Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Methods
2.2.1. Sample Collection
2.2.2. Laboratory Investigations
2.2.3. Peripheral Blood Leucocytes’ Isolation
2.2.4. Isolation of Total Genomic DNA
2.2.5. SNP Selection
2.2.6. Genotype Assessment
2.2.7. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Genotyping of rs4762 and rs699
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhury, D.; Tuncel, M.; Levi, M. Diabetic nephropathy—A multifaceted target of new therapies. Discov. Med. 2010, 10, 406–415. [Google Scholar] [PubMed]
- Cooper, M.E. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998, 352, 213–219. [Google Scholar] [CrossRef]
- Niakan, A.; Cushman, W.C. Hypertension and Diabetes. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Gumprecht, J.; Zychma, M.J.; Grzeszczak, W.; Zukowska-Szczechowska, E.; the End-Stage Renal Disease Study Group. Angiotensin I-converting enzyme gene insertion/deletion and angiotensinogen M235T polymorphisms: Risk of chronic renal failure. Kidney Int. 2000, 58, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Brewster, U.C.; Perazella, M.A. The renin-angiotensin-aldosterone system and the kidney: Effects on kidney disease. Am. J. Med. 2004, 116, 263–272. [Google Scholar] [CrossRef]
- Weir, M.R.; Dzau, V.J. The renin-angiotensin-aldosterone system: A specific target for hypertension management. Am. J. Hypertens. 1999, 12, 205–213. [Google Scholar] [CrossRef]
- Buckalew, V.M.; Berg, R.L.; Wang, S.-R.; Porush, J.G.; Sally, R.; Schulman, G. Prevalence of hypertension in 1,795 subjects with chronic renal disease: The modification of diet in renal disease study baseline cohort. Am. J. Kidney Dis. 1996, 28, 811–821. [Google Scholar] [CrossRef]
- Lovati, E.; Richard, A.; Frey, B.M.; Frey, F.J.; Ferrari, P. Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease. Kidney Int. 2001, 60, 46–54. [Google Scholar] [CrossRef] [Green Version]
- El-Nabi, S.H.; Sayed, S.; Abd-Elhafez, M.A.; ElFiky, M.; Moneim, A.E.A.; El-Garawani, I. Arg753Gln Polymorphisms in the Toll-Like Receptor 2 Gene are Associated with Cytomegalovirus Infection in Egyptian Bone Marrow Recipients. Endocrine, Metab. Immune Disord. Drug Targets 2020, 20, 619–624. [Google Scholar] [CrossRef]
- El-Garawani, I.; El-Nabi, S.H.; Gadallah, M.; Abdelsameea, E. Association between IFN-λ 3 Gene Polymorphisms and Outcome of Treatment with Direct Acting Antivirals in Chronic HCV-Infected Egyptian Patients. Immunol. Investig. 2021, 50, 12–22. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Choi, J.C.; You, S.-H.; Kim, W.-Y. Association of Renin-angiotensin-aldosterone System Inhibitors With Coronavirus Disease 2019 (COVID-19)-related Outcomes in Korea: A Nationwide Population-based Cohort Study. Clin. Infect. Dis. 2020, 71, 2121–2128. [Google Scholar] [CrossRef]
