VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Motif Analysis Based on Frequency
2.2. Motif Analysis Based on the Markov Model (D-Ratio)
2.3. Clustering of Sequences
2.4. K-Means
2.5. Mean Shift
2.6. Principal Component Analysis (PCA)
2.7. ClusterMap
2.8. Visualization of Data
2.9. Bar Chart Visualization
2.10. Heatmap Visualization
3. How to Use VIRMOTIF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gooneratne, S.L.; Alinejad-Rokny, H.; Ebrahimi, D.; Bohn, P.S.; Wiseman, R.W.; O’Connor, D.H.; Davenport, M.P.; Kent, S.J. Linking Pig-Tailed Macaque Major Histocompatibility Complex Class I Haplotypes and Cytotoxic T Lymphocyte Escape Mutations in Simian Immunodeficiency Virus Infection. J. Virol. 2014, 88, 14310–14325. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.B.; Lichtfuss, M.; Amarasena, T.H.; Alcantara, S.; De Rose, R.; Tachedjian, G.; Alinejad-Rokny, H.; Venturi, V.; Davenport, M.P.; Winnall, W.R.; et al. High fidelity simian immunodeficiency virus reverse transcriptase mutants have impaired replication in vitro and in vivo. Virology 2016, 492, 1–10. [Google Scholar] [CrossRef]
- Armitage, A.E.; Katzourakis, A.; De Oliveira, T.; Welch, J.J.; Belshaw, R.; Bishop, K.N.; Kramer, B.; McMichael, A.J.; Rambaut, A.; Iversen, A.K. Conserved Footprints of APOBEC3G on Hypermutated Human Immunodeficiency Virus Type 1 and Human Endogenous Retrovirus HERV-K(HML2) Sequences. J. Virol. 2008, 82, 8743–8761. [Google Scholar] [CrossRef] [Green Version]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Bayati, M.; Rabiee, H.R.; Mehrbod, M.; Vafaee, F.; Ebrahimi, D.; Forrest, A.R.R. CANCERSIGN: A user-friendly and robust tool for identification and classification of mutational signatures and patterns in cancer genomes. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Alinejad-Rokny, H.; Pourshaban, H.; Orimi, A.G.; Baboli, M.M. Network Motifs Detection Strategies and Using for Bioinformatic Networks. J. Bionanosci. 2014, 8, 353–359. [Google Scholar] [CrossRef]
- Alinejad-Rokny, H. Proposing on Optimized Homolographic Motif Mining Strategy Based on Parallel Computing for Complex Biological Networks. J. Med. Imaging Heal. Inform. 2016, 6, 416–424. [Google Scholar] [CrossRef]
- Alinejad-Rokny, H.; Sadroddiny, E.; Scaria, V. Machine learning and data mining techniques for medical complex data analysis. Neurocomputing 2018, 276, 1. [Google Scholar] [CrossRef]
- Javanmard, R.; Jeddisaravi, K.; Alinejad-Rokny, H. Proposed a New Method for Rules Extraction Using Artificial Neural Network and Artificial Immune System in Cancer Diagnosis. J. Bionanosci. 2013, 7, 665–672. [Google Scholar] [CrossRef]
- Shamshirband, S.; Fathi, M.; Dehzangi, A.; Chronopoulos, A.T. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J. Biomed. Inform. 2020, 103627. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kellis, M. Deep learning for regulatory genomics. Nat. Biotechnol. 2015, 33, 825–826. [Google Scholar] [CrossRef]
- Alinejad-Rokny, H.; Anwar, F.; Waters, S.A.; Davenport, M.P.; Ebrahimi, D. Source of CpG Depletion in the HIV-1 Genome. Mol. Biol. Evol. 2016, 33, 3205–3212. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, D.; Davenport, M.P. Insights into the Motif Preference of APOBEC3 Enzymes. PLoS ONE 2014, 9, e87679. [Google Scholar] [CrossRef]
- Ebrahimi, D.; Anwar, F.; Davenport, M.P. APOBEC3G and APOBEC3F rarely co-mutate the same HIV genome. Retrovirology 2012, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Ahmadinia, M.; Meybodi, M.; Esnaashari, M.; Alinejad-Rokny, H. Energy-efficient and multi-stage clustering algorithm in wireless sensor networks using cellular learning automata. IETE J. Res. 2013, 59, 774. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Khozouie, N.; Parvin, H.; Beheshti, A.; Mahmoudi, M.R. An Ensemble of Locally Reliable Cluster Solutions. Appl. Sci. 2020, 10, 1891. [Google Scholar] [CrossRef] [Green Version]
- Parvin, H.; Parvin, S. Divide and conquer classification. Aust. J. Basic Appl. Sci. 2011, 5, 2446–2452. [Google Scholar]
- Parvin, H.; Minaei, B.; Ghatei, S. An innovative combination of particle swarm optimization, learning automaton and great deluge algorithms for dynamic environments. Int. J. Phys. Sci. 2011, 6, 5121–5127. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100. [Google Scholar] [CrossRef]
- Ma, S.; Dai, Y. Principal component analysis based methods in bioinformatics studies. Brief. Bioinform. 2011, 12, 714–722. [Google Scholar] [CrossRef]
- Yizong, C. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.B.; Elder, S.; Musco, C.; Musco, C.; Persu, M. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation. In Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, Portland, OR, USA, 12 June 2015; pp. 163–172. [Google Scholar]
- Mahmoudi, M.R.; Akbarzadeh, H.; Parvin, H.; Nejatian, S.; Rezaie, V. Consensus function based on cluster-wise two level clustering. Artif. Intell. Rev 2021, 54, 639–665. [Google Scholar] [CrossRef]
- Beheshti, A.; Tabebordbar, A.; Benatallah, N. istory: Intelligent storytelling with social data. Companion Proc. Web Conf. 2020, 253–256. [Google Scholar] [CrossRef]
- Beheshti, A.; Benatallah, B.; Tabebordbar, A.; Motahari-Nezhad, H.R.; Barukh, M.C.; Nouri, R. Datasynapse: A social data curation foundry. Distrib. Parallel Databases 2019, 37, 351–384. [Google Scholar] [CrossRef]
- Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [Google Scholar] [CrossRef] [Green Version]
- VIRMOTIF. Available online: https://gitlab.com/pedram56rajaii/virmotif (accessed on 25 January 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajaei, P.; Jahanian, K.H.; Beheshti, A.; Band, S.S.; Dehzangi, A.; Alinejad-Rokny, H. VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis. Genes 2021, 12, 186. https://doi.org/10.3390/genes12020186
Rajaei P, Jahanian KH, Beheshti A, Band SS, Dehzangi A, Alinejad-Rokny H. VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis. Genes. 2021; 12(2):186. https://doi.org/10.3390/genes12020186
Chicago/Turabian StyleRajaei, Pedram, Khadijeh Hoda Jahanian, Amin Beheshti, Shahab S. Band, Abdollah Dehzangi, and Hamid Alinejad-Rokny. 2021. "VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis" Genes 12, no. 2: 186. https://doi.org/10.3390/genes12020186
APA StyleRajaei, P., Jahanian, K. H., Beheshti, A., Band, S. S., Dehzangi, A., & Alinejad-Rokny, H. (2021). VIRMOTIF: A User-Friendly Tool for Viral Sequence Analysis. Genes, 12(2), 186. https://doi.org/10.3390/genes12020186