Expression of BARD1 β Isoform in Selected Pediatric Tumors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. BARD1 in Tumor Tissue
3.2. Characteristic of BARD1 Expression in Different Histogenetic Groups of Pediatric Tumors
3.2.1. Neuroblastic Tumors
3.2.2. Germ Cell Tumors
3.2.3. Rhabdomyosarcoma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Downing, J.R.; Wilson, R.K.; Zhang, J.; Mardis, E.R.; Pui, C.-H.; Ding, L.; Ley, T.J.; Evans, W.E. The Pediatric Cancer Genome Project. Nat. Genet. 2012, 44, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Gröbner, S.N.; Worst, B.C.; Weischenfeldt, J.; Buchhalter, I.; Kleinheinz, K.; Rudneva, V.A.; Johann, P.D.; Balasubramanian, G.P.; Segura-Wang, M.; Brabetz, S.; et al. The landscape of genomic alterations across childhood cancers. Nature 2018, 555, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.; Zhang, H.B.; Peng, Y.; Le, H.; Carroll, B.; Ward, T.; Yao, J.; Farid, L.M.; Couch, F.J.; Wilson, R.B.; et al. Localization of BRCA1 and a splice variant identifies the nuclear localization signal. Mol. Cell. Biol. 1997, 17, 444–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sveen, A.; Kilpinen, S.; Ruusulehto, A.; Lothe, R.A.; Skotheim, R.I. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2016, 35, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- Bosse, K.R.; Diskin, S.J.; Cole, K.A.; Wood, A.C.; Schnepp, W.; Norris, G.; Nguyen, L.B.; Jagannathan, J.; Winter, C.; Diamond, M.; et al. Common Variation at BARD1 Results in the Expression of an Oncogenic Isoform that Influences Neuroblastoma Susceptibility and Oncogenicity. Cancer Res. 2012, 72, 2068–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimmino, F.; Formicola, D.; Capasso, M. Dualistic Role of BARD1 in Cancer. Genes 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irminger-Finger, I.; Ratajska, M.; Pilyugin, M. New concepts on BARD1: Regulator of BRCA pathways and beyond. Int. J. Biochem. Cell Biol. 2016, 72, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Thakar, A.; Parvin, J.D.; Zlatanova, J. BRCA1/BARD1 E3 Ubiquitin Ligase Can Modify Histones H2A and H2B in the Nucleosome Particle. J. Biomol. Struct. Dyn. 2010, 27, 399–405. [Google Scholar] [CrossRef]
- Ryser, S.; Dizin, E.; Jefford, C.E.; Delaval, B.; Gagos, S.; Christodoulidou, A.; Krause, K.H.; Birnbaum, D.; Irminger-Finger, I. Distinct roles of BARD1 isoforms in mitosis: Full-length BARD1 mediates Aurora B degradation, cancer-associated BARD1β scaffolds Aurora B and BRCA2. Cancer Res. 2009, 69, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Watters, A.K.; Seltzer, E.S.; Mackenzie, D.J.; Young, M.; Muratori, J.; Hussein, R.; Sodoma, A.M.; To, J.; Singh, M. The Effects of Genetic and Epigenetic Alterations of Non-Gynecological Cancers. Genes 2020, 11. [Google Scholar] [CrossRef]