- Prasad, P.; Tiwari, A.K.; Kumar, K.M.P.; Ammini, A.C.; Gupta, A.; Gupta, R.; Sharma, A.K.; Rao, A.R.; Nagendra, R.; Chandra, T.S.; et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med. Genet. 2006, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Smyth, L.J.; Cañadas-Garre, M.; Cappa, R.C.; Maxwell, A.P.; McKnight, A.J. Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e026777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buraczynska, M.; Ksiazek, P.; Drop, A.; Zaluska, W.; Spasiewicz, D.; Ksiazek, A. Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Nephrol. Dial. Transplant. 2005, 21, 979–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.-Y. Recent Update of Renin-angiotensin-aldosterone System in the Pathogenesis of Hypertension. Electrolytes Blood Press. 2013, 11, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takakura, Y.; Yoshida, T.; Yoshioka, K.; Umekawa, T.; Kogure, A.; Toda, H.; Kagawa, K.; Fukui, S.; Yoshikawa, T. Angiotensinogen gene polymorphism (Met235Thr) influences visceral obesity and insulin resistance in obese Japanese women. Metabolism 2006, 55, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; Lee, T.W.; Kim, S.K.; Chung, J.-H.; Kang, S.W.; Kim, T.H.; Park, S.J.; et al. Angiotensinogen Polymorphisms and Post-Transplantation Diabetes Mellitus in Korean Renal Transplant Subjects. Kidney Blood Press. Res. 2013, 37, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, S.; Moutquin, J.-M.; Lindsay, C.; Roy, M.-C.; Rousseau, F. Implication of an AGT Haplotype in a Multigene Association Study With Pregnancy Hypertension. Hypertension 2004, 43, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Jeunemaitre, X.; Soubrier, F.; Kotelevtsev, Y.V.; Lifton, R.P.; Williams, C.S.; Charru, A.; Hunt, S.C.; Hopkins, P.N.; Williams, R.R.; Lalouel, J.-M.; et al. Molecular basis of human hypertension: Role of angiotensinogen. Cell 1992, 71, 169–180. [Google Scholar] [CrossRef]
- Ghonemy, T.A.; Farag, S.E.; Soliman, S.A.; El-Okely, A.; El-Hendy, Y. Epidemiology and risk factors of chronic kidney disease in the El-Sharkia Governorate, Egypt. Saudi J. Kidney Dis. Transplant. 2016, 27, 111. [Google Scholar] [CrossRef]
- Soliman, S.S.A.; Guseman, E.H.; Haile, Z.T.; Ice, G. Prevalence and determinants of hypertension unawareness among Egyptian adults: The 2015 EHIS. J. Hum. Hypertens. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- El-Garawani, I.M. Ameliorative Effect of Cymbopogon Citratus Extract on Cisplatin-Induced Genotoxicity in Human Leu-kocytes. J. Biosci. Appl. Res. 2015, 1, 304–310. [Google Scholar] [CrossRef]
- Aljanabi, S.M.; Martinez, I. Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR-Based Techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef]
- Reis, K.A.; Ebinc, F.A.; Koc, E.; Demirci, H.; Erten, Y.; Guz, G.; Derici, U.B.; Bali, M.; Söylemezoglu, O.; Arınsoy, T.; et al. Association of the Angiotensinogen M235T and APO E Gene Polymorphisms in Turkish Type 2 Diabetic Patients with and without Nephropathy. Ren. Fail. 2011, 33, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, A.A.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Angiotensinogen Gene Polymorphism, Plasma Angiotensinogen, and Risk of Hypertension and Ischemic Heart Disease. Arter. Thromb. Vasc. Biol. 2003, 23, 1269–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-R.; Cheng, C.-H.; Shu, K.-H.; Chen, C.-H.; Lian, J.-D.; Wu, M.-Y. Study of the polymorphism of angiotensinogen, anigiotensin-converting enzyme and angiotensin receptor in type II diabetes with end-stage renal disease in Taiwan. J. Chin. Med. Assoc. 2003, 66, 51–56. [Google Scholar] [PubMed]
