocrinol. 2000, 167, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Hinck, L.; Silberstein, G.B. Key Stages in Mammary Gland Development: The Mammary End Bud as a Motile Organ. Breast Cancer Res. 2005, 7, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-D.; Goglia, L.; Sanchez, A.M.; Flamini, M.; Giretti, M.S.; Tosi, V.; Genazzani, A.R.; Simoncini, T. Progesterone Receptor Enhances Breast Cancer Cell Motility and Invasion via Extranuclear Activation of Focal Adhesion Kinase. Endocr. Relat. Cancer 2010, 17, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.G.; Vignjevic, D.M. Modes of Cancer Cell Invasion and the Role of the Microenvironment. Cell Adhes. Migr. 2015, 36, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.K.; Schlaepfer, D.D. Integrin-Regulated FAK–Src Signaling in Normal and Cancer Cells. Curr. Opin. Cell Biol. 2006, 18, 516–523. [Google Scholar] [CrossRef]
- Côme, C.; Arnoux, V.; Bibeau, F.; Savagner, P. Roles of the Transcription Factors Snail and Slug during Mammary Morphogenesis and Breast Carcinoma Progression. J. Mammary Gland Biol. Neoplasia 2004, 9, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Burridge, K.; Guilluy, C. Focal Adhesions, Stress Fibers and Mechanical Tension. Exp. Cell Res. 2016, 343, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Hamadi, A.; Deramaudt, T.B.; Takeda, K.; Rondé, P. Hyperphosphorylated FAK Delocalizes from Focal Adhesions to Membrane Ruffles. J. Oncol. 2010, 2010, 932803. [Google Scholar] [CrossRef] [Green Version]
- Nagano, M.; Hoshino, D.; Koshikawa, N.; Akizawa, T.; Seiki, M. Turnover of Focal Adhesions and Cancer Cell Migration. Int. J. Cell Biol. 2012, 2012, 310616. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Luo, M.; Mo, X.; Lu, J.; Yeo, S.K.; Guan, J.-L. FAK Activates AKT-MTOR Signaling to Promote the Growth and Progression of MMTV-Wnt1-Driven Basal-like Mammary Tumors. Breast Cancer Res. 2020, 22, 59. [Google Scholar] [CrossRef]
- Turecková, J.; Vojtechová, M.; Krausová, M.; Sloncová, E.; Korínek, V. Focal Adhesion Kinase Functions as an Akt Downstream Target in Migration of Colorectal Cancer Cells. Transl. Oncol. 2009, 2, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousif, N.G. Fibronectin Promotes Migration and Invasion of Ovarian Cancer Cells through Up-Regulation of FAK–PI3K/Akt Pathway. Cell Biol. Int. 2014, 38, 85–91. [Google Scholar] [CrossRef] [PubMed]
Antibody (Reference Number) | Host Species | Binding Area of Protein of Interest | IHC Working Conditions (Antigen Retrieval) |
---|---|---|---|
Mcm2 (ab4461) | Rabbit | Aa 1–50 | 1:100 (2 min) |
PR (RM-9102-s0) | Rabbit | Aa 412–526 | 1:400 (2 min) |
Stat1 (ab47425) | Rabbit | Aa 694–743 | 1:300 (3 min) |
Fak (ab40794) | Rabbit | Aa 700–800 | 1:100 (4 min) |
Slug/Snail (ab180714) | Rabbit | Aa 236–264 | 1:200 (2 min) |
Akt (ab179463) | Rabbit | Aa 250 to C terminus | 1:200 (2 min, pH 9 citrate buffer) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgess, S.J.; Gibbs, H.; Toomes, C.; Coletta, P.L.; Bell, S.M. The Role of Csmd1 during Mammary Gland Development. Genes 2021, 12, 162. https://doi.org/10.3390/genes12020162
Burgess SJ, Gibbs H, Toomes C, Coletta PL, Bell SM. The Role of Csmd1 during Mammary Gland Development. Genes. 2021; 12(2):162. https://doi.org/10.3390/genes12020162
Chicago/Turabian StyleBurgess, Samuel J., Hannah Gibbs, Carmel Toomes, Patricia L. Coletta, and Sandra M. Bell. 2021. "The Role of Csmd1 during Mammary Gland Development" Genes 12, no. 2: 162. https://doi.org/10.3390/genes12020162
APA StyleBurgess, S. J., Gibbs, H., Toomes, C., Coletta, P. L., & Bell, S. M. (2021). The Role of Csmd1 during Mammary Gland Development. Genes, 12(2), 162. https://doi.org/10.3390/genes12020162