- Irminger-Finger, I.; Pilyugin, M.; Ratajska, M. The BARD1 BRCT domains are essential for maintenance of telomere integrity. Mol. Cell. Biol. 2014, 74. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Bianco, A.; Malkinson, A.M.; Leoni, V.P.; Frau, G.; De Rosa, N.; André, P.A.; Versace, R.; Boulvain, M.; Laurent, G.J.; et al. BARD1: An independent predictor of survival in non-small cell lung cancer. Int. J. Cancer 2012, 131, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Pilyugin, M.; Kuester, D.; Leoni, V.P.; Li, L.; Casula, G.; Zorcolo, L.; Schneider-Stock, R.; Atzori, L.; Irminger-Finger, I. Expression of oncogenic BARD1 isoforms affects colon cancer progression and correlates with clinical outcome. Br. J. Cancer 2012, 107, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratajska, M.; Matusiak, M.; Kuzniacka, A.; Wasag, B.; Brozek, I.; Biernat, W.; Koczkowska, M.; Debniak, J.; Sniadecki, M.; KozLowski, P.; et al. Cancer predisposing BARD1 mutations affect exon skipping and are associated with overexpression of specific BARD1 isoforms. Oncol. Rep. 2015, 34, 2609–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Zhu, J.; Xiong, S.W.; Jia, W.; Zhao, Z.; Zhu, S.B.; Hu, J.H.; Wang, F.H.; Xia, H.; He, J.; et al. BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility. EBioMedicine 2017, 16, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venier, R.E.; Maurer, L.M.; Kessler, E.M.; Ranganathan, S.; McGough, R.L.; Weiss, K.R.; Malek, M.M.; Meade, J.; Tersak, J.M.; Bailey, K.M. A germline BARD1 mutation in a patient with Ewing Sarcoma: Implications for familial testing and counseling. Pediatr. Blood Cancer 2019, 66. [Google Scholar] [CrossRef]
- Savani, M.; Skubitz, K.M. Long-term Outcome after Doxorubicin and Ifosfamide Overdose in a Patient With Osteosarcoma and BARD1 Mutation. J. Pediatr. Hematol. Oncol. 2019, 41, e94–e96. [Google Scholar] [CrossRef]
- Deyell, R.J.; Attiyeh, E.F. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet. 2011, 204, 113–121. [Google Scholar] [CrossRef]
- Altungoz, O.; Aygun, N.; Tumer, S.; Ozer, E.; Olgun, N.; Sakizli, M. Correlation of modified Shimada classification with MYCN and 1p36 status detected by fluorescence in situ hybridization in neuroblastoma. Cancer Genet. Cytogenet. 2007, 172, 113–119. [Google Scholar] [CrossRef]
- Storlazzi, C.T.; Lonoce, A.; Guastadisegni, M.C.; Trombetta, D.; D’Addabbo, P.; Daniele, G.; L’Abbate, A.; Macchia, G.; Surace, C.; Kok, K.; et al. Gene amplification as doubleminutes or homogeneously staining regions in solid tumors: Origin and structure. Genome Res. 2010, 20, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Valent, A.; Guillaud-Bataille, M.; Farra, C.; Lozach, F.; Spengler, B.; Terrier-Lacombe, M.-J.; Valteau-Couanet, D.; Danglot, G.; Lenoir, G.M.; Brison, O.; et al. Alternative pathways of MYCN gene copy number increase in primary neuroblastoma tumors. Cancer Genet. Cytogenet. 2004, 153. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.J.; Morozova, O.; Attiyeh, E.F.; Asgharzadeh, S.; Wei, J.S.; Auclair, D.; Carter, S.L.; Cibulskis, K.; Hanna, M.; Kiezun, A.; et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 2013, 45, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, B.E.; Lehmann, R. Mechanisms guiding primordial germ cell migration: Strategies from different organisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echevarría, M.E.; Fangusaro, J.; Goldman, S. Pediatric Central Nervous System Germ Cell Tumors: A Review. Oncologist 2008, 13, 690–699. [Google Scholar] [CrossRef] [Green Version]
- Horton, Z.; Schlatter, M.; Schultz, S. Pediatric germ cell tumors. Surg. Oncol. 2007, 16, 205–213. [Google Scholar] [CrossRef]