- Purkait, P.; Suthar, P.C.; Purohit, V.K.; Naidu, J.M.; Sarkar, B.N. Renin-Angiotensin-Aldosterone System Gene Polymorphisms in Type 2 Diabetic Patients among the Mewari Population of Rajasthan. Int. J. Biol. Med. Res. 2013, 4, 3128–3134. [Google Scholar]
- El-Garawani, I.M.; Hassab El Nabi, S.E. Increased Sensitivity of Apoptosis Detection Using Direct Staining Method and In-tegration of Acridine Orange as an Alternative Safer Fluorescent Dye in Agarose Gel Electrophoresis and Micronucleus Test. Can. J. Pure Appl. Sci. 2016, 10, 3865–3871. [Google Scholar]
- Raij, L.; Keane, W.F. Glomerular mesangium: Its function and relationship to angiotensin II. Am. J. Med. 1985, 79, 24–30. [Google Scholar] [CrossRef]
- Kagami, S.; Border, W.A.; Miller, D.; Noble, N.A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J. Clin. Investig. 1994, 93, 2431–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, D.A.; Porter, L.E.; Gordon, M.; Fisher, N.D.; De’Oliveira, J.M.; Laffel, L.M.; Passan, D.R.; Williams, G.H.; Hollenberg, N.K. The paradox of the low-renin state in diabetic nephropathy. J. Am. Soc. Nephrol. 1999, 10, 2382–2391. [Google Scholar]
- Rohrwasser, A.; Morgan, T.; Dillon, H.F.; Zhao, L.; Callaway, C.W.; Hillas, E.; Zhang, S.; Cheng, T.; Inagami, T.; Ward, K.; et al. Elements of a Paracrine Tubular Renin-Angiotensin System Along the Entire Nephron. Hypertension 1999, 34, 1265–1274. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.-B.; Yin, S.-S.; Qin, Y.-H. Association of angiotensinogen M235T gene polymorphism with end-stage renal disease risk: A meta-analysis. Mol. Biol. Rep. 2012, 40, 765–772. [Google Scholar] [CrossRef]
- Huang, H.-D.; Lin, F.-J.; Li, X.-J.; Wang, L.-R.; Jiang, G.-R. Genetic polymorphisms of the renin-angiotensin-aldosterone system in Chinese patients with end-stage renal disease secondary to IgA nephropathy. Chin. Med. J. 2010, 123, 3238–3242. [Google Scholar] [PubMed]
- Makuc, J.; Šeruga, M.; Završnik, M.; Cilenšek, I.; Petrovič, D. Angiotensinogen (AGT) gene missense polymorphisms (rs699 and rs4762) and diabetic nephropathy in Caucasians with type 2 diabetes mellitus. Bosn. J. Basic Med. Sci. 2017, 17, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscogiuri, G.; Chavez, A.O.; Gastaldelli, A.; Perego, L.; Tripathy, D.; Saad, M.J.; Velloso, L.; Folli, F. The Crosstalk between Insulin and Renin-Angiotensin-Aldosterone Signaling Systems and its Effect on Glucose Metabolism and Diabetes Prevention. Curr. Vasc. Pharmacol. 2008, 6, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.W.; Pravenec, M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists. J. Hypertens. 2004, 22, 2253–2261. [Google Scholar] [CrossRef]
