Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops orientalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. PCR Amplification and Quantitative Real-Time PCR (qRT-PCR) Analysis
2.3. Bioinformatic Analyses
2.4. Sectioning and Histological Staining
2.5. Western Blot
2.6. Statistical Analyses
3. Results
3.1. Co-c-Fos cDNA Cloning and Sequence Analyses
3.2. Distribution of Co-c-Fos mRNA Expression in Various Tissues of C. orientalis
3.3. Expression Pattern of Co-c-Fos Gene during the Newt Limb Regeneration
3.4. Role of Co-c-Fos in the Process of the Newt Wound Healing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IEGs | immediate-early genes |
AP-1 | activator protein 1 |
bZIP | basic leucine zipper |
NLS | Nuclear localization sequence |
UTR | untranslated region |
MMP | matrix metalloproteinase |
AEC | apical epithelial cap |
dpa | days post-amputation |
hpa | hours post-amputation |
References
- Brockes, J.P.; Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 2008, 24, 525–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, H. Initiation of limb regeneration: The critical steps for regenerative capacity. Dev. Growth Differ. 2008, 50, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Kragl, M.; Knapp, D.; Nacu, E.; Khattak, S.; Maden, M.; Epperlein, H.H.; Tanaka, E.M. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009, 460, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Uchiyama, K.; Imokawa, Y.; Yoshizato, K. Cloning and characterization of cdnas for matrix metalloproteinases of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 1996, 93, 6819–6824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, E.; Gardiner, D.; Carlson, M.; Nugas, C.; Bryant, S. Expression of mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 1999, 216, 2–9. [Google Scholar]
- Vinarsky, V.; Atkinson, D.L.; Stevenson, T.J.; Keating, M.T.; Odelberg, S.J. Normal newt limb regeneration requires matrix metalloproteinase function. Dev. Biol. 2005, 279, 86–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mescher, A. Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J. Exp. Zool. 1976, 195, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Niessen, N.; Balthazart, J.; Ball, G.F.; Charlier, T. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning. Eur. J. Neurosci. 2013, 38, 3325–3337. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.E.; Hasan, M.; Bousso, P. A role for the immediate early gene product c-fos in imprinting t cells with short-term memory for signal summation. PLoS ONE 2011, 6, e18916. [Google Scholar] [CrossRef]
- Van Straaten, F.; Muller, R.; Curran, T.; Van Beveren, C.; Verma, I.M. Complete nucleotide sequence of a human c-onc gene: Deduced amino acid sequence of the human c-fos protein. Proc. Natl. Acad. Sci. USA 1983, 80, 3183–3187. [Google Scholar] [CrossRef] [Green Version]
- Curran, T.; Gordon, M.B.; Rubino, K.L.; Sambucetti, L.C. Isolation and characterization of the c-fos (rat) cdna and analysis of post-translational modification in vitro. Oncogene 1987, 2, 79–84. [Google Scholar] [PubMed]
- Fujiwara, K.T.; Ashida, K.; Nishina, H.; Iba, H.; Miyajima, N.; Nishizawa, M.; Kawai, S. The chicken c-fos gene: Cloning and nucleotide sequence analysis. J. Virol. 1987, 61, 4012–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kim, I.; Kim, Y.J.; Kim, M.K.; Yoon, Y.; Lee, Y.; Lee, J. Cloning and sequence analysis of the self-fertilizing fish Rivulus marmoratus immediate early gene c-fos. Mar. Environ. Res. 2004, 58, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Xu, X.; Xu, F.; Meng, Y.; Sun, C.; Shi, L.; Zhao, E. Combined expression of c-jun, c-fos, and p53 improves estimation of prognosis in oral squamous cell carcinoma. Cancer Investig. 2016, 34, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Sans, M.D.; Hou, Y.; Ernst, S.A.; Williams, J.A. C-jun/ap-1 is required for cck-induced pancreatic acinar cell dedifferentiation and DNA synthesis in vitro. Am. J. Physiol. -Gastrointest. Liver Physiol. 2012, 302, G1381–G1396. [Google Scholar] [CrossRef] [Green Version]