- Khaleghnejad-Tabari, A.; Mirshemirani, A.; Rouzrokh, M.; Mohajerzadeh, L.; Khaleghnejad-Tabari, N.; Hasas-Yeganeh, S. Pediatric germ cell tumors; A 10-year experience. Iran. J. Pediatr. 2014, 24, 441–444. [Google Scholar] [PubMed]
- Cohen, M.; Kicheva, A.; Ribeiro, A.; Blassberg, R.; Page, K.M.; Barnes, C.P.; Briscoe, J. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Cohen, B.H.; Coney, K. Intracranial Germ Cell Tumors. Oncologist 2000, 5, 312–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuleszo, D.; Lipska-Ziętkiewicz, B.; Koczkowska, M.; Zakrzewski, K.; Grajkowska, W.; Roszkowski, M.; Dembowska-Bagińska, B.; Czarnota, K.; Adamkiewicz-Drożyńska, E.; Iżycka-Świeszewska, E. Hedgehog signalling network gene status analysis in paediatric intracranial germ cell tumours. Folia Neuropathol. 2019, 57, 227–238. [Google Scholar] [CrossRef]
- Perlman, E.J.; Hu, J.; Ho, D.; Cushing, B.; Lauer, S.; Castleberry, R.P. Genetic Analysis of Childhood Endodermal Sinus Tumors by Comparative Genomic Hybridization. J. Pediatr. Hematol. Oncol. 2000, 22, 100–105. [Google Scholar] [CrossRef]
- Sakuma, Y.; Sakurai, S.; Oguni, S.; Satoh, M.; Hironaka, M.; Saito, K. C-Kit Gene Mutations in Intracranial Germinomas. Cancer Sci. 2004, 95, 716–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, S.; Yamashita, S.; Kobayashi, H.; Takami, H.; Fukuoka, K.; Nakamura, T.; Yamasaki, K.; Matsushita, Y.; Nakamura, H.; Totoki, Y.; et al. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas. Acta Neuropathol. 2017, 133, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 2019, 5. [Google Scholar] [CrossRef]
- Parhman, D.M.; Barr, F.G. Classification of Rhabdomyosarcoma and Its Molecular Basis. Adv. Anatom. Pathol. 2013, 20, 387–397. [Google Scholar] [CrossRef]
- Chen, C.; Dorado Garcia, H.; Scheer, M.; Henssen, A.G. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front. Oncol. 2019, 9. [Google Scholar] [CrossRef]
- Raivo Kolde 1.0.12. Pheatmap: Pretty Heatmaps. R Package Version. Available online: https://cran.r-project.org/package=pheatmap (accessed on 21 January 2021).
- Chen, J.; Weiss, W.A. Alternative splicing in cancer: Implications for biology and therapy. Oncogene 2015, 34, 1–14. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021. [Google Scholar] [CrossRef]
- Koczkowska, M.; Krawczynska, N.; Stukan, M.; Kuzniacka, A.; Brozek, I.; Sniadecki, M.; Debniak, J.; Wydra, D.; Biernat, W.; Kozlowski, P.; et al. Spectrum and Prevalence of Pathogenic Variants in Ovarian Cancer Susceptibility Genes in a Group of 333 Patients. Cancers 2018, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Pilyugin, M.; André, P.A.; Ratajska, M.; Kuzniacka, A.; Limon, J.; Tournier, B.B.; Colas, J.; Laurent, G.; Irminger-Finger, I. Antagonizing functions of BARD1 and its alternatively spliced variant BARD1δ in telomere stability. Oncotarget 2017, 8, 9339–9353. [Google Scholar] [CrossRef] [Green Version]