- Dhondup, T.; Qian, Q. Electrolyte and Acid-Base Disorders in Chronic Kidney Disease and End-Stage Kidney Failure. Blood Purif. 2017, 43, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of Anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Underwood, P.C.; Sun, B.; Williams, J.S.; Pojoga, L.H.; Raby, B.; Lasky-Su, J.; Hunt, S.; Hopkins, P.N.; Jeunemaître, X.; Adler, G.K.; et al. The association of the angiotensinogen gene with insulin sensitivity in humans: A tagging single nucleotide polymorphism and haplotype approach. Metabolism 2011, 60, 1150–1157. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, T.S.; Ahuja, M.; Rai, T.S.; Kohli, H.S.; Bhansali, A.; Sud, K.; Khullar, M. ACE Variants Interact with the RAS Pathway to Confer Risk and Protection against Type 2 Diabetic Nephropathy. DNA Cell Biol. 2009, 28, 141–150. [Google Scholar] [CrossRef]
- Shaikh, R.; Shahid, S.M.; Mansoor, Q.; Ismail, M.; Azhar, A. Genetic variants of ACE (Insertion/Deletion) and AGT (M268T) genes in patients with diabetes and nephropathy. J. Renin-Angiotensin-Aldosterone Syst. 2014, 15, 124–130. [Google Scholar] [CrossRef]
- Mtiraoui, N.; Ezzidi, I.; Turki, A.; Chaieb, M.; Mahjoub, T.; Almawi, W.Y. Renin–angiotensin–aldosterone system genotypes and haplotypes affect the susceptibility to nephropathy in type 2 diabetes patients. J. Renin-Angiotensin-Aldosterone Syst. 2011, 12, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Osawa, N.; Koya, D.; Araki, S.-I.; Uzu, T.; Tsunoda, T.; Kashiwagi, A.; Nakamura, Y.; Maeda, S. Combinational effect of genes for the renin–angiotensin system in conferring susceptibility to diabetic nephropathy. J. Hum. Genet. 2006, 52, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhu, X.; Yang, L.; Liu, Y.; Zhou, W.; Li, H. Relationship between Angiotensinogen Gene M235T Variant with Di-abetic Nephropathy in Chinese NIDDM. Chin. Med. J. 1999, 112, 797–800. [Google Scholar] [PubMed]
- Rizvi, S. Association of genetic variants with diabetic nephropathy. World J. Diabetes 2014, 5, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-L.; Yang, H.-Y.; Wu, C.-C.; Lee, H.-S.; Lin, Y.-F.; Hsu, C.-A.; Lai, C.-H.; Lin, C.; Kao, S.-Y.; Lu, K.-C. Gene-Gene Interactions in Renin-Angiotensin-Aldosterone System Contributes to End-Stage Renal Disease Susceptibility in a Han Chinese Population. Sci. World J. 2014, 2014, 169798. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, F.; Fang, Q.; Zhang, M.; Chen, J.; Gu, Y. Association between two genetic polymorphisms of the renin-angiotensin-aldosterone system and diabetic nephropathy: A meta-analysis. Mol. Biol. Rep. 2011, 39, 1293–1303. [Google Scholar] [CrossRef]
- Buraczyńska, M.; Ksiazek, P.; Łopatyński, J.; Spasiewicz, D.; Nowicka, T.K.A. Association of the Renin-Angiotensin System Gene Polymorphism with Nephropathy in Type II Diabetes. Pol. Arch. Med. Wewn. 2002, 108, 725–730. [Google Scholar]
- Ringel, J.; Beige, J.; Kunz, R.; Distler, A.; Sharma, A.M. Genetic variants of the renin-angiotensin system, diabetic nephropathy and hypertension. Diabetol. 1997, 40, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
rs699 | Forward | Reverse |
Outer | 5′TGCGCACAAGGTCCTGTCTG3′ | 5′GTCACCAGGTATGTCCGCAGG3′ |