- Florin, L.; Hummerich, L.; Dittrich, B.T.; Kokocinski, F.; Wrobel, G.; Gack, S.; Schorppkistner, M.; Werner, S.; Hahn, M.; Lichter, P. Identification of novel ap-1 target genes in fibroblasts regulated during cutaneous wound healing. Oncogene 2004, 23, 7005–7017. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Liu, H.; Fu, X.; Sun, T.; Sheng, Z. Recombinant human platelet-derived growth factor enhanced dermal wound healing by a pathway involving erk and c-fos in diabetic rats. J. Dermatol. Sci. 2007, 45, 193–201. [Google Scholar] [CrossRef]
- Stern, S.; Knoll, B. Cns axon regeneration inhibitors stimulate an immediate early gene response via map kinase-srf signaling. Mol. Brain 2014, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Ott, C.E.; Bauer, S.; Manke, T.; Ahrens, S.; Rodelsperger, C.; Grunhagen, J.; Kornak, U.; Duda, G.N.; Mundlos, S.; Robinson, P.N. Mechanical strain of osteoblasts induces promiscuous and depolarization-induced immediate-early response genes. Bone 2009, 44, S298. [Google Scholar] [CrossRef]
- Hui, T.; Mizuguchi, T.; Sugiyama, N.; Avital, I.; Rozga, J.; Demetriou, A.A. Immediate early genes and p21 regulation in liver of rats with acute hepatic failure. Am. J. Surg. 2002, 183, 457–463. [Google Scholar] [CrossRef]
- Sabin, K.; Santosferreira, T.; Essig, J.; Rudasill, S.E.; Echeverri, K. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl. Dev. Biol. 2015, 408, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Yu, Y.; Zheng, H.; Yin, L.; Sun, M.; Wang, W.; Cui, J.; Liu, W.; Xie, X.; Chen, F. Itraq-based quantitative proteomic analysis of Cynops orientalis limb regeneration. BMC Genom. 2017, 18, 750. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tang, J.; Su, J.; Cui, J.; Xie, X.; Chen, F. Integrative analysis of micrornaome, transcriptome, and proteome during the limb regeneration of Cynops orientalis. J. Proteome Res. 2019, 18, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zheng, H.; Zhang, J.; Jia, L.; Feng, Y.; Wang, W.; Li, H.; Chen, F. Profiling of glycan alterations in regrowing limb tissues of Cynops orientalis. Wound Repair Regen. 2017, 25, 836. [Google Scholar] [CrossRef] [PubMed]
- Weisenthal, L.M.; Marsden, J.A.; Dill, P.L.; Macaluso, C.K. A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res. 1983, 43, 749–757. [Google Scholar]
- Bornberg-Bauer, E.; Rivals, E.; Vingron, M. Computational approaches to identify leucine zippers. Nucleic Acids Res. 1998, 26, 2740–2746. [Google Scholar] [CrossRef] [Green Version]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, J.; Zheng, H.; Wang, W.; Chen, F.; Yu, Y.; Cui, J. Molecular cloning, characterization, and expression analysis of the three cysteine and glycine-rich protein genes in the chinese fire-bellied newt Cynops orientalis. Gene 2018, 647, 226–234. [Google Scholar] [CrossRef]
- Aikawa, Y.; Morimoto, K.; Yamamoto, T.; Chaki, H.; Hashiramoto, A.; Narita, H.; Hirono, S.; Shiozawa, S. Treatment of arthritis with a selective inhibitor of c-fos/activator protein-1. Nat. Biotechnol. 2008, 26, 817–823. [Google Scholar] [CrossRef]
- Reunanen, N.; Li, S.; Ahonen, M.; Foschi, M.; Han, J.; Kähäri, V. Activation of p38 α mapk enhances collagenase-1 (matrix metalloproteinase (mmp)-1) and stromelysin-1 (mmp-3) expression by mrna stabilization. J. Biol. Chem. 2002, 277, 32360–32368. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.; Noh, E.; Song, H.; Lee, G.; Kwon, K.; Lee, Y. Reversine inhibits mmp-1 and mmp-3 expressions by suppressing of ros/mapk/ap-1 activation in uv-stimulated human keratinocytes and dermal fibroblasts. Exp Derm. 2018, 27, 298–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glover, J.N.; Harrison, S.C. Crystal structure of the heterodimeric bzip transcription factor c-fos-c-jun bound to DNA. Nature 1995, 373, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Liu, Z.; Zandi, E. Ap-1 function and regulation. Curr. Opin. Cell Biol. 1997, 9, 240–246. [Google Scholar] [CrossRef]