- Sporn, J.C.; Hothorn, T.; Jung, B. BARD1 expression predicts outcome in colon cancer. Clin Cancer Res. 2011, 17, 5451–5462. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Cohen, M.; Wu, J.Y.; Sow, M.H.; Nikolic, B.; Bischof, P.; Irminger-Finger, I. Identification of BARD1 splice-isoforms involved in human trophoblast invasion. Int. J. Biochem. Cell Biol. 2007, 39, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Feki, A.; Jefford, C.-E.; Durand, P.; Harb, J.; Lucas, H.; Krause, K.-H.; Irminger-Finger, I. BARD1 Expression During Spermatogenesis Is Associated with Apoptosis and Hormonally Regulated1. Biol. Reprod. 2004, 71, 1614–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, M.; Devoto, M.; Hou, C.; Asgharzadeh, S.; Joseph, T.; Attiyeh, E.F.; Mosse, Y.P.; Kim, C.; Diskin, S.J.; Kristina, A.; et al. Common variations in BARD1 influence susceptibility to high- risk neuroblastoma. Nat. Genet. 2009, 41, 718–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Yu, Y.; Jin, Y.; Lu, J.; Zhang, J.; Wang, H.; Han, W.; Chu, P.; Tai, J.; Chen, F.; et al. Functional polymorphisms in BARD1 association with neuroblastoma in a regional han Chinese population. J. Cancer 2019, 10, 2153–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Zou, Y.; Zhu, J.; Zeng, X.; Yang, T.; Wang, F.; He, J.; Xia, H. The association between GWAS-identified BARD1 gene SNPS and neuroblastoma susceptibility in a Southern Chinese population. Int. J. Med. Sci. 2016, 13, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latorre, V.; Diskin, S.J.; Diamond, M.; Zhang, H.; Hakonarson, H.; Maris, J.M.; Devoto, M. Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans. Cancer Epidemiol. Biomark. Prev. 2012, 21, 658–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomolonis, J.A.; Agarwal, S.; Shohet, J.M. Neuroblastoma pathogenesis: Deregulation of embryonic neural crest development. Cell Tissue Res. 2018, 372, 245–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilyugin, M.; Irminger-Finger, I. Long non-coding RNA and microRNAs might act in regulating the expression of BARD1 mRNAs. Int. J. Biochem. Cell Biol. 2014, 54, 356–367. [Google Scholar] [CrossRef]
- Pilyugin, M.; Andre, P.-A.; Ratajska, M.; Irminger-Finger, I. An isoform of BARD1, associated with many types of cancer, is a driver of oncogenesis by inducing telomere aberrations in vitro and in vivo. Cancer Res. 2015, 75, 2296. [Google Scholar] [CrossRef]
- DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. Cancer: Principles & Practice of Oncology, 10th ed.; Wolters Kluwer Health Adis (ESP): London, UK, 2015; ISBN1 978-146989455-3. ISBN2 978-145119294-0. [Google Scholar]
- Schneider, D.T.; Calaminus, G.; Koch, S.; Teske, C.; Schmidt, P.; Haas, R.J.; Harms, D.; Göbel, U. Epidemiologic Analysis of 1,442 Children and Adolescents Registered in the German Germ Cell Tumor Protocols. Pediatr. Blood Cancer 2004, 42, 169–175. [Google Scholar] [CrossRef]
- Irminger-Finger, I.; Soriano, J.V.; Vaudan, G.; Montesano, R.; Sappino, A.P. In vitro repression of Brca1-associated RING domain gene, Bard1, induces phenotypic changes in mammary epithelial cells. J. Cell Biol. 1998, 143, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Wu, Y.H.; Hsieh, J.Y.; Liang, M.L.; Chao, M.E.; Liu, D.J.; Hsu, M.T.; Wong, T.T. Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations. BMC Genom. 2010, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Guo, W.; Shen, J.K.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. Rhabdomyosarcoma: Advances in molecular and cellular biology. Adv. Mol. Cell. Biol. Sarcoma. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziuba, I.; Kurzawa, P.; Dopierała, M.; Larque, A.B.; Januszkiewicz-Lewandowska, D. Rhabdomyosarcoma in children—Current pathologic and molecular classification. Polish J. Pathol. 2018, 69, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Weber-Hall, S.; Anderson, J.; McManus, A.; Abe, S.; Nojima, T.; Pinkerton, R.; Pritchard-Jones, K.; Shipley, J. Gains, Losses, and Amplification of Genomic Material in Rhabdomyosarcoma Analyzed by Comparative Genomic Hybridization. Cancer Res. 1996, 56, 3220–3224. [Google Scholar]
Age (range in months (median)) | 1–169 (30) |
Sex | |
boys | 48 (54%) |
girls | 41 (46%) |
Stage (INSS) | |
1 | 7 (8%) |
2 | 12 (13%) |
3 | 30 (34%) |
4 | 33(37%) |
4s | 7 (8%) |
Mitosis Karyorrhexis Index (MKI) | |
low | 40 (45%) |
intermediate | 25 (28%) |
high | 24 (27%) |
Histological category | |
Neuroblastoma | 71 (80%) |
undifferentiated | 7 (9%) |
poorly differentiated | 35 (50%) |
differentiating | 29 (41%) |
Ganglioneuroblastoma | 12 (13%) |
Ganglioneuroma | 6 (7%) |
Tumor localization | |
adrenal | 46 (51%) |
extra-adrenal | 43 (49%) |
NMYC status | |
amplification | 18 (20%) |
no amplification | 70 (79%) |
unknown | 1 (1%) |
Histological risk group (INPC) | |
favorable | 51 (57%) |
unfavorable | 38 (43%) |
Clinical risk group | |
low | 26 (29%) |
intermediate | 27 (30%) |
high | 36 (41%) |
Histological Type | Group Characteristic: | ||
---|---|---|---|
Age (Range in Months (Median)) | Sex (Boys/Girls) | Tumor Location | |
Immature Teratoma (7) | Congenital-204 (55) | 4 (57%)/3 (43%) | Testicle (3) (43%), Mediastinum (1) (14%), Sacro-caudal area (3) (43%) |
Yolk sac tumor (9) | 6–138 (51) | 8 (89%)/1 (11%) | Testicle (8) (89%), Ovary (1) (11%) |
Dysgerminoma (10) | 84–204 (156) | 10 girls (100%) | Ovary (10) (100%) |
Age (Range in Months (Median)) | 36–156 (104.6) |
Sex | |
boys | 5 (71%) |
girls | 2 (29%) |
Tumor localization | |
Thorax, head and neck | 2 (29%) |
Limbs | 3 (42%) |
Pelvic | 2 (29%) |
Histological category | |
RMS alveolare | 3 (43%) |
RMS embryonale | 4 (57%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiak, A.; Krawczyńska, N.; Iliszko, M.; Czarnota, K.; Buczkowski, K.; Stefanowicz, J.; Adamkiewicz-Drożyńska, E.; Cichosz, G.; Iżycka-Świeszewska, E. Expression of BARD1 β Isoform in Selected Pediatric Tumors. Genes 2021, 12, 168. https://doi.org/10.3390/genes12020168
Jasiak A, Krawczyńska N, Iliszko M, Czarnota K, Buczkowski K, Stefanowicz J, Adamkiewicz-Drożyńska E, Cichosz G, Iżycka-Świeszewska E. Expression of BARD1 β Isoform in Selected Pediatric Tumors. Genes. 2021; 12(2):168. https://doi.org/10.3390/genes12020168
Chicago/Turabian StyleJasiak, Anna, Natalia Krawczyńska, Mariola Iliszko, Katarzyna Czarnota, Kamil Buczkowski, Joanna Stefanowicz, Elżbieta Adamkiewicz-Drożyńska, Grzegorz Cichosz, and Ewa Iżycka-Świeszewska. 2021. "Expression of BARD1 β Isoform in Selected Pediatric Tumors" Genes 12, no. 2: 168. https://doi.org/10.3390/genes12020168
APA StyleJasiak, A., Krawczyńska, N., Iliszko, M., Czarnota, K., Buczkowski, K., Stefanowicz, J., Adamkiewicz-Drożyńska, E., Cichosz, G., & Iżycka-Świeszewska, E. (2021). Expression of BARD1 β Isoform in Selected Pediatric Tumors. Genes, 12(2), 168. https://doi.org/10.3390/genes12020168