Inner | 5′ATGGAAGACTGGCTGCTCCCTTAT3′ (T allele) | 5′GCTGTCCACACTGGCTCACG3′ (C allele) |
rs4762 | Forward | Reverse |
Outer | 5′TTCCGTATATATGGCATGCACAGTGA3′ | 5′GAGCAGCCAGTCTTCCATCCTGT3′ |
Inner | 5′GCCCAGCTGCTGCTGTCAAC3′ (C allele) | 5′TGTGAACACGCCCACCAACA3′ (T allele) |
Controls (n = 103) | >Non-ESRD (n = 97) | ESRD (n = 104) | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |||||
Age (years) | 61.67 ± 6.30 | 62.69 ± 8.62 | 63.65 ± 4.21 | 0.099 | |||
Sex (%): Female Male | 49 54 | 47.6 52.4 | 53 44 | 54.6 45.4 | 42 62 | 40.4 59.6 | 0.129 |
MAP | 93.33 ± 1.32 | 96.57 ± 5.61 * | 95.28 ± 8.36 *a | <0.001 # | |||
HbA1c (%) | 4.68 ± 0.64 | 9.0 ± 1.71 * | 8.49 ± 0.91 *a | <0.001 # | |||
Hb (mg/dL) | 11.59 ± 1.82 | 11.35 ± 2.0 | 10.42 ± 1.86 *a | <0.001 # | |||
RBCs × 106 | 3.92 ± 0.63 | 3.89 ± 0.71 | 3.59 ± 0.63 *a | <0.001 # | |||
WBCs × 103 | 6.83 ± 2.31 | 6.98 ± 2.56 | 7.06 ± 2.38 | 0.788 | |||
Platelets × 103 | 289.84 ± 73.04 | 247.83 ± 75.53 * | 207.0 ± 64.71 *a | <0.001 # | |||
PO4 (mg/mL) | 3.43 ± 0.37 | 3.33 ± 0.48 | 4.72 ± 1.26 *a | <0.001 # | |||
Ca+ (mg/dL) | 8.54 ± 0.99 | 8.30 ± 0.98 | 7.09 ± 0.77 *a | <0.001 # | |||
K+ (mEq/L) | 4.11 ± 0.27 | 4.0 ± 0.38 | 5.21 ± 0.74 *a | <0.001 # | |||
Na+ (mmol/L) | 137.61 ± 1.72 | 137.64 ± 2.77 | 134.08 ± 4.40 *a | <0.001 # | |||
Urea (mg/dL) | 28.60 ± 6.04 | 42.17 ± 12.99 * | 132.89 ± 32.51 *a | <0.001 # | |||
Creatinine (mg/dL) | 0.79 ± 0.11 | 1.06 ± 0.23 | 7.51 ± 1.581 *a | <0.001 # | |||
Albumin | 4.38 ± 0.42 | 4.01 ± 0.33 * | 3.71 ± 0.221 *a | <0.001 # |
Groups | AGT (rs4762) | AGT (rs699) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | Observed | Expected | χ2 | p Value | Genotype | Observed | Expected | χ2 | p Value | |
Control (n = 103) | CC® | 88 | 88.5 | 0.635 | 0.425 | CC | 23 | 24.3 | 0.251 | 0.615 |
CT | 15 | 13.9 | CT | 54 | 51.5 | |||||
TT | 0 | 0.5 | TT® | 26 | 27.3 | |||||
Non-ESRD (n = 97) | CC® | 44 | 49.1 | 6.31 | 0.011 * | CC | 6 | 13.7 | 11.19 | <0.001 * |
CT | 50 | 39.8 | CT | 61 | 45.5 | |||||
TT | 3 | 8.1 | TT® | 30 | 37.7 | |||||
ESRD (n = 104) | CC® | 51 | 57.8 | 12.15 | <0.001 * | CC | 21 | 25.0 | 2.47 | 0.115 |
CT | 53 | 39.5 | CT | 60 | 52.0 | |||||
TT | 0 | 6.8 | TT® | 23 | 27.0 |
Variables | Control | Non-ESRD | χ2 | p-Value | OR (CI 95%) | ||
---|---|---|---|---|---|---|---|
No | % | No | % | ||||
AGT (rs4762) | |||||||
CC® | 88 | 85.4 | 44 | 45.4 | - | - | 1.0 |
TC | 15 | 14.6 | 50 | 51.5 | 33.17 | <0.001 * | 6.67 (3.37–13.17) |
TT | 0 | 0.0 | 3 | 3.1 | 5.74 | 0.040 * | - |
CC | 88 | 85.4 | 44 | 45.4 | 1.0 | ||
TC + TT | 15 | 14.6 | 53 | 54.6 | 35.75 | <0.001 * | 7.07 (3.59–13.92) |
Alleles: | |||||||
C® | 191 | 92.7 | 138 | 71.1 | 1.0 | ||
T | 15 | 7.3 | 56 | 28.9 | 31.88 | <0.001 * | 5.17 (2.81–9.51) |
AGT (rs699) | |||||||
TT® | 23 | 22.3 | 6 | 6.2 | 1.0 | ||
TC | 54 | 52.4 | 61 | 62.9 | 9.74 | 0.001 * | 4.33 (1.64–11.43) |
CC | 26 | 25.2 | 30 | 30.9 | 8.46 | 0.003 * | 4.42 (1.56–12.52) |
TT | 23 | 22.3 | 6 | 6.2 | |||
TC + CC | 80 | 77.7 | 91 | 93.8 | 10.50 | 0.001 * | 4.36 (1.69–11.25) |
Alleles: | |||||||
T® | 100 | 48.5 | 73 | 37.6 | 1.0 | ||