- Dingwall, C.; Laskey, R. Nuclear targeting sequences--a consensus? Trends Biochem. Sci. 1991, 16, 478–481. [Google Scholar] [CrossRef]
- Li, H.; Xie, P.; Li, G.; Hao, L.; Xiong, Q. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male wistar rats injected i.V. With toxins. Toxicon 2009, 53, 169–175. [Google Scholar] [CrossRef]
- Chatani, K.; Kawakami, M.; Weinstein, J.N.; Meller, S.T.; Gebhart, G.F. Characterization of thermal hyperalgesia, c-fos expression, and alterations in neuropeptides after mechanical irritation of the dorsal root ganglion. Spine 1995, 20, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gates, P.B.; Brockes, J.P. Positional identity of adult stem cells in salamander limb regeneration. Comptes Rendus Biol. 2007, 330, 485–490. [Google Scholar] [CrossRef]
- Greenberg, M.E.; Ziff, E.B. Stimulation of 3t3 cells induces transcription of the c-fos proto-oncogene. Nature 1984, 311, 433–438. [Google Scholar] [CrossRef]
- Yun, M.H.; Gates, P.B.; Brockes, J.P. Sustained erk activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts. Stem Cell Rep. 2014, 3, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Satoh, A.; Makanae, A.; Hirata, A.; Satou, Y. Blastema induction in aneurogenic state and prrx-1 regulation by mmps and fgfs in ambystoma mexicanum limb regeneration. Dev. Biol. 2011, 355, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wu, C.; Chao, D.; Wu, C.; Li, C.; Chen, G.; Lan, C. High-glucose-cultivated peripheral blood mononuclear cells impaired keratinocyte function via reduced il-22 expression: Implications on impaired diabetic wound healing. Exp. Derm. 2015, 24, 639–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.; Wang, W.; Wang, S.; Chu, Y.; Chang, W.; Wang, J. Glycogen synthase kinase-3β-mediated ccaat/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol. Aging 2014, 35, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Hsu, J.; Ko, C.; Chiu, N.; Kan, W.; Lai, M.; Wang, J. Astrocytic ccaat/enhancer-binding protein delta contributes to glial scar formation and impairs functional recovery after spinal cord injury. Mol. Neurobiol. 2016, 53, 5912–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, K.; Lund, L.; Mudgett, J.; Mellin, T.; Hunt, T.; Murphy, B.; Ronan, J.; Werb, Z.; Banda, M. Impaired wound contraction in stromelysin-1-deficient mice. Ann. Surg. 1999, 230, 260–265. [Google Scholar] [CrossRef]
- Motomura, H.; Seki, S.; Shiozawa, S.; Aikawa, Y.; Nogami, M.; Kimura, T. A selective c-fos/ap-1 inhibitor prevents cartilage destruction and subsequent osteophyte formation. Biochem. Biophys. Res. Commun. 2018, 497, 756–761. [Google Scholar] [CrossRef]
- Makino, H.; Seki, S.; Yahara, Y.; Shiozawa, S.; Aikawa, Y.; Motomura, H.; Nogami, M.; Watanabe, K.; Sainoh, T.; Ito, H.; et al. A selective inhibition of c-fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci. Rep. 2017, 7, 16983. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, G.; Feng, Y.; Mi, Z.; Wang, D.; Lin, S.; Chen, F.; Cui, J.; Yu, Y. Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops orientalis. Genes 2021, 12, 205. https://doi.org/10.3390/genes12020205
Ye G, Feng Y, Mi Z, Wang D, Lin S, Chen F, Cui J, Yu Y. Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops orientalis. Genes. 2021; 12(2):205. https://doi.org/10.3390/genes12020205
Chicago/Turabian StyleYe, Gang, Yalong Feng, Zhaoxiang Mi, Du Wang, Shuai Lin, Fulin Chen, Jihong Cui, and Yuan Yu. 2021. "Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops orientalis" Genes 12, no. 2: 205. https://doi.org/10.3390/genes12020205
APA StyleYe, G., Feng, Y., Mi, Z., Wang, D., Lin, S., Chen, F., Cui, J., & Yu, Y. (2021). Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops orientalis. Genes, 12(2), 205. https://doi.org/10.3390/genes12020205