C | 106 | 51.5 | 121 | 63.4 | 4.85 | 0.027 * | 1.56 (1.05–2.33) |
Controls | ESRD | ||||||
AGT (rs4762) | |||||||
CC® | 88 | 85.4 | 51 | 49.0 | 1.0 | ||
TC | 15 | 14.6 | 53 | 51.0 | 31.08 | <0.001 * | 6.10 (3.12–11.90) |
Alleles: | 1.0 | ||||||
C® | 191 | 92.7 | 155 | 74.5 | |||
T | 15 | 7.3 | 53 | 25.5 | 24.97 | <0.001 * | 4.35 (2.36–8.02) |
AGT (rs699) | |||||||
TT® | 23 | 22.3 | 21 | 20.2 | 1.0 | ||
TC | 54 | 52.4 | 60 | 57.7 | 0.31 | 0.58 | 1.22 (0.61–2.44) |
CC | 26 | 25.2 | 23 | 22.1 | 0.01 | 0.939 | 0.97 (0.43–2.19) |
TT | 23 | 22.3 | 21 | 20.2 | 1.0 | ||
TC + CC | 80 | 77.7 | 83 | 80.7 | 0.14 | 0.706 | 1.14 (0.58–2.21) |
Alleles: | |||||||
T® | 100 | 48.5 | 102 | 49.0 | 1.0 | ||
C | 106 | 51.5 | 106 | 51.0 | 0.01 | 0.919 | 0.98 (0.67–1.44) |
Non-ESRD | ESRD | ||||||
AGT (rs4762) | |||||||
CC® | 44 | 45.4 | 51 | 49.0 | 1.0 | ||
TC | 50 | 51.5 | 53 | 51.0 | 0.10 | 0.753 | 0.91 (0.52–1.60) |
TT | 3 | 3.1 | 0 | 0.0 | 3.36 | 0.106 | - |
CC | 44 | 45.4 | 51 | 49.0 | 1.0 | ||
TC + TT | 53 | 54.6 | 53 | 51.0 | 0.27 | 0.601 | 0.86 (0.50–1.50) |
Alleles: | |||||||
C® | 138 | 71.1 | 155 | 74.5 | 1.0 | ||
T | 56 | 28.9 | 53 | 25.5 | 0.58 | 0.445 | 0.84 (0.54–1.31) |
AGT (rs699) | |||||||
TT® | 6 | 6.2 | 21 | 20.2 | 1.0 | ||
TC | 61 | 62.9 | 60 | 57.7 | 7.08 | 0.007 * | 0.28 (0.11–1.31) |
CC | 30 | 30.9 | 23 | 22.1 | 8.54 | 0.003 * | 0.22 (0.08–0.63) |
TT® | 6 | 6.2 | 21 | 20.2 | 1.0 | ||
TC + CC | 91 | 93.8 | 83 | 80.7 | 8.37 | 0.003 * | 0.26 (0.10–0.68) |
Alleles: | |||||||
T® | 73 | 37.6 | 102 | 49.0 | 1.0 | ||
C | 121 | 63.4 | 106 | 51.0 | 5.32 | 0.021 * | 0.63 (0.42–0.93) |
OR (95% CI) | p Value | |
---|---|---|
AGT (rs4762) | ||
CC® vs. CT + TT(Dominant) | 6.55 (3.54–12.09) | <0.001 * |
CC® vs. CT(Co–dominant–1) | 6.36 (3.44–11.76) | <0.001 * |
CT® vs. CC + TT(over dominant) | 6.17 (3.34–11.39) | <0.001 * |
AGT (rs699) | ||
TT® vs. TC + CC(Dominant) | 1.85 (1.00–3.43) | 0.047 |
TT + TC® vs. CC (mutant) | 1.06 (0.62–1.83) | 0.832 |
TT® vs. TC(Co–dominant–1) | 1.91 (1.00–3.63) | 0.046 * |
TT® vs. CC(Co–dominant–2) | 1.74 (0.84–3.60) | 0.135 |
TC® vs. TT+CC (over dominant) | 2.85 (1.64–4.96) | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Garawani, I.M.; Shaheen, E.M.; El-Seedi, H.R.; Khalifa, S.A.M.; Mersal, G.A.M.; Emara, M.M.; Kasemy, Z.A. Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes 2021, 12, 339. https://doi.org/10.3390/genes12030339
El-Garawani IM, Shaheen EM, El-Seedi HR, Khalifa SAM, Mersal GAM, Emara MM, Kasemy ZA. Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes. 2021; 12(3):339. https://doi.org/10.3390/genes12030339
Chicago/Turabian StyleEl-Garawani, Islam M., Eman M. Shaheen, Hesham R. El-Seedi, Shaden A. M. Khalifa, Gaber A. M. Mersal, Mahmoud M. Emara, and Zeinab A. Kasemy. 2021. "Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians" Genes 12, no. 3: 339. https://doi.org/10.3390/genes12030339
APA StyleEl-Garawani, I. M., Shaheen, E. M., El-Seedi, H. R., Khalifa, S. A. M., Mersal, G. A. M., Emara, M. M., & Kasemy, Z. A. (2021). Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes, 12(3), 339. https://doi.org/10.3390/genes12030339